aboutsummaryrefslogtreecommitdiff
path: root/src/patch/ghost_zone.hh
blob: 9ce4689b6b57f1b5547838e155a9247e8e9520d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// ghost_zone.hh -- fill in gridfn data in patch ghost zones
// $Id$
//
// ***** design notes for ghost zones *****
// ghost_zone - abstract base class to describe ghost zone of patch
// symmetry_ghost_zone - ... derived class for spacetime-symmetry ghost zone
// interpatch_ghost_zone - ... derived class for interpatch ghost zone
//

//
// prerequisites:
//	<stdio.h>
//	<assert.h>
//	<math.h>
//	"jt/util.hh"
//	"jt/array.hh"
//	"jt/cpm_map.hh"
//	"jt/linear_map.hh"
//	fp.hh
//	coords.hh
//	grid.hh
//	fd_grid.hh
//	patch.hh
//	patch_edge.hh
//

//*****************************************************************************

//
// ***** design notes for ghost zones *****
//

//
// A  ghost_zone  object describes a patch's ghost zone, and knows how
// to compute gridfns there (we usually speak of "synchronizing" the
// ghost zone or zones) based on either the patch system's symmetry
// or interpolation from a neighboring patch.  ghost_zone is an abstract
// base class, from which we derive two classes:
// * A  symmetry_ghost_zone  object describes a ghost zone which
//   is a (discrete) symmetry of spacetime, either mirror-image or
//   periodic.  Such an object knows how to fill in ghost-zone gridfn
//   data from the "other side" of the symmetry.
// * An  interpatch_ghost_zone  object describes a ghost zone which
//   overlaps another patch.  Such an object knows how to get ghost
//   zone gridfn data from the other patch.  More accurately, it gets
//   the data by asking (calling) the appropriate one of the other
//   patch's  patch_frontier  objects.
// Every patch has (points to) 4  ghost_zone  objects, one for each of
// the patch's sides.  See the comments in "patch.hh" for a "big picture"
// discussion of patches, patch edges, ghost zones, and patch frontiers.
//

//
// There are some unobvious complications involved in synchronizing
// the ghost zone "corners", i.e. in ghost zone points that are outside
// the nominal grid in *both* coordinates.  There are 3 basic cases here:
// * A corner between two symmetry ghost zones, for example the -x/-y
//   corner in the example below.  In this case it takes *two* sequential
//   symmetry operations to get gridfn data in the corner from the
//   nominal grid.  Symmetry operations commute, so at each point we'll
//   always get the same results independently of in which order we do
//   the symmetry operations.
// * A corner between two interpatch ghost zones, for example the +x/+y
//   corner in the example below.  In this case we could get the gridfn
//   data by either of two distinct interpolation operations (presumably
//   from two distinct patches), which would in general give slightly
//   different results.  In some ideal world we might take the average
//   of these, but at present we split the corner down its diagonal.
//   For the points on the diagonal we make an arbitrary choice; at
//   present this is that they belong to (and get their data via) the
//   rho ghost zone.
//	[For elliptic equations it's important to ensure that
//	each grid point get a value from exactly one computation,
//	and in particular we can't allow two different ghost
//	zones to "own" (assign values) to the same point, since
//	then the first value would be "lost" and wouldn't show
//	up in the Jacobian matrix.]
// * A corner between a symmetry and an interpatch ghost zone, for
//   example the +x/-y or -x/+y corners in the example below.  In this
//   case we need to first do a symmetry operation in the neighboring
//   patch so we don't have to off-center the interpolation in the
//   non-corner part of the interpatch ghost zone.  Then after the
//   interpatch interpolation, we need to do a final symmetry operation
//   in this patch to set up gridfn data in the corner.
//
// To handle all these cases, we use a 3-phase algorithm to synchronize
// ghost zones:
// Phase 1: Fill in gridfn data at all the non-corner points of symmetry
//	    ghost zones, by using the symmetries to get this data from
//	    its "home patch" nominal grids.
// Phase 2: Fill in gridfn data in all the interpatch ghost zones, by
//	    interpatch interpolating from neighboring patches as described
//	    above.
// Phase 3: Fill in gridfn data at all the corner points of symmetry
//	    ghost zones, by using the symmetries to get this data from
//	    its "home patch" nominal grids or ghost zones.
// Here a given ghost zone corner may be either a full rectangle (so any
// given point is a member of both adjacent corners), or split down its
// diagonal (so any given point is a member of only one corner).  This
// 3-phase algorithm is actually implemented by
//    patch_system::synchronize_ghost_zones()
// which in turn calls
//    symmetry_ghost_zone::synchronize()
//    interpatch_ghost_zone::synchronize()
//

//
// For example, consider the +z patch in an octant patch system, with
// the ghost zones being 2 points wide.  The following illustration is
// looking down the z axis, and uses (x,y) for the patch coordinates
// for simplicity:
//
//                    #                                                   //
//                   i+y    i+y    i+y    i+y    i+y    i+y    i+y      //
//   (-2,7) (-1,7)  (0,7)  (1,7)  (2,7)  (3,7)  (4,7)  (5,7)  (6,7)  (7,7)
//    <s-x>  <s-x>    #                                              /i+x
//                    #                                            //
//                   i+y    i+y    i+y    i+y    i+y    i+y      //
//   (-2,6) (-1,6)  (0,6)  (1,6)  (2,6)  (3,6)  (4,6)  (5,6)  (6,6)  (7,6)
//    <s-x>  <s-x>    #                                       /i+x    i+x
//                    #                                     //
//                    #                                   //
//   (-2,5) (-1,5)   2,5)--(1,5)--(2,5)--(3,5)--(4,5)--(5,5)  (6,5)  (7,5)
//     s-x    s-x     #                                  |     i+x    i+x
//                    #                                  |
//                    #                                  |
//   (-2,4) (-1,4)  (0,4)  (1,4)  (2,4)  (3,4)  (4,4)  (5,4)  (6,4)  (7,4)
//     s-x    s-x     #                                  |     i+x    i+x
//                    #                                  |
//                    #                                  |
//   (-2,3) (-1,3)  (0,3)  (1,3)  (2,3)  (3,3)  (4,3)  (5,3)  (6,3)  (7,3)
//     s-x    s-x     #                                  |     i+x    i+x
//                    #                                  |
//                    #                                  |
//   (-2,2) (-1,2)  (0,2)  (1,2)  (2,2)  (3,2)  (4,2)  (5,2)  (6,2)  (7,2)
//     s-x    s-x     #                                  |     i+x    i+x
//                    #                                  |
//                    #                                  |
//   (-2,1) (-1,1)  (0,1)  (1,1)  (2,1)  (3,1)  (4,1)  (5,1)  (6,1)  (7,1)
//     s-x    s-x     #                                  |     i+x    i+x
//                    #                                  |
//                    #                                  |
//  #(-2,0)#(-1,0)##(0,0)##(1,0)##(2,0)##(3,0)##(4,0)##(5,0)##(6,0)##(7,0)
//     s-x    s-x     #                                        i+x    i+x
//                    #
//    <s-y>  <s-y>   s-y    s-y    s-y    s-y    s-y    s-y   <s-y>  <s-y>
//   (-2,-1)(-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1) (5,-1) (6,-1) (7,-1)
//    <s-x>  <s-x>    #
//                    #
//    <s-y>  <s-y>   s-y    s-y    s-y    s-y    s-y    s-y   <s-y>  <s-y>
//   (-2,-2)(-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2) (5,-2) (6,-2) (7,-2)
//    <s-x>  <s-x>    #
//                    #
//
// For this example,
// * The xz plane and yz plane are marked with ### lines
// * The +z patch's nominal grid is ([0,5],[0,5]), i.e. 0 <= x,y <= 5;
//   its boundary lines are shown with single lines --- and | .
// * The diagonal where we've split corners are marked with // lines.
// * The +z patch's ghost zones are
//	-x: (-1,[-1,7]), (-2,[-2,7]) 
//	+x: (6,[-2,6]), (7,[-2,7])
//	-y: ([-2, 7],[-2,-1])
//	+y: ([-2,5],6), ([-2,6],7)
// * The +z patch's frontiers are
//	+x: ([ 3,4],[-2,7])
//	+y: ([-2,7],[ 3,4])
//   Note that in both cases the frontier includes the points computed
//   by symmetry (in phase 1 of our 3-phase algorithm) on the adjacent
//   edges! There are no -x or -y frontiers, since no interpolation is
//   needed across those boundaries of this patch.
//
// Our 3-phase algorithm described above thus becomes:
// Phase 1: Fill in gridfn values at points marked with "s-x" below or
//	    "s-y" above via symmetry mirroring across the -x boundary
//	    (yz plane) or -y boundary (xz plane), as described by the
//	    +z patch's -x or -y  symmetry_ghost_zone  object respectively.
// Phase 2: Fill in gridfn values at points marked with "i+x" below or
//	    "i+y" above via interpatch interpolation from the neighboring
//	    patch across the +z patch's +x or +y boundary, as described
//	    by the +z patch's +x or +y  interpatch_ghost_zone  object
//	    respectively.
// Phase 3: Fill in gridfn values at points marked with "<s-x>" below or
//	    "<s-y>" above via symmetry mirroring across the -x boundary
//	    (yz plane) or -y boundary (xz plane), as described by the
//	    +z patch's -x or -y  symmetry_ghost_zone  object respectively.
//
// The diagonal *** line shows the boundary between the +x and +y ghost
// zones; points there may be interpolated via either of the two possible
// interpatch_ghost_zone  objects.
//	[At present we require all points in a given ghost zone
//	to be interpolated from the same neighboring patch and
//	 patch_frontier  object, so must arbitrarily choose one
//	of the two neighbors for the diagonal points.  In theory
//	it would be better to take the average of the two neighbors,
//	but in practice this doesn't matter for horizon finding
//	or other elliptic stuff (it would matter for stability in
//	time evolutions using patch-angular finite differencing,
//	eg in my "mpe" multipatch black-hole-excision code).]
//

//*****************************************************************************

//
// ghost_zone - abstract base class to describe ghost zone of patch
//
// This is an abstract base class describing a generic patch ghost zone.
// This might represent either of:
// - a discrete symmetry of spacetime (derived class symmetry_ghost_zone)
// - an overlap with another patch (derived class interpatch_ghost_zone)
//

//
// N.b. const qualifiers on member functions of ghost_zone and its derived
// classes refer to the underlying gridfn data, since this is much more
// useful than applying the qualifiers only to the ghost zone (& derived)
// objects themselves.
// 

// forward declarations
class symmetry_ghost_zone;
class interpatch_ghost_zone;
class patch_system;

class	ghost_zone
	{
public:
	//
	// main client interface: "synchronize" a ghost zone,
	// i.e. update the ghost-zone values of the specified gridfns
	// via the appropriate sequence of symmetry operations
	// and interpatch interpolations
	// (flags specify which part(s) of the ghost zone we want)
	//
	virtual void synchronize(int ghosted_min_gfn, int ghosted_max_gfn,
				 bool want_min_par_corner,
				 bool want_noncorner,
				 bool want_max_par_corner)
		const
		= 0;

public:
	// to which patch/edge do we belong?
	patch& my_patch() const { return my_patch_; }
	const patch_edge& my_edge() const { return my_edge_; }

	// what type of ghost zone are we?
	bool is_interpatch() const { return  is_interpatch_; }
	bool is_symmetry()   const { return !is_interpatch_; }

	// convenience forwarding functions down to patch_edge::
	bool is_min() const { return my_edge().is_min(); }
	bool is_rho() const { return my_edge().is_rho(); }

	// adjacent ghost zones to our min/max corners
	const ghost_zone& min_par_adjacent_ghost_zone() const
		{
		return my_patch()
		       .ghost_zone_on_edge( my_edge().min_par_adjacent_edge() );
		}
	const ghost_zone& max_par_adjacent_ghost_zone() const
		{
		return my_patch()
		       .ghost_zone_on_edge( my_edge().max_par_adjacent_edge() );
		}

	// min/max iperp of the ghost zone
	int min_iperp() const
		{
		return my_patch()
		       .minmax_ang_ghost_zone__min_iperp(is_min(), is_rho());
		}
	int max_iperp() const
		{
		return my_patch()
		       .minmax_ang_ghost_zone__max_iperp(is_min(), is_rho());
		}

	// inner/outer iperp of the ghost zone wrt our patch
	int inner_iperp() const
		{ return is_min() ? max_iperp() : min_iperp(); }
	int outer_iperp() const
		{ return is_min() ? min_iperp() : max_iperp(); }

	// min/max ipar that might possibly be part of this ghost zone
	// (derived classes may actually use a subset of this)
	int ghost_zone_min_ipar() const
		{ return my_edge().min_ipar_with_corners(); }
	int ghost_zone_max_ipar() const
		{ return my_edge().max_ipar_with_corners(); }

	// assert() that ghost zone is fully setup:
	// defined here ==> no-op
	// symmetry ghost zone ==> unchanged ==> no-op
	// interpatch ghost zone ==> assert() that frontier pointer is non-NULL,
	//			     assert() that other patch has interpatch
	//				ghost zone on this edge, and that it
	//				points back to us
	virtual void assert_fully_setup() const { }

protected:
	// ... values for  is_interpatch_in  constructor argument
	static const bool ghost_zone_is_symmetry = false;
	static const bool ghost_zone_is_interpatch = true;

	// constructor
	// ... only used in implementing our derived classes;
	//     the rest of the world constructs our derived classes instead
	ghost_zone(const patch_edge& my_edge_in,
		   bool is_interpatch_in)
		: my_patch_(my_edge_in.my_patch()),
		  my_edge_(my_edge_in),
		  is_interpatch_(is_interpatch_in)
		{ }
public:
	// destructor must be virtual to allow destruction
	// of derived classes via ptr/ref to this class
	virtual ~ghost_zone() { }

private:
	// we forbid copying and passing by value
	// by declaring the copy constructor and assignment operator
	// private, but never defining them (either here or in derived classes)
	ghost_zone(const ghost_zone& rhs);
	ghost_zone& operator=(const ghost_zone& rhs);

private:
	patch& my_patch_;
	const patch_edge& my_edge_;
	const bool is_interpatch_;
	};

//*****************************************************************************

//
// symmetry_ghost_zone - derived class for spacetime-symmetry ghost zone
//
// In practice, there are two types of spacetime symmetry ghost zone:
// mirror symmetry and periodic symmetry.  However, it turns out that the
// code needed to handle periodic BCs is basically a superset of that
// needed to handle mirror symmetries, so this class represents a generic
// symmetry ghost zone which may be of either type, and once constructed
// doesn't distinguish between the two.
//
// In general, a symmetry ghost zone implies that there's a 1-1 mapping
// between ghost zone points of this patch, and (a subset of the) interior
// points of this or another patch.  If tensors are involved (this isn't
// used at present in the horizon finder), there's also a corresponding
// 1-1 mapping between (angular) tensor components.
//
// A mirror-symmetry ghost zone is specified by (the constructor arguments)
// - a patch edge
// - the (fp) perp coordinate of the mirror plane
// The mapping of ghost zone points is thus "just" the mirror imaging of
// iperp across the symmetry plane within this same patch.  (The mapping
// leaves ipar invariant.)
//
// A periodic-symmetry ghost zone is specified by (the constructor arguments)
// - a patch edge (specifies the ghost zone)
// - the patch edge to which the ghost zone is to be mapped
// - a pair of ipar coordinates, one on this edge and one on the other edge,
//   which map into each other
// - the sign of the ipar mapping (does increasing ipar on this edge map to
//   increasing or decreasing ipar on the other edge?)
// The mapping of ghost zone points is the periodic mapping; this may map
// the ghost zone points to interior points of either this same patch or a
// different one.
//
// In general, the symmetry mapping of ghost zone points is of the form
//	(iperp, ipar) --> (const +/- iperp, const +/- ipar)
// The iperp mapping is always in the direction
//	outside the patch --> inside the patch
// while the ipar mapping might have either sign.
// If there are tensors, the corresponding mapping of tensor components is
//	(index_perp, index_par) --> (+/-) (+/-) (index_perp, index_par)
// (that is, the two +/- signs are multiplied).

//
// Note  const  qualifiers refer to the results of
//	iperp_map_coord()
//	ipar_map_coord()
// Since all the member functions are  const , a  symmetry_ghost_zone
// object is effectively always  const .
//
class	symmetry_ghost_zone
	: public ghost_zone
	{
public:
	//
	// main client interface: "synchronize" a ghost zone,
	// i.e. update the ghost-zone values of the specified gridfns
	// via the appropriate symmetry operations
	// (flags specify which part(s) of the ghost zone we want)
	//
	void synchronize(int ghosted_min_gfn, int ghosted_max_gfn,
			 bool want_min_par_corner,
			 bool want_noncorner,
			 bool want_max_par_corner)
		const
		= 0;

	// low-level client interface: symmetry-map coordinates
	const patch& symmetry_patch() const { return symmetry_patch_; }
	const patch_edge& symmetry_edge() const { return symmetry_edge_; }
	int iperp_map_of_iperp(int iperp) const
		{ return iperp_map_->map(iperp); }
	int ipar_map_of_ipar(int ipar) const
		{ return ipar_map_->map(ipar); }
	fp fp_sign_of_iperp_map() const
		{ return iperp_map_->fp_sign(); }
	fp sign_of_ipar_map() const
		{ return ipar_map_->fp_sign(); }

	// min/max/size ipar of the ghost zone
	// ... we always include the corners
	//     (cf. the example at the start of this file)
	int min_ipar() const { return my_edge().min_ipar_with_corners(); }
	int max_ipar() const { return my_edge().max_ipar_with_corners(); }

	// constructor for mirror-symmetry ghost zone
	symmetry_ghost_zone(const patch_edge& my_edge_in);

	// constructor for periodic-symmetry ghost zone
	// ... ipar mapping specified by giving sample point and mapping sign
	symmetry_ghost_zone
	    (const patch_edge& my_edge_in, const patch_edge& symmetry_edge_in,
	     int my_edge_sample_ipar,      int symmetry_edge_sample_ipar,
	     bool ipar_map_is_plus);

	~symmetry_ghost_zone();

private:
        // we forbid copying and passing by value
        // by declaring the copy constructor and assignment operator
        // private, but never defining them
	symmetry_ghost_zone(const symmetry_ghost_zone& rhs);
	symmetry_ghost_zone& operator=(const symmetry_ghost_zone& rhs);

private:
	// symmetry mapping --> interior of which patch?  which edge?
	const patch& symmetry_patch_;
	const patch_edge& symmetry_edge_;

	// symmetry mappings for (iperp,ipar)
	// ... we own these objects
	const jtutil::cpm_map<fp> *iperp_map_;
	const jtutil::cpm_map<fp> *ipar_map_;
	};

//*****************************************************************************

//
// derived class for interpatch ghost zone of a patch
//
// A ghost_zone object maps (my_iperp,my_ipar) coordinates to the other
// patch's (other_iperp,other_par) coordinates, then calls the other patch's
// patch_frontier object to interpolate the other patch's data to those
// coordinates.
//
// Note  const  qualifiers refer to the data stored by
//    synchronize()
// Since there are no nonconst member functions, once an  interpatch_ghost_zone
// object is contructed, it's effectively always taken as  const .
//
// Note that as described in the "design notes for ghost zones"
// comments above,  interpatch_ghost_zone  objects are constructed in
// the 2nd and 3rd phase of the overall 3-phase construction process
// described at the comments at the start of this file.
// - first set up the object itslf and its links to/from the patches
//   and their edges
// - then set up and link to the other patch's patch_frontier object
//   from which this object will interpolate
//

class patch_frontier;

class	interpatch_ghost_zone
	: public ghost_zone
	{
public:
	//
	// main client interface: "synchronize" a ghost zone,
	// i.e. update the ghost-zone values of the specified gridfns
	// via the appropriate interpatch interpolations
	// (flags specify which part(s) of the ghost zone we want)
	//
	void synchronize(int ghosted_min_gfn, int ghosted_max_gfn,
			 bool want_min_par_corner,
			 bool want_noncorner,
			 bool want_max_par_corner)
		const
		= 0;

	// basic connectivity info
	const patch& other_patch() const
		{ return other_patch_; }
	const patch_edge& other_edge() const
		{ return other_edge_; }
	const patch_frontier& other_frontier() const
		{
		assert(other_frontier_ != NULL);
		return *other_frontier_;
		}

	// min/max/size ipar of the ghost zone for specified iperp
	// taking into account how we treat the corners
	// (cf. the example at the start of this file)
	int min_ipar(int iperp) const;
	int max_ipar(int iperp) const;

	// convert our iperp --> other patch's iperp
	int other_iperp(int iperp) const
		{
		assert(other_iperp_ != NULL);
		return other_iperp_->map(iperp);
		}

	// construct *other* patch's frontier,
	// interlink it with this ghost zone and the other patch
	void setup_other_frontier(int interp_handle_in,
				  int interp_par_table_handle_in);

	// constructor, destructor
	interpatch_ghost_zone(const patch_edge& my_edge_in,
			      const patch_edge& other_edge_in,
			      int N_overlap_points);
	~interpatch_ghost_zone();

private:
        // we forbid copying and passing by value
        // by declaring the copy constructor and assignment operator
        // private, but never defining them
	interpatch_ghost_zone(const interpatch_ghost_zone& rhs);
	interpatch_ghost_zone& operator=(const interpatch_ghost_zone& rhs);

private:
	patch& other_patch_;
	const patch_edge& other_edge_;

	// initialized to NULL in constructor,
	// set to proper value by  setup_other_frontier()
	// ... we do *not* own this object (the other patch does)!
	const patch_frontier *other_frontier_;

	//
	// our remaining subobjects are all pointed-to because
	// we won't know the range of other_iperp (which we need
	// to initialize the subobjects) until partway into the
	// body of our constructor
	//

	// other patch's iperp coordinates of our ghost zone points
	// ... maps my_iperp --> other_iperp
	jtutil::cpm_map<fp> *other_iperp_;

	// other patch's [min,max]_iperp of our ghost zone points
	int other_min_iperp_, other_max_iperp_;

	// [min,max]_ipar used at each other_iperp
	// ... we will pass these arrays by reference
	//     to the other patch's patch_frontier object
	// ... index is (other_iperp)
	jtutil::array1d<int>* min_ipar_used_;
	jtutil::array1d<int>* max_ipar_used_;

	// other patch's (fp) parallel coordinates of our ghost zone points
	// ... we will pass this array by reference
	//     to the other patch's patch_frontier object
	//     using my_ipar as the patch_frontier's parindex
	// ... subscripts are (other_iperp, my_ipar)
	jtutil::array2d<fp>* other_par_;

	// buffer into which the other patch's patch_frontier object
	// will store the interpolated gridfn values
	// ... we will pass this array by reference
	//     to the other patch's patch_frontier object
	//     using my_ipar as the patch_frontier's parindex
	// ... subscripts are (gfn, other_iperp,my_ipar)
	jtutil::array3d<fp>* interp_result_buffer_;
	};