aboutsummaryrefslogtreecommitdiff
path: root/src/gr/driver.cc
blob: ca978aea42f13138982845add70f3680c27bf20d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// driver.cc -- top level driver for finding apparent horizons
// $Id$
//
// <<<prototypes for functions local to this file>>>
// AHFinderDirect_driver - top-level driver
///
/// setup_Kerr_horizon - set up Kerr horizon in h (Kerr or Kerr-Schild coords)
/// setup_ellipsoid - setup up a coordiante ellipsoid in h
///

#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <vector>

#include "util_Table.h"
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "stdc.h"
#include "config.hh"
#include "../jtutil/util.hh"
#include "../jtutil/array.hh"
#include "../jtutil/cpm_map.hh"
#include "../jtutil/linear_map.hh"
using jtutil::error_exit;

#include "../util/coords.hh"
#include "../util/grid.hh"
#include "../util/fd_grid.hh"
#include "../util/patch.hh"
#include "../util/patch_edge.hh"
#include "../util/patch_interp.hh"
#include "../util/ghost_zone.hh"
#include "../util/patch_system.hh"

#include "../elliptic/Jacobian.hh"

#include "gfn.hh"
#include "AHFinderDirect.hh"

//******************************************************************************

//
// ***** prototypes for functions local to this file *****
//

namespace {
void setup_Kerr_horizon(patch_system& ps,
			fp x_center, fp y_center, fp z_center,
			fp m, fp a,
			bool Kerr_Schild_flag);
void setup_ellipsoid(patch_system& ps,
		     fp x_center, fp y_center, fp z_center,
		     fp x_radius, fp y_radius, fp z_radius);
	  };

//******************************************************************************

//
// This function is the Cactus interface for the test driver.
//
extern "C"
  void AHFinderDirect_driver(CCTK_ARGUMENTS)
{
DECLARE_CCTK_ARGUMENTS
DECLARE_CCTK_PARAMETERS

CCTK_VInfo(CCTK_THORNSTRING, "initializing AHFinderDirect data structures");


//
// set up the geometry interpolator
//
struct geometry_interpolator_info gii;
CCTK_VInfo(CCTK_THORNSTRING, "   setting up geometry interpolator");
gii.operator_handle = CCTK_InterpHandle(geometry_interpolator_name);
if (gii.operator_handle < 0)
   then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "couldn't find interpolator \"%s\"!",
		   geometry_interpolator_name);		/*NOTREACHED*/

gii.param_table_handle = Util_TableCreateFromString(geometry_interpolator_pars);
if (gii.param_table_handle < 0)
   then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "bad geometry-interpolator parameter(s) \"%s\"!",
		   geometry_interpolator_pars);		/*NOTREACHED*/


//
// set up the interpatch interpolator
//
CCTK_VInfo(CCTK_THORNSTRING, "   setting up interpatch interpolator");
const int interp_handle = CCTK_InterpHandle(interpatch_interpolator_name);
if (interp_handle < 0)
   then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "couldn't find interpolator \"%s\"!",
		   interpatch_interpolator_name);		/*NOTREACHED*/
const int interp_param_table_handle
	= Util_TableCreateFromString(interpatch_interpolator_pars);
if (interp_param_table_handle < 0)
   then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "bad interpatch-interpolator parameter(s) \"%s\"!",
		   interpatch_interpolator_pars);		/*NOTREACHED*/


//
// set up the Cactus grid info
//
CCTK_VInfo(CCTK_THORNSTRING, "   setting up Cactus grid info");
struct cactus_grid_info cgi;
cgi.GH = cctkGH;
cgi.coord_origin[0] = cctk_origin_space[0];
cgi.coord_origin[1] = cctk_origin_space[1];
cgi.coord_origin[2] = cctk_origin_space[2];
cgi.coord_delta[0] = cctk_delta_space[0];
cgi.coord_delta[1] = cctk_delta_space[1];
cgi.coord_delta[2] = cctk_delta_space[2];
cgi.gridfn_dims[0] = cctk_lsh[0];
cgi.gridfn_dims[1] = cctk_lsh[1];
cgi.gridfn_dims[2] = cctk_lsh[2];
// n.b. The  cgi.[gK]_dd_??_data  are actually  const fp *  pointers,
//	since we won't modify the 3-D gridfn data!  But  static_cast<...>
//      won't change const modifiers, so we just cast to  fp*  and let
//	the assignment take care of the const part...
cgi.g_dd_11_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::gxx"));
cgi.g_dd_12_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::gxy"));
cgi.g_dd_13_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::gxz"));
cgi.g_dd_22_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::gyy"));
cgi.g_dd_23_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::gyz"));
cgi.g_dd_33_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::gzz"));
cgi.K_dd_11_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::kxx"));
cgi.K_dd_12_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::kxy"));
cgi.K_dd_13_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::kxz"));
cgi.K_dd_22_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::kyy"));
cgi.K_dd_23_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::kyz"));
cgi.K_dd_33_data = static_cast<fp*>(CCTK_VarDataPtr(cctkGH, 0, "ADMBase::kzz"));


//
// create the patch system and initialize the xyz derivative coefficients
//
patch_system ps(origin_x, origin_y, origin_z,
		patch_system::type_of_name(patch_system_type),
		N_ghost_points, N_overlap_points, delta_drho_dsigma,
		nominal_gfns::min_gfn, nominal_gfns::max_gfn,
		ghosted_gfns::min_gfn, ghosted_gfns::max_gfn,
		interp_handle, interp_param_table_handle);


//
// set up the initial guess for the apparent horizon shape
//
if	(STRING_EQUAL(initial_guess_method, "read from file"))
   then {
	CCTK_VInfo(CCTK_THORNSTRING,
		   "reading initial guess from \"%s\"",
		   initial_guess__read_from_file__file_name);
	ps.read_ghosted_gridfn(ghosted_gfns::gfn__h,
			       initial_guess__read_from_file__file_name,
			       false);		// no ghost zones
	}
else if (STRING_EQUAL(initial_guess_method, "ellipsoid"))
   then setup_ellipsoid(ps,
			initial_guess__ellipsoid__x_center,
			initial_guess__ellipsoid__y_center,
			initial_guess__ellipsoid__z_center,
			initial_guess__ellipsoid__x_radius,
			initial_guess__ellipsoid__y_radius,
			initial_guess__ellipsoid__z_radius);
else if (STRING_EQUAL(initial_guess_method, "Kerr/Kerr"))
   then setup_Kerr_horizon(ps,
			   initial_guess__Kerr_KerrSchild__x_center,
			   initial_guess__Kerr_KerrSchild__y_center,
			   initial_guess__Kerr_KerrSchild__z_center,
			   initial_guess__Kerr_KerrSchild__mass,
			   initial_guess__Kerr_KerrSchild__spin,
			   false);	// use Kerr coords
else if (STRING_EQUAL(initial_guess_method, "Kerr/Kerr-Schild"))
   then setup_Kerr_horizon(ps,
			   initial_guess__Kerr_KerrSchild__x_center,
			   initial_guess__Kerr_KerrSchild__y_center,
			   initial_guess__Kerr_KerrSchild__z_center,
			   initial_guess__Kerr_KerrSchild__mass,
			   initial_guess__Kerr_KerrSchild__spin,
			   true);	// use Kerr-Schild coords
else	CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "unknown initial_guess_method=\"%s\"!",
		   initial_guess_method);			/*NOTREACHED*/
ps.print_ghosted_gridfn_with_xyz(ghosted_gfns::gfn__h,
				 true, ghosted_gfns::gfn__h,
				 "h.dat",
				 false);	// no ghost zones


//
// find the apparent horizon
//
jtutil::norm<fp> H_norms;
if      (STRING_EQUAL(method, "horizon function"))
   then {
	horizon_function(ps, cgi, gii, false, H_norms);
	CCTK_VInfo(CCTK_THORNSTRING,
		   "   H(h) rms-norm %.2e, infinity-norm %.2e\n",
		   H_norms.rms_norm(), H_norms.infinity_norm());
	ps.print_gridfn_with_xyz(nominal_gfns::gfn__H,
				 true, ghosted_gfns::gfn__h,
				 "H.dat");
	}
else if (STRING_EQUAL(method, "Jacobian"))
   then {
	Jacobian& Jac = create_Jacobian(ps, Jacobian_type);
	horizon_function(ps, cgi, gii, true, H_norms);
	horizon_Jacobian_SD(ps, Jac);
	print_Jacobian(Jacobian_file_name, Jac);
	}
else if (STRING_EQUAL(method, "Jacobian test"))
   then {
	Jacobian& SD_Jac = create_Jacobian(ps, Jacobian_type);
	horizon_function(ps, cgi, gii, true, H_norms);
	horizon_Jacobian_SD(ps, SD_Jac);

	Jacobian& NP_Jac = create_Jacobian(ps, Jacobian_type);
	horizon_function(ps, cgi, gii, true, H_norms);
	horizon_Jacobian_NP(ps, cgi, gii,
			    NP_Jac,
			    NP_Jacobian__perturbation_amplitude);

	print_Jacobians(Jacobian_file_name, SD_Jac, NP_Jac);
	}
else if (STRING_EQUAL(method, "Newton (NP Jacobian)"))
   then {
	Newton_solve(ps, cgi, gii,
		     Jacobian_type,
		     NP_Jacobian__perturbation_amplitude,
		     max_Newton_iterations,
		     H_norm_for_convergence);
	ps.print_ghosted_gridfn_with_xyz(ghosted_gfns::gfn__h,
					 true, ghosted_gfns::gfn__h,
					 "h.dat",
					 false);	// no ghost zones
	}
else	CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
		   "unknown method=\"%s\"!",
		   method);					/*NOTREACHED*/
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function sets up the horizon of a Kerr black hole in Kerr or
// Kerr-Schild coordinates, on the nominal grid, in the  h  gridfn.
//
// Kerr-Schild coordinates are described in MTW Exercise 33.8, page 903,
// and the horizon is worked out on page 13.2 of my AHFinderDirect notes.
//
// Arguments:
// [xyz]_center = The position of the Kerr black hole.
// (m,a) = Describe the Kerr black hole.  Note that my convention has
//	   a=J/m^2 dimensionless, while MTW take a=J/m=m*(my a).
// Kerr_Schild_flag = false to use Kerr coordinates,
//		      true to use Kerr-Schild coordinates
//
namespace {
void setup_Kerr_horizon(patch_system& ps,
			fp x_center, fp y_center, fp z_center,
			fp m, fp a,
			bool Kerr_Schild_flag)
{
const char* const name = Kerr_Schild_flag ? "Kerr-Schild" : "Kerr";

CCTK_VInfo(CCTK_THORNSTRING,
	   "setting up horizon for Kerr in %s coords",
	   name);
CCTK_VInfo(CCTK_THORNSTRING,
	   "   mass=%g, spin=J/m^2=%g, posn=(%g,%g,%g)",
	   double(m), double(a),
	   double(x_center), double(y_center), double(z_center));

// horizon in Kerr coordinates is coordinate sphere
const fp r = m * (1.0 + sqrt(1.0 - a*a));

// horizon in Kerr-Schild coordinates is coordinate ellipsoid
const fp  z_radius = r;
const fp xy_radius = Kerr_Schild_flag ? r * sqrt(1.0 + a*a*m*m/(r*r)) : r;

CCTK_VInfo(CCTK_THORNSTRING,
	   "   horizon is coordinate %s",
	   Kerr_Schild_flag ? "ellipsoid" : "sphere");
setup_ellipsoid(ps,
		x_center, y_center, z_center,
		xy_radius, xy_radius, z_radius);
}
	  }

//******************************************************************************

//
// This function sets up an ellipsoid in the gridfn h, using the
// formulas in "ellipsoid.maple" and the Maple-generated C code in
// "ellipsoid.c":
//
// ellipsoid has center (A,B,C), radius (a,b,c)
// angular coordinate system has center (U,V,W)
//
// direction cosines wrt angular coordinate center are (xcos,ycos,zcos)
// i.e. a point has coordinates (U+xcos*r, V+ycos*r, W+zcos*r)
//
// then the equation of the ellipsoid is
//	(U+xcos*r - A)^2     (V+ycos*r - B)^2     (W+zcos*r - C)^2
//	-----------------  +  ----------------  +  -----------------  =  1
//	        a^2                  b^2                   c^2
//
// to solve this, we introduce intermediate variables
//	AU = A - U
//	BV = B - V
//	CW = C - W
//
namespace {
void setup_ellipsoid(patch_system& ps,
		     fp x_center, fp y_center, fp z_center,
		     fp x_radius, fp y_radius, fp z_radius)
{
CCTK_VInfo(CCTK_THORNSTRING,
	   "setting h = ellipsoid: center=(%g,%g,%g)",
	   double(x_center), double(y_center), double(z_center));
CCTK_VInfo(CCTK_THORNSTRING,
	   "                       radius=(%g,%g,%g)",
	   double(x_radius), double(y_radius), double(z_radius));

	for (int pn = 0 ; pn < ps.N_patches() ; ++pn)
	{
	patch& p = ps.ith_patch(pn);

		for (int irho = p.min_irho() ; irho <= p.max_irho() ; ++irho)
		{
		for (int isigma = p.min_isigma() ;
		     isigma <= p.max_isigma() ;
		     ++isigma)
		{
		const fp rho = p.rho_of_irho(irho);
		const fp sigma = p.sigma_of_isigma(isigma);
		fp xcos, ycos, zcos;
		p.xyzcos_of_rho_sigma(rho,sigma, xcos,ycos,zcos);

		// set up variables used by Maple-generated code
		const fp AU = x_center - ps.origin_x();
		const fp BV = y_center - ps.origin_y();
		const fp CW = z_center - ps.origin_z();
		const fp a = x_radius;
		const fp b = y_radius;
		const fp c = z_radius;

		// compute the solutions r_plus and r_minus
		fp r_plus, r_minus;
		#include "ellipsoid.c"

		// exactly one of the solutions (call it r) should be positive
		fp r;
		if      ((r_plus > 0.0) && (r_minus < 0.0))
		   then r = r_plus;
		else if ((r_plus < 0.0) && (r_minus > 0.0))
		   then r = r_minus;
		else    CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
				   "\n"
"   expected exactly one r>0 solution to quadratic, got 0 or 2!\n"
"   %s patch (irho,isigma)=(%d,%d) ==> (rho,sigma)=(%g,%g)\n"
"   direction cosines (xcos,ycos,zcos)=(%g,%g,%g)\n"
"   ==> r_plus=%g r_minus=%g\n"
				   ,
				   p.name(), irho, isigma,
				   double(rho), double(sigma),
				   double(xcos), double(ycos), double(zcos),
				   double(r_plus), double(r_minus));
		   						/*NOTREACHED*/

		// r = horizon radius at this grid point
		p.ghosted_gridfn(ghosted_gfns::gfn__h, irho,isigma) = r;
		}
		}
	}
}
	  }