aboutsummaryrefslogtreecommitdiff
path: root/src/driver/find_horizons.cc
blob: 869c5d3a5ab8deeaf95eb7ec7fa8c62ce8b50999 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// find_horizons.cc -- top level driver for finding apparent horizons
// $Header$
//
// <<<access to persistent data>>>
// <<<prototypes for functions local to this file>>>
// AHFinderDirect_find_horizons - top-level driver to find apparent horizons
///
/// setup_Cactus_gridfn_data_ptrs - get all data pointers given variable indices
/// Cactus_gridfn_data_ptr - get a single data pointer from a variable index
///
/// find_horizon - find a horizon
/// do_evaluate_expansion
/// do_test_expansion_Jacobian
///

#include <stdio.h>
#include <assert.h>
#include <math.h>

#include "util_Table.h"
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "config.h"
#include "stdc.h"
#include "../jtutil/util.hh"
#include "../jtutil/array.hh"
#include "../jtutil/cpm_map.hh"
#include "../jtutil/linear_map.hh"
using jtutil::error_exit;

#include "../patch/coords.hh"
#include "../patch/grid.hh"
#include "../patch/fd_grid.hh"
#include "../patch/patch.hh"
#include "../patch/patch_edge.hh"
#include "../patch/patch_interp.hh"
#include "../patch/ghost_zone.hh"
#include "../patch/patch_system.hh"

#include "../elliptic/Jacobian.hh"

#include "../gr/gfns.hh"
#include "../gr/gr.hh"

#include "horizon_sequence.hh"
#include "BH_diagnostics.hh"
#include "driver.hh"

//******************************************************************************

//
// ***** access to persistent data *****
//
extern struct state state;

//******************************************************************************

//
// ***** prototypes for functions local to this file
//
namespace {
void setup_Cactus_gridfn_data_ptrs(const cGH *GH, struct cactus_grid_info& cgi);
const CCTK_REAL* Cactus_gridfn_data_ptr(const cGH *GH, int varindex,
					const char gridfn_name[],
					bool check_for_NULL = true);

void do_evaluate_expansions(int my_proc, int N_horizons,
			    horizon_sequence& hs,
			       struct AH_info* const my_AH_info[],
			    const struct cactus_grid_info& cgi,
			    const struct geometry_info& gi,
			    const struct IO_info& IO_info,
			    const struct error_info& error_info,
			    const struct verbose_info& verbose_info,
			    int timer_handle);
void do_test_expansion_Jacobians(int my_proc, int N_horizons,
				 struct AH_info* const my_AH_info[],
				 const struct cactus_grid_info& cgi,
				 const struct geometry_info& gi,
				       struct Jacobian_info& Jac_info,
				 bool test_all_Jacobian_compute_methods,
				 const struct IO_info& IO_info,
				 const struct error_info& error_info,
				 const struct verbose_info& verbose_info,
				 int timer_handle);
	  }

//******************************************************************************

//
// This function is called by the Cactus scheduler to find the apparent
// horizon or horizons in the current slice.
//
extern "C"
  void AHFinderDirect_find_horizons(CCTK_ARGUMENTS)
{
DECLARE_CCTK_ARGUMENTS
DECLARE_CCTK_PARAMETERS

if (state.timer_handle >= 0)
   then CCTK_TimerResetI(state.timer_handle);

const int my_proc = state.my_proc;
horizon_sequence& hs = *state.my_hs;
const bool active_flag = hs.has_genuine_horizons();

      struct cactus_grid_info&          cgi =  state.cgi;
const struct    geometry_info&           gi =  state.gi;
      struct    Jacobian_info&     Jac_info =  state.Jac_info;
      struct          IO_info&      IO_info =  state.IO_info;
const struct       error_info&   error_info =  state.error_info;
const struct     verbose_info& verbose_info =  state.verbose_info;

// what are the semantics of the Cactus gxx variables? (these may
// change from one call to another, so we have to re-check each time)
if      (CCTK_Equals(metric_type, "physical"))
   then cgi.Cactus_conformal_metric = false;
else if (CCTK_Equals(metric_type, "static conformal"))
   then cgi.Cactus_conformal_metric = (conformal_state > 0);
else	CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_find_horizons(): unknown metric_type=\"%s\"!",
		   metric_type);				/*NOTREACHED*/

// get the Cactus time step and decide if we want to output h and/or Theta now
IO_info.time_iteration = cctk_iteration;
IO_info.time           = cctk_time;
IO_info.output_h
   = (IO_info.how_often_to_output_h > 0)
     && ((IO_info.time_iteration % IO_info.how_often_to_output_h) == 0);
IO_info.output_Theta
   = (IO_info.how_often_to_output_Theta > 0)
     && ((IO_info.time_iteration % IO_info.how_often_to_output_Theta) == 0);

// if we're using them,
//    we need to re-fetch the Cactus data pointers at least each time step,
//    because they change each time Cactus rotates the time levels
if (gi.geometry_method == geometry__local_interp_from_Cactus_grid)
   then setup_Cactus_gridfn_data_ptrs(cctkGH, cgi);

// set initial guess for any (genuine) horizons that need it,
// i.e. for any (genuine) horizons where we didn't find the horizon previously
	for (int hn = hs.init_hn() ; hs.is_genuine() ; hn = hs.next_hn())
	{
	assert( state.my_AH_info[hn] != NULL );
	struct AH_info& AH_info = *state.my_AH_info[hn];
	if (AH_info.found_flag)
	   then AH_info.initial_find_flag = false;
	   else {
		patch_system& ps = *AH_info.ps_ptr;
		setup_initial_guess(ps,
				    AH_info.initial_guess_info,
				    IO_info,
				    hn, state.N_horizons, verbose_info);
		if (active_flag && IO_info.output_initial_guess)
		   then output_gridfn(ps, gfns::gfn__h,
				      IO_info, IO_info.h_base_file_name,
				      hn, verbose_info
					  .print_algorithm_highlights);
		AH_info.initial_find_flag = true;
		}
	}

//
// now the main horizon finding (or other computation)
//
switch	(state.method)
	{
case method__evaluate_expansions:
	do_evaluate_expansions(my_proc, state.N_horizons,
			       *state.my_hs, state.my_AH_info,
			       cgi, gi, IO_info,
			       error_info, verbose_info,
			       state.timer_handle);
	break;

case method__test_expansion_Jacobians:
	do_test_expansion_Jacobians(my_proc, state.N_horizons,
				    state.my_AH_info,
				    cgi, gi, Jac_info, 
				    (test_all_Jacobian_compute_methods != 0),
				    IO_info, error_info, verbose_info,
				    state.timer_handle);
	break;

case method__find_horizons:
	if (state.timer_handle >= 0)
	   then CCTK_TimerStartI(state.timer_handle);
	Newton(cctkGH,
	       state.N_procs, state.N_active_procs, my_proc,
	       *state.my_hs, state.my_AH_info,
	       cgi, gi, Jac_info, state.solver_info,
	       IO_info, state.BH_diagnostics_info,
	       error_info, verbose_info);
	if (state.timer_handle >= 0)
	   then CCTK_TimerStopI(state.timer_handle);
	break;

default:
	CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   find_horizons(): unknown method=(int)%d!\n"
"                    (this should never happen!)"
		   ,
		   int(state.method));				/*NOTREACHED*/
	}

if (state.timer_handle >= 0)
   then {
	CCTK_VInfo(CCTK_THORNSTRING,
		   "timer stats for computation:");
	CCTK_TimerPrintDataI(state.timer_handle, -1);
	}
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function sets up the geometry data pointers in a
//  struct cactus_grid_info .
//

namespace {
void setup_Cactus_gridfn_data_ptrs(const cGH *GH, struct cactus_grid_info& cgi)
{
cgi.g_dd_11_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_11_varindex, "g_11");
cgi.g_dd_12_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_12_varindex, "g_12");
cgi.g_dd_13_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_13_varindex, "g_13");
cgi.g_dd_22_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_22_varindex, "g_22");
cgi.g_dd_23_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_23_varindex, "g_23");
cgi.g_dd_33_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_33_varindex, "g_33");
cgi.K_dd_11_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_11_varindex, "K_11");
cgi.K_dd_12_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_12_varindex, "K_12");
cgi.K_dd_13_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_13_varindex, "K_13");
cgi.K_dd_22_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_22_varindex, "K_22");
cgi.K_dd_23_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_23_varindex, "K_23");
cgi.K_dd_33_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_33_varindex, "K_33");
cgi.psi_data     = Cactus_gridfn_data_ptr(GH, cgi.psi_varindex,     "psi",
					  cgi.Cactus_conformal_metric);
}
	  }

//******************************************************************************

//
// This function gets the Cactus data pointer for a single gridfn, and
// optionally checks to make sure this is non-NULL.
//
// Arguments:
// gridfn_name[] = The character-string name of the grid function;
//		   this is used only for formatting error messages.
// check_for_NULL = true ==> check to make sure the data pointer is non-NULL
//		    false ==> skip this check (presumably because a NULL
//			      pointer is ok)
//
namespace {
const CCTK_REAL* Cactus_gridfn_data_ptr(const cGH *GH, int varindex,
					const char gridfn_name[],
					bool check_for_NULL /* = true */)
{
const int time_level = 0;

//
// CCTK_VarDataPtrI() returns a  void * , but we need a  const CCTK_REAL*;
// since  static_cast<>  won't change const-ness, we need a 2-stage cast
// for this:
//
const CCTK_REAL* data_ptr = static_cast<const fp*>(
			       const_cast<const void *>(
				  CCTK_VarDataPtrI(GH, time_level, varindex)
						       )
						  );

if (check_for_NULL && (data_ptr == NULL))
   then CCTK_VWarn(FATAL_ERROR, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   Cactus_gridfn_data_ptr(): got unexpected NULL data pointer\n"
"                             for Cactus geometry gridfn!\n"
"                             name=\"%s\" varindex=%d"
		   ,
		   gridfn_name, varindex);			/*NOTREACHED*/

return data_ptr;
}
	  }

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function implements  AHFinderDirect::method == "horizon function":
// On processor #0 it evaluates the Theta(h) function for each apparent
// horizon (and does any I/O desired); on other processors it does N_horizons
// dummy evaluations on horizon #0.
//
// Note that if we decide to output h, we output it *after* any Theta(h)
// evaluation or horizon finding has been done, to ensure that all the
// ghost zones are filled in in case we need to print them.
//
// Arguments:
// timer_handle = a valid Cactus timer handle if we want to time the
//		  apparent horizon process, or -ve to skip this
//		  (we only time the computation, not the file I/O)
//
namespace {
void do_evaluate_expansions(int my_proc, int N_horizons,
			    horizon_sequence& hs,
			       struct AH_info* const my_AH_info[],
			    const struct cactus_grid_info& cgi,
			    const struct geometry_info& gi,
			    const struct IO_info& IO_info,
			    const struct error_info& error_info,
			    const struct verbose_info& verbose_info,
			    int timer_handle)
{
const bool active_flag = (my_proc == 0);

if (active_flag)
   then {
	assert( hs.N_horizons() == N_horizons );
	assert( hs.my_N_horizons() == N_horizons );

		for (int hn = hs.init_hn() ;
		     hs.is_genuine() ;
		     hn = hs.next_hn())
		{
		assert( my_AH_info[hn] != NULL );
		struct AH_info& AH_info = *my_AH_info[hn];
		patch_system& ps = *AH_info.ps_ptr;

		if (timer_handle >= 0)
		   then CCTK_TimerStartI(timer_handle);
		jtutil::norm<fp> Theta_norms;
		const bool Theta_ok = expansion(&ps,
						cgi, gi,
						error_info, true,// initial eval
						false,	// no Jacobian coeffs
						true,	// yes, print msgs
						&Theta_norms);
		if (timer_handle >= 0)
		   then CCTK_TimerStopI(timer_handle);

		if (IO_info.output_h)
		   then output_gridfn(ps, gfns::gfn__h,
				      IO_info, IO_info.h_base_file_name,
				      hn, verbose_info.print_algorithm_details);

		if (Theta_ok)
		   then {
			CCTK_VInfo(CCTK_THORNSTRING,
			   "   Theta(h) rms-norm %.2e, infinity-norm %.2e",
			   Theta_norms.rms_norm(), Theta_norms.infinity_norm());
			if (IO_info.output_Theta)
			   then output_gridfn(ps, gfns::gfn__Theta,
					      IO_info, IO_info
						       .Theta_base_file_name,
					      hn, verbose_info
						  .print_algorithm_details);
			}
		}
	}
   else {
		for (int i = 0 ; i < N_horizons ; ++i)
		{
		expansion(NULL,			// dummy computation
			  cgi, gi,
			  error_info, true);	// initial evaluation
		}
	}
}
	  }

//******************************************************************************

//
// This function implements
//  AHFinderDirect::method == "test expansion Jacobians":
// On processor #0 it computes and prints the Jacobian matrix J[Theta(h)]
// function for horizon #1; on other processors it does dummy Jacobian
// computations.
//
// The Jacobian computation may optionally be done in several different
// ways, in which case all the resulting Jacobian matrices are printed,
// as are their differences.  Alternatively, only
// the numerical perturbation computation may be done/printed.
//
// Arguments:
// timer_handle = a valid Cactus timer handle if we want to time the
//		  apparent horizon process, or -ve to skip this
//		  (we only time the computation, not the file I/O)
// test_all_Jacobian_compute_methods
//	= true ==> Test all known methods of computing the Jacobian
//		   matrix, and print all the resulting Jacobian matrices
//		   and their differences.
//	  false ==> Just test/print the numerical perturbation calculation.
//		    (This may be useful if one or more of the other methods
//		    is broken.) 
//
namespace {
void do_test_expansion_Jacobians(int my_proc, int N_horizons,
				 struct AH_info* const my_AH_info[],
				 const struct cactus_grid_info& cgi,
				 const struct geometry_info& gi,
				       struct Jacobian_info& Jac_info,
				 bool test_all_Jacobian_compute_methods,
				 const struct IO_info& IO_info,
				 const struct error_info& error_info,
				 const struct verbose_info& verbose_info,
				 int timer_handle)
{
const bool active_flag = (my_proc == 0);
assert(N_horizons >= 1);

const bool print_msg_flag = true;
const int hn = 1;

struct AH_info* AH_info_ptr = active_flag ? my_AH_info[hn]      : NULL;
patch_system*        ps_ptr = active_flag ? AH_info_ptr->ps_ptr : NULL;

//
// numerical-perturbation Jacobian
//
Jacobian* Jac_NP_ptr = active_flag ? AH_info_ptr->Jac_ptr : NULL;
expansion(ps_ptr,
	  cgi, gi,
	  error_info, true);		// initial evaluation
Jac_info.Jacobian_compute_method = Jacobian__numerical_perturbation;
expansion_Jacobian(ps_ptr, Jac_NP_ptr,
		   cgi, gi, Jac_info,
		   error_info, true,	// initial evaluation
		   print_msg_flag);

Jacobian* Jac_SD_FDdr_ptr = NULL;
if (test_all_Jacobian_compute_methods)
   then {
	// symbolic differentiation with finite diff d/dr
	Jac_SD_FDdr_ptr = active_flag
			  ? new_Jacobian(Jac_info.Jacobian_store_solve_method,
					 *ps_ptr,
					 verbose_info.print_algorithm_details)
			  : NULL;
	expansion(ps_ptr,
		  cgi, gi,
		  error_info, true,	// initial evaluation
		  true);		// compute SD Jacobian coeffs
	Jac_info.Jacobian_compute_method = Jacobian__symbolic_diff_with_FD_dr;
	expansion_Jacobian(ps_ptr, Jac_SD_FDdr_ptr,
			   cgi, gi, Jac_info,
			   error_info, true,	// initial evaluation
			   print_msg_flag);
	}

if (active_flag)
   then output_Jacobians(*ps_ptr,
			 Jac_NP_ptr, Jac_SD_FDdr_ptr,
			 IO_info, IO_info.Jacobian_base_file_name,
			 hn, print_msg_flag);
}
	  }