aboutsummaryrefslogtreecommitdiff
path: root/src/driver/find_horizons.cc
blob: 45710dd72528c11fa0e7ce788661b16582797b66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
// find_horizons.cc -- top level driver for finding apparent horizons
// $Header$
//
// <<<access to persistent data>>>
// <<<prototypes for functions local to this file>>>
// AHFinderDirect_find_horizons - top-level driver to find apparent horizons
///
/// setup_Cactus_gridfn_data_ptrs - get all data pointers given variable indices
/// Cactus_gridfn_data_ptr - get a single data pointer from a variable index
///
/// find_horizon - find a horizon
/// do_evaluate_expansion
/// do_test_expansion_Jacobian
/// do_find_horizon
///
/// compute_BH_diagnostics - compute BH diagnostics for a horizon
/// surface_integral - compute surface integral of a gridfn over the horizon
//

#include <stdio.h>
#include <assert.h>
#include <math.h>

#include "util_Table.h"
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "config.h"
#include "stdc.h"
#include "../jtutil/util.hh"
#include "../jtutil/array.hh"
#include "../jtutil/cpm_map.hh"
#include "../jtutil/linear_map.hh"
using jtutil::error_exit;

#include "../patch/coords.hh"
#include "../patch/grid.hh"
#include "../patch/fd_grid.hh"
#include "../patch/patch.hh"
#include "../patch/patch_edge.hh"
#include "../patch/patch_interp.hh"
#include "../patch/ghost_zone.hh"
#include "../patch/patch_system.hh"

#include "../elliptic/Jacobian.hh"

#include "../gr/gfns.hh"
#include "../gr/gr.hh"

#include "driver.hh"

//******************************************************************************

//
// ***** access to persistent data *****
//
extern struct state state;

//******************************************************************************

//
// ***** prototypes for functions local to this file
//
namespace {
void setup_Cactus_gridfn_data_ptrs(const cGH *GH, struct cactus_grid_info& cgi);
const CCTK_REAL* Cactus_gridfn_data_ptr(const cGH *GH, int varindex,
					const char gridfn_name[],
					bool check_for_NULL = true);

bool do_evaluate_expansion
	(const struct verbose_info& verbose_info, int timer_handle,
	 struct IO_info& IO_info, bool output_h, bool output_Theta,
	 struct cactus_grid_info& cgi, struct geometry_info& gi,
	 patch_system& ps,
	 bool active_flag, int hn, int N_horizons);
bool do_test_expansion_Jacobian
	(const struct verbose_info& verbose_info, int timer_handle,
	 struct IO_info& IO_info,
	 bool test_all_Jacobian_methods,
	 struct Jacobian_info& Jac_info,
	 struct cactus_grid_info& cgi, struct geometry_info& gi,
	 patch_system& ps, Jacobian_matrix& Jac,
	 bool active_flag, int hn, int N_horizons);
bool do_find_horizon
	(const struct verbose_info& verbose_info, int timer_handle,
	 struct IO_info& IO_info, bool output_h, bool output_Theta,
	 const struct solver_info& solver_info, bool initial_find_flag,
	 const struct Jacobian_info& Jac_info,
	 struct cactus_grid_info& cgi, struct geometry_info& gi,
	 patch_system& ps, Jacobian_matrix& Jac,
	 bool active_flag, int hn, int N_horizons);

void compute_BH_diagnostics
	(const patch_system& ps,
	 const struct BH_diagnostics_info& BH_diagnostics_info,
	 const struct verbose_info& verbose_info,
	 struct BH_diagnostics& BH_diagnostics);
fp surface_integral(const patch_system& ps, int src_gfn,
		    enum patch::integration_method method);
	  }

//******************************************************************************

//
// This function is called by the Cactus scheduler to find the apparent
// horizon or horizons in the current slice.
//
extern "C"
  void AHFinderDirect_find_horizons(CCTK_ARGUMENTS)
{
DECLARE_CCTK_ARGUMENTS
DECLARE_CCTK_PARAMETERS

const struct verbose_info& verbose_info = state.verbose_info;
      struct IO_info&      IO_info      = state.IO_info;
const struct solver_info&  solver_info  = state.solver_info;

if (state.timer_handle >= 0)
   then CCTK_TimerResetI(state.timer_handle);

// what are the semantics of the Cactus gxx variables? (these may
// change from one call to another, so we have to re-check each time)
if      (CCTK_Equals(metric_type, "physical"))
   then state.cgi.Cactus_conformal_metric = false;
else if (CCTK_Equals(metric_type, "static conformal"))
   then state.cgi.Cactus_conformal_metric = (conformal_state > 0);
else	CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
"AHFinderDirect_find_horizons(): unknown metric_type=\"%s\"!",
		   metric_type);				/*NOTREACHED*/

// only processor #0 is "active"
const bool active_flag = (state.my_proc == 0);

// get the Cactus time step and decide if we want to output [hH] now
IO_info.time_iteration = cctk_iteration;
IO_info.time           = cctk_time;
const bool output_h
   = (IO_info.how_often_to_output_h > 0)
     && ((IO_info.time_iteration % IO_info.how_often_to_output_h) == 0);
const bool output_Theta
   = (IO_info.how_often_to_output_Theta > 0)
     && ((IO_info.time_iteration % IO_info.how_often_to_output_Theta) == 0);

//
// if we're using them,
//    we need to re-fetch the Cactus data pointers at least each time step,
//    because they change each time Cactus rotates the time levels
//
if (state.gi.geometry_method == geometry__local_interp_from_Cactus_grid)
   then setup_Cactus_gridfn_data_ptrs(cctkGH, state.cgi);

	for (int hn = 1 ; hn <= state.N_horizons ; ++hn)
	{
	struct AH_info& AH_info = state.AH_info_array[hn];
	patch_system& ps = *AH_info.ps_ptr;

	//
	// If this is our first attempt to find this horizon, or
	//    if we've tried to find it before but we failed on our
	//    immediately previous attempt, then we need to (re)set
	//    the initial guess.
	// Otherwise (i.e. if we've tried to find this horizon before,
	//    and we succeeded on our immediately previous attempt),
	//    then we can just reuse the previous horizon position as
	//    our initial guess for this time around.
	//
	const bool initial_find_flag = ! AH_info.AH_found;
	if (initial_find_flag)
	   then {
		setup_initial_guess(ps,
				    AH_info.initial_guess_info,
				    IO_info,
				    hn, state.N_horizons, verbose_info);
		if (active_flag && IO_info.output_initial_guess)
		   then output_gridfn(ps, gfns::gfn__h,
				      IO_info, IO_info.h_base_file_name,
				      hn, verbose_info
					  .print_algorithm_highlights);
		}

	// if we're going to need a Jacobian
	//    and it doesn't exist, create it.
	if ( (state.method != method__evaluate_expansion)
	     && (AH_info.Jac_ptr == NULL) )
	   then AH_info.Jac_ptr
		   = create_Jacobian_matrix(ps,
					    state.cgi, state.gi,
					    state.Jac_info,
					    verbose_info.print_algorithm_details);

	AH_info.AH_found = false;
	switch	(state.method)
		{
	case method__evaluate_expansion:
		do_evaluate_expansion(verbose_info, state.timer_handle,
				      IO_info, output_h, output_Theta,
				      state.cgi, state.gi,
				      ps,
				      active_flag, hn, state.N_horizons);
		break;

	case method__test_expansion_Jacobian:
		do_test_expansion_Jacobian(verbose_info, state.timer_handle,
					   IO_info,
					   test_all_Jacobian_methods,
					   state.Jac_info, state.cgi, state.gi,
					   ps, *AH_info.Jac_ptr,
					   active_flag, hn, state.N_horizons);
		break;

	case method__find_horizon:
		AH_info.AH_found
		   = do_find_horizon(verbose_info, state.timer_handle,
				     IO_info, output_h, output_Theta,
				     solver_info, initial_find_flag,
				     state.Jac_info, state.cgi, state.gi,
				     ps, *AH_info.Jac_ptr,
				     active_flag, hn, state.N_horizons);

		// store found flag in Cactus array variable
		AH_found[hn] = AH_info.AH_found;

		if (AH_info.AH_found)
		   then {
// compute BH diagnostics
compute_BH_diagnostics(ps,
		       state.BH_diagnostics_info,
		       verbose_info, AH_info.BH_diagnostics);
const struct BH_diagnostics& BH_diagnostics = AH_info.BH_diagnostics;

			// print BH diagnostics?
if (verbose_info.print_physics_details)
   then {
	CCTK_VInfo(CCTK_THORNSTRING,
		   "AH %d/%d: r=%g at (%f,%f,%f)",
		   hn, state.N_horizons,
		   double(BH_diagnostics.mean_radius),
		   double(BH_diagnostics.centroid_x),
		   double(BH_diagnostics.centroid_y),
		   double(BH_diagnostics.centroid_z));
	CCTK_VInfo(CCTK_THORNSTRING,
		   "AH %d/%d: area=%.10g m_irreducible=%.10g",
		   hn, state.N_horizons,
		   double(BH_diagnostics.area),
		   double(BH_diagnostics.m_irreducible));
	}

// store BH diagnostics in Cactus array variables
centroid_x[hn]    = BH_diagnostics.centroid_x;
centroid_y[hn]    = BH_diagnostics.centroid_y;
centroid_z[hn]    = BH_diagnostics.centroid_z;
area[hn]          = BH_diagnostics.area;
m_irreducible[hn] = BH_diagnostics.m_irreducible;

// output BH diagnostics?
if (active_flag && IO_info.output_BH_diagnostics)
   then {
	if (AH_info.BH_diagnostics_fileptr == NULL)
	   then AH_info.BH_diagnostics_fileptr
		   = setup_BH_diagnostics_output_file(IO_info,
						      hn, state.N_horizons);
	output_BH_diagnostics_fn(BH_diagnostics,
				 IO_info, hn,
				 AH_info.BH_diagnostics_fileptr);
	}
			}
		   else {
			if (verbose_info.print_physics_details)
			   then CCTK_VInfo(CCTK_THORNSTRING,
					   "no apparent horizon found");
			}
		break;

	default:
		CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
			   "\n"
			   "   find_horizons(): unknown method=(int)%d!\n"
			   "                    (this should never happen!)"
			   ,
			   int(state.method));			/*NOTREACHED*/
		}
	}

if (state.timer_handle >= 0)
   then {
	printf("timer stats for computation:\n");
	CCTK_TimerPrintDataI(state.timer_handle, -1);
	}
}

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function sets up the geometry data pointers in a
//  struct cactus_grid_info .
//

namespace {
void setup_Cactus_gridfn_data_ptrs(const cGH *GH, struct cactus_grid_info& cgi)
{
cgi.g_dd_11_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_11_varindex, "g_11");
cgi.g_dd_12_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_12_varindex, "g_12");
cgi.g_dd_13_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_13_varindex, "g_13");
cgi.g_dd_22_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_22_varindex, "g_22");
cgi.g_dd_23_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_23_varindex, "g_23");
cgi.g_dd_33_data = Cactus_gridfn_data_ptr(GH, cgi.g_dd_33_varindex, "g_33");
cgi.K_dd_11_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_11_varindex, "K_11");
cgi.K_dd_12_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_12_varindex, "K_12");
cgi.K_dd_13_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_13_varindex, "K_13");
cgi.K_dd_22_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_22_varindex, "K_22");
cgi.K_dd_23_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_23_varindex, "K_23");
cgi.K_dd_33_data = Cactus_gridfn_data_ptr(GH, cgi.K_dd_33_varindex, "K_33");
cgi.psi_data     = Cactus_gridfn_data_ptr(GH, cgi.psi_varindex,     "psi",
					  cgi.Cactus_conformal_metric);
}
	  }

//******************************************************************************

//
// This function gets the Cactus data pointer for a single gridfn, and
// optionally checks to make sure this is non-NULL.
//
// Arguments:
// gridfn_name[] = The character-string name of the grid function;
//		   this is used only for formatting error messages.
// check_for_NULL = true ==> check to make sure the data pointer is non-NULL
//		    false ==> skip this check (presumably because a NULL
//			      pointer is ok)
//
namespace {
const CCTK_REAL* Cactus_gridfn_data_ptr(const cGH *GH, int varindex,
					const char gridfn_name[],
					bool check_for_NULL /* = true */)
{
const int time_level = 0;

//
// CCTK_VarDataPtrI() returns a  void * , but we need a  const CCTK_REAL*;
// since  static_cast<>  won't change const-ness, we need a 2-stage cast
// for this:
//
const CCTK_REAL* data_ptr = static_cast<const fp*>(
			       const_cast<const void *>(
				  CCTK_VarDataPtrI(GH, time_level, varindex)
						       )
						  );

if (check_for_NULL && (data_ptr == NULL))
   then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   Cactus_gridfn_data_ptr(): got unexpected NULL data pointer\n"
"                             for Cactus geometry gridfn!\n"
"                             name=\"%s\" varindex=%d"
		   ,
		   gridfn_name, varindex);			/*NOTREACHED*/

return data_ptr;
}
	  }

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// This function implements  AHFinderDirect::method == "horizon function",
// that is, it evaluates the Theta(h) function for a single apparent horizon.
//
// Note that if we decide to output h, we output it *after* any Theta(h)
// evaluation or horizon finding has been done, to ensure that all the
// ghost zones are filled in in case we need to print them.
//
// Arguments:
// timer_handle = a valid Cactus timer handle if we want to time the
//		  apparent horizon process, or -ve to skip this
//		  (we only time the computation, not the file I/O)
// output_[hH] = flags to control whether or not we should output [hH]
// active_flag = Controls whether this processor is "active":
//		 true ==> Normal operation.
//		 false ==> We evaluate Theta(h) as usual, but don't write
//			   any output files.
// hn = the horizon number (used only in naming output files)
// N_horizons = the total number of horizon(s) being searched for number
//		(used only in formatting info messages)
//
// Results:
// This function returns true if the evaluation was successful, false
// otherwise.
//
namespace {
bool do_evaluate_expansion
	(const struct verbose_info& verbose_info, int timer_handle,
	 struct IO_info& IO_info, bool output_h, bool output_Theta,
	 struct cactus_grid_info& cgi, struct geometry_info& gi,
	 patch_system& ps,
	 bool active_flag, int hn, int N_horizons)
{
jtutil::norm<fp> Theta_norms;

if (timer_handle >= 0)
   then CCTK_TimerStartI(timer_handle);
const bool status = expansion(ps, cgi, gi, false, true, &Theta_norms);
if (timer_handle >= 0)
   then CCTK_TimerStopI(timer_handle);
if (!status)
   then return false;					// *** ERROR RETURN ***

if (Theta_norms.is_nonempty())	// might be empty if Theta(h) eval failed
   then CCTK_VInfo(CCTK_THORNSTRING,
		   "   Theta(h) rms-norm %.2e, infinity-norm %.2e",
		   Theta_norms.rms_norm(), Theta_norms.infinity_norm());

if (active_flag && output_h)
   then output_gridfn(ps, gfns::gfn__h,
		      IO_info, IO_info.h_base_file_name,
		      hn, verbose_info.print_algorithm_details);
if (active_flag && output_Theta)
   then output_gridfn(ps, gfns::gfn__Theta,
		      IO_info, IO_info.Theta_base_file_name,
		      hn, verbose_info.print_algorithm_details);

return true;						// *** NORMAL RETURN ***
}
	  }

//******************************************************************************

//
// This function implements  AHFinderDirect::method == "test Jacobian",
// that is, it computes and prints the Jacobian matrix J[Theta(h)] for a
// single apparent horizon.  The computation may optionally be done
// in several different ways, in which case all the resulting Jacobian
// matrices are printed, as are their differences.  Alternatively, only
// the numerical perturbation computation may be done/printed.
//
// Arguments:
// timer_handle = a valid Cactus timer handle if we want to time the
//		  apparent horizon process, or -ve to skip this
//		  (we only time the computation, not the file I/O)
// test_all_Jacobian_methods = true ==> Test all known methods of computing
//					the Jacobian matrix, and print all
//					the resulting Jacobian matrices
//					and their differences.
//			       false ==> Just test/print the numerical
//					 perturbation calculation.  (This
//					 may be useful if one or more of
//					 the other methods is broken.) 
// active_flag = Controls whether this processor is "active":
//		 true ==> Normal operation.
//		 false ==> We compute the Jacobian(s) as usual, but don't
//			   write any output files.
// hn = the horizon number (used only in naming output files)
// N_horizons = the total number of horizon(s) being searched for number
//		(used only in formatting info messages)
//
// Results:
// This function returns true if the Jacobian computation was successful,
// false otherwise.
//
namespace {
bool do_test_expansion_Jacobian
	(const struct verbose_info& verbose_info, int timer_handle,
	 struct IO_info& IO_info,
	 bool test_all_Jacobian_methods,
	 struct Jacobian_info& Jac_info,
	 struct cactus_grid_info& cgi, struct geometry_info& gi,
	 patch_system& ps, Jacobian_matrix& Jac,
	 bool active_flag, int hn, int N_horizons)
{
// numerical perturbation
Jacobian_matrix* Jac_NP_ptr = & Jac;
if (!  expansion(ps, cgi, gi, true))
   then return false;					// *** ERROR RETURN ***
Jac_info.Jacobian_method = Jacobian_method__numerical_perturb;
if (! expansion_Jacobian(ps, *Jac_NP_ptr,
			 cgi, gi, Jac_info,
			 true))	// print msgs
   then return false;					// *** ERROR RETURN ***

Jacobian_matrix* Jac_SD_FDdr_ptr = NULL;
if (test_all_Jacobian_methods)
   then {
	// symbolic differentiation with finite diff d/dr
	Jac_SD_FDdr_ptr
	   = create_Jacobian_matrix(ps,
				    cgi, gi,
				    Jac_info,
				    verbose_info.print_algorithm_details);
	if (! expansion(ps, cgi, gi, true))
	   then return false;				// *** ERROR RETURN ***
	Jac_info.Jacobian_method = Jacobian_method__symbolic_diff_with_FD_dr;
	if (! expansion_Jacobian(ps, *Jac_SD_FDdr_ptr,
				 cgi, gi, Jac_info,
				 true))	// print msgs
	   then return false;				// *** ERROR RETURN ***
	}

if (active_flag)
   then output_Jacobians(ps,
			 Jac_NP_ptr, Jac_SD_FDdr_ptr,
			 IO_info, IO_info.Jacobian_base_file_name,
			 hn, true);

return true;						// *** NORMAL RETURN ***
}
	  }

//******************************************************************************

//
// This function implements  AHFinderDirect::method == "find horizon",
// that is, it finds the (an) apparent horizon.
//
// Arguments:
// timer_handle = a valid Cactus timer handle if we want to time the
//		  apparent horizon process, or -ve to skip this
//		  (we only time the computation, not the file I/O)
// initial_find_flag = true ==> This is the first time we've tried to find
//				this horizon, or we've tried before but
//				failed on our most recent previous attempt.
//				Thus we should use "initial" parameters
//				for the Newton iteration.
//		       flase ==> We've tried to find this horizon before,
//				 and we succeeded on our most recent
//				 previous attempt.  Thus we should use
//				 "subsequent" parameters for the Newton
//				 iteration.
// active_flag = Controls whether this processor is "active":
//		 true ==> Normal operation.
//		 false ==> We find the horizon as usual, but don't write
//			   any output files.
// hn = the horizon number (used only in naming output files)
// N_horizons = the total number of horizon(s) being searched for number
//		(used only in formatting info messages)
//
// Results:
// This function returns true if the apparent horizon was found
// successfully, false otherwise.
//
namespace {
bool do_find_horizon
	(const struct verbose_info& verbose_info, int timer_handle,
	 struct IO_info& IO_info, bool output_h, bool output_Theta,
	 const struct solver_info& solver_info, bool initial_find_flag,
	 const struct Jacobian_info& Jac_info,
	 struct cactus_grid_info& cgi, struct geometry_info& gi,
	 patch_system& ps, Jacobian_matrix& Jac,
	 bool active_flag, int hn, int N_horizons)
{
if (verbose_info.print_algorithm_highlights)
   then CCTK_VInfo(CCTK_THORNSTRING,
		   "searching for horizon %d/%d",
		   hn, N_horizons);

if (timer_handle >= 0)
   then CCTK_TimerStartI(timer_handle);
const bool status = Newton_solve(ps, Jac,
				 cgi, gi, Jac_info,
				 solver_info, initial_find_flag, IO_info,
				 active_flag, hn, verbose_info);
if (timer_handle >= 0)
   then CCTK_TimerStopI(timer_handle);
if (! status)
   then return false;					// *** ERROR RETURN ***

if (active_flag && output_h)
   then output_gridfn(ps, gfns::gfn__h,
		      IO_info, IO_info.h_base_file_name,
		      hn, verbose_info.print_algorithm_details);
if (active_flag && output_Theta)
   then output_gridfn(ps, gfns::gfn__Theta,
		      IO_info, IO_info.Theta_base_file_name,
		      hn, verbose_info.print_algorithm_details);

return true;						// *** NORMAL RETURN ***
}
	  }

//******************************************************************************
//******************************************************************************
//******************************************************************************

//
// Given that an apparent horizon has been found, this function computes
// various black hole diagnostics.
//
// Inputs (gridfns)
// h		# ghosted
// one		# nominal
// global_[xyz]	# nominal
//
namespace {
void compute_BH_diagnostics
	(const patch_system& ps,
	 const struct BH_diagnostics_info& BH_diagnostics_info,
	 const struct verbose_info& verbose_info,
	 struct BH_diagnostics& BH_diagnostics)
{
//
// compute raw surface integrals
//
fp integral_one = surface_integral(ps, gfns::gfn__one,
				   BH_diagnostics_info.integral_method);
fp integral_h = surface_integral(ps, gfns::gfn__h,
				 BH_diagnostics_info.integral_method);
fp integral_x = surface_integral(ps, gfns::gfn__global_x,
				 BH_diagnostics_info.integral_method);
fp integral_y = surface_integral(ps, gfns::gfn__global_y,
				 BH_diagnostics_info.integral_method);
fp integral_z = surface_integral(ps, gfns::gfn__global_z,
				 BH_diagnostics_info.integral_method);

//
// adjust integrals to take into account patch system not covering full sphere
//
switch	(ps.type())
	{
case patch_system::patch_system__full_sphere:
	break;
case patch_system::patch_system__plus_z_hemisphere:
	integral_one *= 2.0;
	integral_h *= 2.0;
	integral_x *= 2.0;
	integral_y *= 2.0;
	integral_z = integral_one * ps.origin_z();
	break;
case patch_system::patch_system__plus_xy_quadrant_mirrored:
case patch_system::patch_system__plus_xy_quadrant_rotating:
	integral_one *= 4.0;
	integral_h *= 4.0;
	integral_x = integral_one * ps.origin_x();
	integral_y = integral_one * ps.origin_y();
	integral_z *= 4.0;
	break;
case patch_system::patch_system__plus_xz_quadrant_rotating:
	integral_one *= 4.0;
	integral_h *= 4.0;
	integral_x = integral_one * ps.origin_x();
	integral_y *= 4.0;
	integral_z = integral_one * ps.origin_z();
	break;
case patch_system::patch_system__plus_xyz_octant_mirrored:
case patch_system::patch_system__plus_xyz_octant_rotating:
	integral_one *= 8.0;
	integral_h *= 8.0;
	integral_x = integral_one * ps.origin_x();
	integral_y = integral_one * ps.origin_y();
	integral_z = integral_one * ps.origin_z();
	break;
default:
	CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING,
"\n"
"   compute_BH_diagnostics(): unknown ps.type()=(int)%d!\n"
"                             (this should never happen!)"
,
		   int(ps.type()));				/*NOTREACHED*/
	}

BH_diagnostics.centroid_x = integral_x / integral_one;
BH_diagnostics.centroid_y = integral_y / integral_one;
BH_diagnostics.centroid_z = integral_z / integral_one;

BH_diagnostics.area = integral_one;
BH_diagnostics.circumference_xy = ps.xy_circumference
    (gfns::gfn__h,
     gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
			 gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
					     gfns::gfn__g_dd_33,
     BH_diagnostics_info.integral_method);
BH_diagnostics.circumference_xz = ps.xz_circumference
    (gfns::gfn__h,
     gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
			 gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
					     gfns::gfn__g_dd_33,
     BH_diagnostics_info.integral_method);
BH_diagnostics.circumference_yz = ps.yz_circumference
    (gfns::gfn__h,
     gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
			 gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
					     gfns::gfn__g_dd_33,
     BH_diagnostics_info.integral_method);
BH_diagnostics.mean_radius = integral_h / integral_one;
BH_diagnostics.m_irreducible = sqrt(BH_diagnostics.area / (16.0*PI));
}
	  }

//******************************************************************************

//
// This function computes the surface integral of a gridfn over the
// horizon.
//
namespace {
fp surface_integral(const patch_system& ps, int src_gfn,
		    enum patch::integration_method method)
{
return ps.integrate_gridfn
	   (src_gfn,
	    gfns::gfn__h,
	    gfns::gfn__g_dd_11, gfns::gfn__g_dd_12, gfns::gfn__g_dd_13,
				gfns::gfn__g_dd_22, gfns::gfn__g_dd_23,
						    gfns::gfn__g_dd_33,
	    method);
}
	  }