# apparent horizon 2/2 # # column 1 = cctk_iteration # column 2 = cctk_time # column 3 = centroid_x # column 4 = centroid_y # column 5 = centroid_z # column 6 = min radius # column 7 = max radius # column 8 = mean radius # column 9 = quadrupole_xx # column 10 = quadrupole_xy # column 11 = quadrupole_xz # column 12 = quadrupole_yy # column 13 = quadrupole_yz # column 14 = quadrupole_zz # column 15 = min x # column 16 = max x # column 17 = min y # column 18 = max y # column 19 = min z # column 20 = max z # column 21 = xy-plane circumference # column 22 = xz-plane circumference # column 23 = yz-plane circumference # column 24 = ratio of xz/xy-plane circumferences # column 25 = ratio of yz/xy-plane circumferences # column 26 = area # column 27 = irreducible mass # column 28 = areal radius # column 29 = [not implemented yet] (outer) expansion Theta_(l) # column 30 = [not implemented yet] inner expansion Theta_(n) # column 31 = [not implemented yet] product of inner and outer expansions # column 32 = [not implemented yet] mean curvature # column 33 = [not implemented yet] d/d(coordinate radius) of area # column 34 = [not implemented yet] d/d(coordinate radius) of (outer) expansion Theta_(l) # column 35 = [not implemented yet] d/d(coordinate radius) of inner expansion Theta_(n) # column 36 = [not implemented yet] d/d(coordinate radius) of product of inner and outer expansions # column 37 = [not implemented yet] d/d(coordinate radius) of mean curvature # column 38 = minimum of the mean curvature # column 39 = maximum of the mean curvature # column 40 = integral of the mean curvature 0 0.000000 0.000000 0.000000 0.000000 0.3564673701 1.936787390 1.237012834 0.2058766958 0.000000000 0.000000000 0.2058766958 0.000000000 1.322929146 -0.7790370066 0.7790370066 -0.7790370066 0.7790370066 -1.936787390 1.936787390 14.51533018 64.12845394 64.12845394 4.417981069 4.417981069 719.7156025 3.783951238 7.567902475 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000