// driver.cc -- top level driver for finding apparent horizons // $Id$ // // <<>> // AHFinderDirect_driver - top-level driver /// setup_ellipsoid_initial_guess - set up ellipsoid in h gridfn // #include #include #include #include #include "util_Table.h" #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "jt/stdc.h" #include "jt/util.hh" #include "jt/array.hh" #include "jt/cpm_map.hh" #include "jt/linear_map.hh" using jtutil::error_exit; #include "../config.hh" #include "../util/coords.hh" #include "../util/grid.hh" #include "../util/fd_grid.hh" #include "../util/patch.hh" #include "../util/patch_edge.hh" #include "../util/patch_interp.hh" #include "../util/ghost_zone.hh" #include "../util/patch_system.hh" #include "gfn.hh" #include "AHFinderDirect.hh" //****************************************************************************** // // ***** prototypes for functions local to this file ***** // namespace { void setup_ellipsoid_initial_guess (patch_system& ps, fp global_center_x, fp global_center_y, fp global_center_z, fp radius_x, fp radius_y, fp radius_z); }; //****************************************************************************** // // This function is the Cactus interface for the test driver. // extern "C" void AHFinderDirect_driver(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS DECLARE_CCTK_PARAMETERS CCTK_VInfo(CCTK_THORNSTRING, "initializing AHFinderDirect data structures"); // // set up the geometry interpolator // struct geometry_interpolator_info gii; CCTK_VInfo(CCTK_THORNSTRING, " setting up geometry interpolator"); gii.operator_handle = CCTK_InterpHandle(geometry_interpolator_name); if (gii.operator_handle < 0) then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "couldn't find interpolator \"%s\"!", geometry_interpolator_name); /*NOTREACHED*/ gii.param_table_handle = Util_TableCreateFromString(geometry_interpolator_pars); if (gii.param_table_handle < 0) then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "bad geometry-interpolator parameter(s) \"%s\"!", geometry_interpolator_pars); /*NOTREACHED*/ // // set up the interpatch interpolator // CCTK_VInfo(CCTK_THORNSTRING, " setting up interpatch interpolator"); const int interp_handle = CCTK_InterpHandle(interpatch_interpolator_name); if (interp_handle < 0) then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "couldn't find interpolator \"%s\"!", interpatch_interpolator_name); /*NOTREACHED*/ const int interp_param_table_handle = Util_TableCreateFromString(interpatch_interpolator_pars); if (interp_param_table_handle < 0) then CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "bad interpatch-interpolator parameter(s) \"%s\"!", interpatch_interpolator_pars); /*NOTREACHED*/ // // set up the Cactus grid info // CCTK_VInfo(CCTK_THORNSTRING, " setting up Cactus grid info"); struct cactus_grid_info cgi; cgi.GH = cctkGH; cgi.coord_origin[0] = cctk_origin_space[0]; cgi.coord_origin[1] = cctk_origin_space[1]; cgi.coord_origin[2] = cctk_origin_space[2]; cgi.coord_delta[0] = cctk_delta_space[0]; cgi.coord_delta[1] = cctk_delta_space[1]; cgi.coord_delta[2] = cctk_delta_space[2]; cgi.gridfn_dims[0] = cctk_lsh[0]; cgi.gridfn_dims[1] = cctk_lsh[1]; cgi.gridfn_dims[2] = cctk_lsh[2]; cgi.g_dd_11_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::gxx") ); cgi.g_dd_12_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::gxy") ); cgi.g_dd_13_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::gxz") ); cgi.g_dd_22_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::gyy") ); cgi.g_dd_23_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::gyz") ); cgi.g_dd_33_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::gzz") ); cgi.K_dd_11_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::kxx") ); cgi.K_dd_12_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::kxy") ); cgi.K_dd_13_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::kxz") ); cgi.K_dd_22_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::kyy") ); cgi.K_dd_23_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::kyz") ); cgi.K_dd_33_data = static_cast( CCTK_VarDataPtr(cctkGH, 0, "einstein::kzz") ); // // create the patch system and initialize the xyz derivative coefficients // CCTK_VInfo(CCTK_THORNSTRING, " creating patch system"); patch_system ps(origin_x, origin_y, origin_z, patch_system::type_of_name(patch_system_type), N_ghost_points, N_overlap_points, delta_drho_dsigma, nominal_gfns::min_gfn, nominal_gfns::max_gfn, ghosted_gfns::min_gfn, ghosted_gfns::max_gfn, interp_handle, interp_param_table_handle); // // set up the initial guess for the apparent horizon shape // if (STRING_EQUAL(initial_guess_method, "read from file")) then { CCTK_VInfo(CCTK_THORNSTRING, " reading initial guess from \"%s\"", initial_guess__read_from_file__file_name); ps.read_ghosted_gridfn(ghosted_gfns::gfn__h, initial_guess__read_from_file__file_name, false); // no ghost zones } else if (STRING_EQUAL(initial_guess_method, "ellipsoid")) then { setup_ellipsoid_initial_guess(ps, initial_guess__ellipsoid__center_global_x, initial_guess__ellipsoid__center_global_y, initial_guess__ellipsoid__center_global_z, initial_guess__ellipsoid__radius_x, initial_guess__ellipsoid__radius_y, initial_guess__ellipsoid__radius_z); ps.print_ghosted_gridfn_with_xyz(ghosted_gfns::gfn__h, true, ghosted_gfns::gfn__h, "h.dat", false); // no ghost zones } else CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "unknown initial_guess_method=\"%s\"!", initial_guess_method); /*NOTREACHED*/ // // find the apparent horizon // if (STRING_EQUAL(method, "horizon")) then { horizon_function(ps, cgi, gii, false); ps.print_gridfn_with_xyz(nominal_gfns::gfn__H, true, ghosted_gfns::gfn__h, "H.dat"); } else CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "unknown method=\"%s\"!", method); /*NOTREACHED*/ } //****************************************************************************** // // This function sets up an ellipsoid in the gridfn h, using the // formulas in "ellipsoid.maple" and the Maple-generated C code in // "ellipsoid.c": // // ellipsoid has center (A,B,C), radius (a,b,c) // angular coordinate system has center (U,V,W) // // direction cosines wrt angular coordinate center are (xcos,ycos,zcos) // i.e. a point has coordinates (U+xcos*r, V+ycos*r, W+zcos*r) // // then the equation of the ellipsoid is // (U+xcos*r - A)^2 (V+ycos*r - B)^2 (W+zcos*r - C)^2 // ----------------- + ---------------- + ----------------- = 1 // a^2 b^2 c^2 // // to solve this, we introduce intermediate variables // AU = A - U // BV = B - V // CW = C - W // namespace { void setup_ellipsoid_initial_guess (patch_system& ps, fp global_center_x, fp global_center_y, fp global_center_z, fp radius_x, fp radius_y, fp radius_z) { CCTK_VInfo(CCTK_THORNSTRING, " h = ellipsoid: global_center=(%g,%g,%g)", global_center_x, global_center_y, global_center_z); CCTK_VInfo(CCTK_THORNSTRING, " radius=(%g,%g,%g)", radius_x, radius_y, radius_z); for (int pn = 0 ; pn < ps.N_patches() ; ++pn) { patch& p = ps.ith_patch(pn); for (int irho = p.min_irho() ; irho <= p.max_irho() ; ++irho) { for (int isigma = p.min_isigma() ; isigma <= p.max_isigma() ; ++isigma) { const fp rho = p.rho_of_irho(irho); const fp sigma = p.sigma_of_isigma(isigma); fp xcos, ycos, zcos; p.xyzcos_of_rho_sigma(rho,sigma, xcos,ycos,zcos); // set up variables used by Maple-generated code const fp AU = global_center_x - ps.origin_x(); const fp BV = global_center_y - ps.origin_y(); const fp CW = global_center_z - ps.origin_z(); const fp a = radius_x; const fp b = radius_y; const fp c = radius_z; // compute the solutions r_plus and r_minus fp r_plus, r_minus; #include "ellipsoid.c" // exactly one of the solutions (call it r) should be positive fp r; if ((r_plus > 0.0) && (r_minus < 0.0)) then r = r_plus; else if ((r_plus < 0.0) && (r_minus > 0.0)) then r = r_minus; else CCTK_VWarn(-1, __LINE__, __FILE__, CCTK_THORNSTRING, "\n" " expected exactly one r>0 solution, got 0 or 2!\n" " %s patch (irho,isigma)=(%d,%d) ==> (rho,sigma)=(%g,%g)\n" " direction cosines (xcos,ycos,zcos)=(%g,%g,%g)\n" " ==> r_plus=%g r_minus=%g\n" , p.name(), irho, isigma, double(rho), double(sigma), double(xcos), double(ycos), double(zcos), double(r_plus), double(r_minus)); /*NOTREACHED*/ // r = horizon radius at this grid point p.ghosted_gridfn(ghosted_gfns::gfn__h, irho,isigma) = r; } } } } }