\documentclass{article} \newif\ifpdf \ifx\pdfoutput\undefined \pdffalse % we are not running PDFLaTeX \else \pdfoutput=1 % we are running PDFLaTeX \pdftrue \fi \ifpdf \usepackage[pdftex]{graphicx} \else \usepackage{graphicx} \fi \parskip = 0 pt \parindent = 0pt \oddsidemargin = 0 cm \textwidth = 16 cm \topmargin = -1 cm \textheight = 24 cm \begin{document} \title{ADMAnalysis} \author{Tom Goodale et al} \date{April 2002} \maketitle \abstract{Basic analysis of the metric and extrinsic curvature tensors} \section{Purpose} This thorn provides analysis routines to calculate the following quantities: \begin{itemize} \item The trace of the extrinsic curvature ($trK$). \item The determinant of the 3-metric ($detg$). \item The components of the 3-metric in spherical coordinates \\ ($g_{rr},g_{r\theta},g_{r\phi},g_{\theta\theta},g_{\phi\theta},g_{\phi\phi}$). \item The components of the extrinsic curvature in spherical coordinates \\ ($K_{rr},K_{r\theta},K_{r\phi},K_{\theta\theta},K_{\theta\phi},K_{\phi\phi}$). \item The components of the 3-Ricci tensor in cartesian coordinates \\ (${\cal R}_{ij}$) for $i,j \in \{1,2,3\}. \item The Ricci scalar (${\cal R}). \end{itemize} \section{Trace of Extrinsic Curvature} The trace of the extrinsic curvature at each point on the grid is placed in the grid function {\tt trK}. The algorithm for calculating the trace uses the physical metric, that is it includes any conformal factor. \begin{equation} {\tt trK} \equiv tr K = \frac{1}{\psi^4} g^{ij} K_{ij} \end{equation} \section{Determinant of 3-Metric} The determinant of the 3-metric at each point on the grid is placed in the grid function {\tt detg}. This is always the determinant of the conformal metric, that is it does not include any conformal factor. \begin{equation} {\tt detg} \equiv det g = -g_{13}^2*g_{22}+2*g_{12}*g_{13}*g_{23}-g_{11}*g_{23}^2- g_{12}^2*g_{33}+g_{11}*g_{22}*g_{33} \end{equation} \section{Transformation to Spherical Cooordinates} The values of the metric and/or extrinsic curvature in a spherical polar coordinate system $(r,\theta,\phi)$ evaluated at each point on the computational grid are placed in the grid functions ({\tt grr}, {\tt grt}, {\tt grp}, {\tt gtt}, {\tt gtp}, {\tt gpp}) and ({\tt krr}, {\tt krt}, {\tt krp}, {\tt ktt}, {\tt ktp}, {\tt kpp}). In the spherical transformation, the $\theta$ coordinate is referred to as {\bf q} and the $\phi$ as {\bf p}. The general transformation from Cartesian to Spherical for such tensors is \begin{eqnarray*} A_{rr}&=& \sin^2\theta\cos^2\phi A_{xx} +\sin^2\theta\sin^2\phi A_{yy} +\cos^2\theta A_{zz} +2\sin^2\theta\cos\phi\sin\phi A_{xy} \\ && +2\sin\theta\cos\theta\cos\phi A_{xz} +2\sin\theta\cos\theta\sin\phi A_{yz} \\ A_{r\theta}&=& r(\sin\theta\cos\theta\cos^2\phi A_{xx} +2*\sin\theta\cos\theta\sin\phi\cos\phi A_{xy} +(\cos^2\theta-\sin^2\theta)\cos\phi A_{xz} \\ && +\sin\theta\cos\theta\sin^2\phi A_{yy} +(\cos^2\theta-\sin^2\theta)\sin\phi A_{yz} -\sin\theta\cos\theta A_{zz}) \\ A_{r\phi}&=& r\sin\theta(-\sin\theta\sin\phi\cos\phi A_{xx} -\sin\theta(\sin^2\phi-\cos^2\phi)A_{xy} -\cos\theta\sin\phi A_{xz} \\ && +\sin\theta\sin\phi\cos\phi A_{yy} +\cos\theta\cos\phi A_{yz}) \\ A_{\theta\theta}&=& r^2(\cos^2\theta\cos^2\phi A_{xx} +2\cos^2\theta\sin\phi\cos\phi A_{xy} -2\sin\theta\cos\theta\cos\phi A_{xz} +\cos^2\theta\sin^2\phi A_{yy} \\ && -2\sin\theta\cos\theta\sin\phi A_{yz} +\sin^2\theta A_{zz}) \\ A_{\theta\phi}&=& r^2\sin\theta(-\cos\theta\sin\phi\cos\phi A_{xx} -\cos\theta(\sin^2\phi-\cos^2\phi)A_{xy} +\sin\theta \sin\phi A_{xz} \\ && +\cos\theta\sin\phi\cos\phi A_{yy} -\sin\theta\cos\phi A_{yz}) \\ A_{\phi\phi}&=& r^2\sin^2\theta(\sin^2\phi A_{xx} -2\sin\phi\cos\phi A_{xy} +\cos^2\phi A_{yy}) \end{eqnarray*} If the parameter {\tt normalize\_dtheta\_dphi} is set to {\tt yes}, the angular components are projected onto the vectors $(r d\theta, r \sin\theta d \phi)$ instead of the default vector $(d \theta, d\phi)$. That is, \begin{eqnarray*} A_{\theta\theta} & \rightarrow & A_{\theta\theta}/r^2 \\ A_{\phi\phi}& \rightarrow & A_{\phi\phi}/(r^2\sin^2\theta) \\ A_{r\theta} & \rightarrow & A_{r\theta}/r \\ A_{r\phi} & \rightarrow & A_{r\phi}/(r\sin\theta) \\ A_{\theta\phi} & \rightarrow & A_{\theta\phi}/r^2\sin\theta) \end{eqnarray*} \section{Computing the Ricci tensor and scalar} \label{sec:ricci} The computation of the Ricci tensor uses the ADMMacros thorn. The calculation of the Ricci scalar uses the generic trace routine in this thorn. % Automatically created from the ccl files by using gmake thorndoc \include{interface} \include{param} \include{schedule} \end{document}