aboutsummaryrefslogtreecommitdiff
path: root/teukolsky_data.py
blob: a9bd49073768f5237b589c085430fccfdb45c160 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#
# Copyright 2014 Anton Khirnov <anton@khirnov.net>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#


import ctypes
import numpy as np

class TeukolskyData(object):

    TD_FAMILY_TIME_ANTISYM_CUBIC  = 0
    TD_FAMILY_TIME_ANTISYM_LINEAR = 1

    coeffs = None

    _libtd = None
    _tdctx = None

    class _TDContext(ctypes.Structure):
     _fields_ = [("priv",                   ctypes.c_void_p),
                 ("log_callback",           ctypes.c_void_p),
                 ("opaque",                 ctypes.c_void_p),
                 ("amplitude",              ctypes.c_double),
                 ("nb_coeffs",              ctypes.c_uint * 2),
                 ("basis_scale_factor",     ctypes.c_double * 2),
                 ("max_iter",               ctypes.c_uint),
                 ("atol",                   ctypes.c_double),
                 ("nb_threads",             ctypes.c_uint),
                 ("coeffs",                 ctypes.POINTER(ctypes.c_double) * 3),
                 ("solution_branch",        ctypes.c_uint),
                 ("family",                 ctypes.c_uint),
                 ]

    def __init__(self, **kwargs):
        self._libtd = ctypes.CDLL('libteukolskydata.so')
        tdctx_alloc = self._libtd.td_context_alloc
        tdctx_alloc.restype = ctypes.POINTER(self._TDContext)
        self._tdctx = self._libtd.td_context_alloc()

        coeffs_init = ctypes.c_void_p()

        for arg, value in kwargs.items():
            if arg == 'coeffs_init':
                coeffs_init = (ctypes.POINTER(ctypes.c_double) * 3)()
                coeffs_init[0] = ctypes.cast(np.ctypeslib.as_ctypes(value[0]), ctypes.POINTER(ctypes.c_double))
                coeffs_init[1] = ctypes.cast(np.ctypeslib.as_ctypes(value[1]), ctypes.POINTER(ctypes.c_double))
                coeffs_init[2] = ctypes.cast(np.ctypeslib.as_ctypes(value[2]), ctypes.POINTER(ctypes.c_double))
                continue

            try:
                self._tdctx.contents.__setattr__(arg, value)
            except TypeError as e:
                # try assigning items of an iterable
                try:
                    for i, it in enumerate(value):
                        self._tdctx.contents.__getattribute__(arg)[i] = it
                except:
                    raise e

        ret = self._libtd.td_solve(self._tdctx, coeffs_init)
        if ret < 0:
            raise RuntimeError('Error solving the equation')

        self.coeffs = [None] * 3
        for i in range(3):
            self.coeffs[i] = np.copy(np.ctypeslib.as_array(self._tdctx.contents.coeffs[i], (self._tdctx.contents.nb_coeffs[1], self._tdctx.contents.nb_coeffs[0])))

    def __del__(self):
        if self._tdctx:
            addr_tdctx = ctypes.c_void_p(ctypes.addressof(self._tdctx))
            self._libtd.td_context_free(addr_tdctx)
            self._tdctx = None

    def _eval_var(self, eval_func, r, theta, diff_order = None):
        if diff_order is None:
            diff_order = [0, 0]

        c_diff_order = (ctypes.c_uint * 2)()
        c_diff_order[0] = diff_order[0]
        c_diff_order[1] = diff_order[1]

        if r.ndim == 2:
            if r.shape != theta.shape:
                raise TypeError('r and theta must be identically-shaped 2-dimensional arrays')
            R, Theta = r.view(), theta.view()
        elif r.ndim == 1:
            if theta.ndim != 1:
                raise TypeError('r and theta must both be 1-dimensional NumPy arrays')
            R, Theta = np.meshgrid(r, theta)
        else:
            raise TypeError('invalid r/theta parameters')

        out = np.empty(R.shape[0] * R.shape[1])

        R.shape     = out.shape
        Theta.shape = out.shape

        c_out   = np.ctypeslib.as_ctypes(out)
        c_r     = np.ctypeslib.as_ctypes(R)
        c_theta = np.ctypeslib.as_ctypes(Theta)

        ret = eval_func(self._tdctx, out.shape[0], c_r, c_theta,
                        c_diff_order, c_out, ctypes.c_long(r.shape[0]))
        if ret < 0:
            raise RuntimeError('Error evaluating the variable: %d' % ret)

        out.shape = (theta.shape[0], r.shape[0])
        return out

    def eval_psi(self, r, theta, diff_order = None):
        return self._eval_var(self._libtd.td_eval_psi, r, theta, diff_order)
    def eval_krr(self, r, theta, diff_order = None):
        return self._eval_var(self._libtd.td_eval_krr, r, theta, diff_order)
    def eval_kpp(self, r, theta, diff_order = None):
        return self._eval_var(self._libtd.td_eval_kpp, r, theta, diff_order)
    def eval_krt(self, r, theta, diff_order = None):
        return self._eval_var(self._libtd.td_eval_krt, r, theta, diff_order)
    def eval_lapse(self, r, theta, diff_order = None):
        return self._eval_var(self._libtd.td_eval_lapse, r, theta, diff_order)

    def eval_data_cart(self, x, z):
        X, Z  = np.meshgrid(x, z)
        X2    = X * X
        Z2    = Z * Z
        R     = np.sqrt(X2 + Z2)
        R2    = R * R
        R3    = R2 * R
        Theta = np.where(R > 1e-15, np.arccos(Z / R), 0.0)

        psi = self.eval_psi(R, Theta)
        krr = self.eval_krr(R, Theta)
        kpp = self.eval_kpp(R, Theta)
        krt = self.eval_krt(R, Theta)

        krr_x = self.eval_krr(np.array([0.0]), np.array([np.pi / 2]))[0]
        krr_z = self.eval_krr(np.array([0.0]), np.array([0.0]))[0]

        psi4 = (psi ** 4)
        ktt = -(krr + kpp)

        metric = np.zeros((3, 3) + X.shape)
        curv   = np.zeros_like(metric)

        metric[0, 0] = psi4
        metric[1, 1] = psi4
        metric[2, 2] = psi4

        curv[1, 1] = psi4 * kpp

        curv[0, 0] = psi4 * np.where(R > 1e-15,
                X2 / R2 * krr + Z2 / R2 * ktt + 2.0 * Z * np.abs(X) / R3 * krt, krr_x)
        curv[2, 2] = psi4 * np.where(R > 1e-15,
                Z2 / R2 * krr + X2 / R2 * ktt - 2.0 * Z * np.abs(X) / R3 * krt, krr_z)
        curv[0, 2] = psi4 * np.where(R > 1e-15,
                X * Z / R2 * krr - X * Z / R2 * ktt + (-X * np.abs(X) + np.sign(X) * Z2) / R3 * krt, 0.0)
        curv[2, 0] = curv[0, 2]

        return metric, curv

    def eval_residual(self, r, theta):
        if r.ndim != 1 or theta.ndim != 1:
            raise TypeError('r and theta must both be 1-dimensional NumPy arrays')

        out = np.empty((3, r.shape[0] * theta.shape[0]))

        c_out    = (ctypes.POINTER(ctypes.c_double) * 3)()
        for i in range(3):
            c_out[i] = ctypes.cast(np.ctypeslib.as_ctypes(out[i]), ctypes.POINTER(ctypes.c_double))

        c_r     = np.ctypeslib.as_ctypes(r)
        c_theta = np.ctypeslib.as_ctypes(theta)

        ret = self._libtd.td_eval_residual(self._tdctx, r.shape[0], c_r,
                                           theta.shape[0], c_theta, c_out)
        if ret < 0:
            raise RuntimeError('Error evaluating the variable: %d' % ret)

        out.shape = (3, theta.shape[0], r.shape[0])
        return out

    @property
    def amplitude(self):
        return self._tdctx.contents.__getattribute__('amplitude')