aboutsummaryrefslogtreecommitdiff
path: root/td_constraints.c
blob: ab21e79c5d4e01d1ba2315df0d1b478f6ff95827 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 * Copyright 2017 Anton Khirnov <anton@khirnov.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <errno.h>
#include <math.h>

#include "common.h"
#include "pssolve.h"
#include "td_constraints.h"

struct TDConstraintEvalPriv {
    double *k_rtheta;
    double *dk_rtheta[2];
};

typedef void (*ConstraintEvalCB)(TDConstraintEvalContext *ctx,
                                 const double * const vars[TD_CONSTRAINT_VAR_NB][PSSOLVE_DIFF_ORDER_NB],
                                 double *out);

typedef struct TDFamilyDef {
    double (*eval_krt)   (TDConstraintEvalContext *ctx, double r, double theta);
    double (*eval_krt_dr)(TDConstraintEvalContext *ctx, double r, double theta);
    double (*eval_krt_dt)(TDConstraintEvalContext *ctx, double r, double theta);
    double a_converge;
    double a_diverge;

    const ConstraintEvalCB *constraint_eval;
} TDFamilyDef;

static void
constraint_eval_ham_confflat(TDConstraintEvalContext *ctx,
                             const double * const vars[TD_CONSTRAINT_VAR_NB][PSSOLVE_DIFF_ORDER_NB],
                             double *out)
{
    TDConstraintEvalPriv *priv = ctx->priv;

    for (int idx1 = 0; idx1 < ctx->nb_coords[1]; idx1++) {
        const double theta = ctx->coords[1][idx1];
        const double tt = tan(theta);

        const double tt_normalized = tt / M_PI;
        const int    is_axis       = ABS(tt_normalized - round(tt_normalized)) < EPS;
        const double dtt_t         = ((int)tt_normalized) & 1 ? -1.0 : 1.0;

        for (int idx0 = 0; idx0 < ctx->nb_coords[0]; idx0++) {
            const double r = ctx->coords[0][idx0];

            const int idx = idx1 * ctx->nb_coords[0] + idx0;

            const double K_rt = priv->k_rtheta[idx];

            const double K_rr     = vars[TD_CONSTRAINT_VAR_CURV_RR][PSSOLVE_DIFF_ORDER_00][idx];
            const double K_pp     = vars[TD_CONSTRAINT_VAR_CURV_PHIPHI][PSSOLVE_DIFF_ORDER_00][idx];
            const double psi      = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_00][idx] + 1.0;
            const double dpsi_r   = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_10][idx];
            const double dpsi_t   = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_01][idx];
            const double d2psi_rr = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_20][idx];
            const double d2psi_tt = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_02][idx];

            const double Km[3][3] = {{ K_rr,                    K_rt,    0 },
                                     { K_rt / SQR(r), -(K_rr + K_pp),    0 },
                                     { 0,                          0, K_pp }};

            const double r2   = SQR(r);
            const double psi2 = SQR(psi);
            const double psi4 = SQR(psi2);

            // term that is singular on the axis, use l'Hospital rule
            const double dpsi_term = is_axis ? d2psi_tt / dtt_t : dpsi_t / tt;
            const double Rscal = -8.0 * (d2psi_rr + 2.0 * dpsi_r / r + d2psi_tt / r2 + dpsi_term / r2) / (psi4 * psi);

            double K2 = 0.0;
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    K2 += Km[i][j] * Km[j][i];

            out[idx] = Rscal - K2;
        }
    }
}

static void
constraint_eval_mom_r_confflat(TDConstraintEvalContext *ctx,
                               const double * const vars[TD_CONSTRAINT_VAR_NB][PSSOLVE_DIFF_ORDER_NB],
                               double *out)
{
    TDConstraintEvalPriv *priv = ctx->priv;

    for (int idx1 = 0; idx1 < ctx->nb_coords[1]; idx1++) {
        const double theta = ctx->coords[1][idx1];
        const double tt = tan(theta);

        const double tt_normalized = tt / M_PI;
        const int    is_axis       = ABS(tt_normalized - round(tt_normalized)) < EPS;
        const double dtt_t         = ((int)tt_normalized) & 1 ? -1.0 : 1.0;

        for (int idx0 = 0; idx0 < ctx->nb_coords[0]; idx0++) {
            const double r = ctx->coords[0][idx0];

            const int idx = idx1 * ctx->nb_coords[0] + idx0;

            const double K_rt     = priv->k_rtheta[idx];
            const double dK_rt_t  = priv->dk_rtheta[1][idx];

            const double K_rr     = vars[TD_CONSTRAINT_VAR_CURV_RR][PSSOLVE_DIFF_ORDER_00][idx];
            const double dK_rr_r  = vars[TD_CONSTRAINT_VAR_CURV_RR][PSSOLVE_DIFF_ORDER_10][idx];
            const double psi      = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_00][idx] + 1.0;
            const double dpsi_r   = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_10][idx];
            const double dpsi_t   = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_01][idx];

            const double r2   = SQR(r);

            // term that is singular on the axis, use l'Hospital
            const double Krt_singular = is_axis ? dK_rt_t / dtt_t : K_rt / tt;

            out[idx] = 6.0 * (K_rr * dpsi_r + K_rt * dpsi_t / r2) / psi +
                       dK_rr_r + 3.0 * K_rr / r + Krt_singular / r2 + dK_rt_t / r2;
        }
    }
}

static void
constraint_eval_mom_t_confflat(TDConstraintEvalContext *ctx,
                               const double * const vars[TD_CONSTRAINT_VAR_NB][PSSOLVE_DIFF_ORDER_NB],
                               double *out)
{
    TDConstraintEvalPriv *priv = ctx->priv;

    for (int idx1 = 0; idx1 < ctx->nb_coords[1]; idx1++) {
        const double theta = ctx->coords[1][idx1];
        const double tt = tan(theta);

        const double tt_normalized = tt / M_PI;
        const int    is_axis       = ABS(tt_normalized - round(tt_normalized)) < EPS;
        const double dtt_t         = ((int)tt_normalized) & 1 ? -1.0 : 1.0;

        for (int idx0 = 0; idx0 < ctx->nb_coords[0]; idx0++) {
            const double r = ctx->coords[0][idx0];

            const int idx = idx1 * ctx->nb_coords[0] + idx0;

            const double K_rt     = priv->k_rtheta[idx];
            const double dK_rt_r  = priv->dk_rtheta[0][idx];

            const double K_rr     = vars[TD_CONSTRAINT_VAR_CURV_RR][PSSOLVE_DIFF_ORDER_00][idx];
            const double dK_rr_t  = vars[TD_CONSTRAINT_VAR_CURV_RR][PSSOLVE_DIFF_ORDER_01][idx];
            const double K_pp     = vars[TD_CONSTRAINT_VAR_CURV_PHIPHI][PSSOLVE_DIFF_ORDER_00][idx];
            const double dK_pp_t  = vars[TD_CONSTRAINT_VAR_CURV_PHIPHI][PSSOLVE_DIFF_ORDER_01][idx];
            const double psi      = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_00][idx] + 1.0;
            const double dpsi_r   = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_10][idx];
            const double dpsi_t   = vars[TD_CONSTRAINT_VAR_CONFFAC][PSSOLVE_DIFF_ORDER_01][idx];

            // term that is singular on the axis, use l'Hospital
            const double K_singular = is_axis ? (dK_rr_t + 2.0 * dK_pp_t) / dtt_t : (K_rr + 2.0 * K_pp) / tt;

            out[idx] = -K_singular - 6.0 * (K_rr + K_pp) * dpsi_t / psi +
                       6.0 * K_rt * dpsi_r / psi - dK_pp_t - dK_rr_t + dK_rt_r + 2.0 * K_rt / r;
        }
    }
}

static const ConstraintEvalCB constraint_funcs_confflat[TD_CONSTRAINT_EQ_NB] = {
    [TD_CONSTRAINT_EQ_HAM]   = constraint_eval_ham_confflat,
    [TD_CONSTRAINT_EQ_MOM_0] = constraint_eval_mom_r_confflat,
    [TD_CONSTRAINT_EQ_MOM_1] = constraint_eval_mom_t_confflat,
};

static double k_rtheta_eval_time_antisym_cubic(TDConstraintEvalContext *ctx,
                                               double r, double theta)
{
    const double r2 = SQR(r);
    const double r3 = r * r2;
    return (r3 - r) * exp(-r2) * sin(2.0 * theta) * ctx->amplitude;
}

static double k_rtheta_eval_dr_time_antisym_cubic(TDConstraintEvalContext *ctx,
                                               double r, double theta)
{
    const double r2 = SQR(r);
    const double r3 = r * r2;
    return (3.0 * r2 - 1.0 - 2.0 * r  * (r3 - r)) * exp(-r2) * sin(2.0 * theta) * ctx->amplitude;
}

static double k_rtheta_eval_dt_time_antisym_cubic(TDConstraintEvalContext *ctx,
                                                  double r, double theta)
{
    const double r2 = SQR(r);
    const double r3 = r * r2;
    return 2.0 * (r3 - r) * exp(-r2) * cos(2.0 * theta) * ctx->amplitude;
}

static const TDFamilyDef time_antisym_cubic = {
    .eval_krt    = k_rtheta_eval_time_antisym_cubic,
    .eval_krt_dr = k_rtheta_eval_dr_time_antisym_cubic,
    .eval_krt_dt = k_rtheta_eval_dt_time_antisym_cubic,
    //.a_converge =  1.362473539196777,
    .a_converge =  1.362473,
    .a_diverge  =  1.362473545703125,
    .constraint_eval = constraint_funcs_confflat,
};

static double k_rtheta_eval_time_antisym_linear(TDConstraintEvalContext *ctx,
                                                double r, double theta)
{
    const double r2 = SQR(r);
    return ctx->amplitude * r * exp(-r2) * sin(2.0 * theta);
}

static double k_rtheta_eval_dr_time_antisym_linear(TDConstraintEvalContext *ctx,
                                                   double r, double theta)
{
    const double r2 = SQR(r);
    return ctx->amplitude * (1.0 - 2.0 * r2) * exp(-r2) * sin(2.0 * theta);
}

static double k_rtheta_eval_dt_time_antisym_linear(TDConstraintEvalContext *ctx,
                                                   double r, double theta)
{
    const double r2 = SQR(r);
    return 2.0 * ctx->amplitude * r * exp(-r2) * cos(2.0 * theta);
}

static const TDFamilyDef time_antisym_linear = {
    .eval_krt    = k_rtheta_eval_time_antisym_linear,
    .eval_krt_dr = k_rtheta_eval_dr_time_antisym_linear,
    .eval_krt_dt = k_rtheta_eval_dt_time_antisym_linear,
    //.a_converge  = 1.018918628476058,
    .a_converge  = 1.0189186,
    .a_diverge   = 1.018918628476968,
    .constraint_eval = constraint_funcs_confflat,
};

static const TDFamilyDef *td_families[] = {
    [TD_FAMILY_TIME_ANTISYM_CUBIC] = &time_antisym_cubic,
    [TD_FAMILY_TIME_ANTISYM_LINEAR] = &time_antisym_linear,
};

double tdi_constraint_eval_k_rtheta(TDConstraintEvalContext *ctx, double r, double theta)
{
    const TDFamilyDef *fd = td_families[ctx->family];
    return fd->eval_krt(ctx, r, theta);
}

double tdi_constraint_eval_dk_rtheta_r(TDConstraintEvalContext *ctx, double r, double theta)
{
    const TDFamilyDef *fd = td_families[ctx->family];
    return fd->eval_krt_dr(ctx, r, theta);
}

double tdi_constraint_eval_dk_rtheta_t(TDConstraintEvalContext *ctx, double r, double theta)
{
    const TDFamilyDef *fd = td_families[ctx->family];
    return fd->eval_krt_dt(ctx, r, theta);
}

int tdi_constraint_eval_init(TDConstraintEvalContext *ctx)
{
    TDConstraintEvalPriv *priv = ctx->priv;
    const TDFamilyDef *fd = td_families[ctx->family];
    int ret;

    ret = posix_memalign((void**)&priv->k_rtheta, 32,
                         sizeof(*priv->k_rtheta) * ctx->nb_coords[0] * ctx->nb_coords[1]);
    if (ret)
        return -ENOMEM;

    for (int i = 0; i < ARRAY_ELEMS(priv->dk_rtheta); i++) {
        ret = posix_memalign((void**)&priv->dk_rtheta[i], 32,
                             sizeof(*priv->dk_rtheta[i]) * ctx->nb_coords[0] * ctx->nb_coords[1]);
        if (ret)
            return -ENOMEM;
    }

    ctx->a_converge = fd->a_converge;
    ctx->a_diverge  = fd->a_diverge;

    for (int idx1 = 0; idx1 < ctx->nb_coords[1]; idx1++) {
        const double theta = ctx->coords[1][idx1];

        for (int idx0 = 0; idx0 < ctx->nb_coords[0]; idx0++) {
            const double r = ctx->coords[0][idx0];

            const int idx = idx1 * ctx->nb_coords[0] + idx0;

            priv->k_rtheta[idx]     = fd->eval_krt   (ctx, r, theta);
            priv->dk_rtheta[0][idx] = fd->eval_krt_dr(ctx, r, theta);
            priv->dk_rtheta[1][idx] = fd->eval_krt_dt(ctx, r, theta);
        }
    }

    return 0;
}

int tdi_constraint_eval_alloc(TDConstraintEvalContext **pctx, enum TDFamily family)
{
    TDConstraintEvalContext *ctx;
    int ret;

    if (family < 0 || family >= ARRAY_ELEMS(td_families))
        return -EINVAL;

    ctx = calloc(1, sizeof(*ctx));
    if (!ctx)
        return -ENOMEM;

    ctx->priv = calloc(1, sizeof(*ctx->priv));
    if (!ctx->priv) {
        tdi_constraint_eval_free(&ctx);
        return -ENOMEM;
    }

    ctx->family = family;

    *pctx = ctx;
    return 0;
}

void tdi_constraint_eval_free(TDConstraintEvalContext **pctx)
{
    TDConstraintEvalContext *ctx = *pctx;

    if (!ctx)
        return;

    if (ctx->priv) {
        free(ctx->priv->k_rtheta);
        free(ctx->priv->dk_rtheta[0]);
        free(ctx->priv->dk_rtheta[1]);
    }
    free(ctx->priv);

    free(ctx);
    *pctx = NULL;
}

int tdi_constraint_eval(TDConstraintEvalContext *ctx, enum TDConstraintEq eq,
                        const double * const vars[TD_CONSTRAINT_VAR_NB][PSSOLVE_DIFF_ORDER_NB],
                        double *out)
{
    const TDFamilyDef *fd = td_families[ctx->family];
    fd->constraint_eval[eq](ctx, vars, out);
    return 0;
}