From c98247e3dd2958bd2d8969dc75170e7e2757b895 Mon Sep 17 00:00:00 2001 From: XScorpion2 Date: Tue, 2 Apr 2019 19:24:14 -0500 Subject: RGB Matrix Overhaul (#5372) * RGB Matrix overhaul Breakout of animations to separate files Integration of optimized int based math lib Overhaul of rgb_matrix.c and animations for performance * Updating effect function api for future extensions * Combined the keypresses || keyreleases define checks into a single define so I stop forgetting it where necessary * Moving define RGB_MATRIX_KEYREACTIVE_ENABLED earlier in the include chain --- lib/lib8tion/trig8.h | 259 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 259 insertions(+) create mode 100644 lib/lib8tion/trig8.h (limited to 'lib/lib8tion/trig8.h') diff --git a/lib/lib8tion/trig8.h b/lib/lib8tion/trig8.h new file mode 100644 index 0000000000..4907c6ff30 --- /dev/null +++ b/lib/lib8tion/trig8.h @@ -0,0 +1,259 @@ +#ifndef __INC_LIB8TION_TRIG_H +#define __INC_LIB8TION_TRIG_H + +///@ingroup lib8tion + +///@defgroup Trig Fast trig functions +/// Fast 8 and 16-bit approximations of sin(x) and cos(x). +/// Don't use these approximations for calculating the +/// trajectory of a rocket to Mars, but they're great +/// for art projects and LED displays. +/// +/// On Arduino/AVR, the 16-bit approximation is more than +/// 10X faster than floating point sin(x) and cos(x), while +/// the 8-bit approximation is more than 20X faster. +///@{ + +#if defined(__AVR__) +#define sin16 sin16_avr +#else +#define sin16 sin16_C +#endif + +/// Fast 16-bit approximation of sin(x). This approximation never varies more than +/// 0.69% from the floating point value you'd get by doing +/// +/// float s = sin(x) * 32767.0; +/// +/// @param theta input angle from 0-65535 +/// @returns sin of theta, value between -32767 to 32767. +LIB8STATIC int16_t sin16_avr( uint16_t theta ) +{ + static const uint8_t data[] = + { 0, 0, 49, 0, 6393%256, 6393/256, 48, 0, + 12539%256, 12539/256, 44, 0, 18204%256, 18204/256, 38, 0, + 23170%256, 23170/256, 31, 0, 27245%256, 27245/256, 23, 0, + 30273%256, 30273/256, 14, 0, 32137%256, 32137/256, 4 /*,0*/ }; + + uint16_t offset = (theta & 0x3FFF); + + // AVR doesn't have a multi-bit shift instruction, + // so if we say "offset >>= 3", gcc makes a tiny loop. + // Inserting empty volatile statements between each + // bit shift forces gcc to unroll the loop. + offset >>= 1; // 0..8191 + asm volatile(""); + offset >>= 1; // 0..4095 + asm volatile(""); + offset >>= 1; // 0..2047 + + if( theta & 0x4000 ) offset = 2047 - offset; + + uint8_t sectionX4; + sectionX4 = offset / 256; + sectionX4 *= 4; + + uint8_t m; + + union { + uint16_t b; + struct { + uint8_t blo; + uint8_t bhi; + }; + } u; + + //in effect u.b = blo + (256 * bhi); + u.blo = data[ sectionX4 ]; + u.bhi = data[ sectionX4 + 1]; + m = data[ sectionX4 + 2]; + + uint8_t secoffset8 = (uint8_t)(offset) / 2; + + uint16_t mx = m * secoffset8; + + int16_t y = mx + u.b; + if( theta & 0x8000 ) y = -y; + + return y; +} + +/// Fast 16-bit approximation of sin(x). This approximation never varies more than +/// 0.69% from the floating point value you'd get by doing +/// +/// float s = sin(x) * 32767.0; +/// +/// @param theta input angle from 0-65535 +/// @returns sin of theta, value between -32767 to 32767. +LIB8STATIC int16_t sin16_C( uint16_t theta ) +{ + static const uint16_t base[] = + { 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137 }; + static const uint8_t slope[] = + { 49, 48, 44, 38, 31, 23, 14, 4 }; + + uint16_t offset = (theta & 0x3FFF) >> 3; // 0..2047 + if( theta & 0x4000 ) offset = 2047 - offset; + + uint8_t section = offset / 256; // 0..7 + uint16_t b = base[section]; + uint8_t m = slope[section]; + + uint8_t secoffset8 = (uint8_t)(offset) / 2; + + uint16_t mx = m * secoffset8; + int16_t y = mx + b; + + if( theta & 0x8000 ) y = -y; + + return y; +} + + +/// Fast 16-bit approximation of cos(x). This approximation never varies more than +/// 0.69% from the floating point value you'd get by doing +/// +/// float s = cos(x) * 32767.0; +/// +/// @param theta input angle from 0-65535 +/// @returns sin of theta, value between -32767 to 32767. +LIB8STATIC int16_t cos16( uint16_t theta) +{ + return sin16( theta + 16384); +} + +/////////////////////////////////////////////////////////////////////// + +// sin8 & cos8 +// Fast 8-bit approximations of sin(x) & cos(x). +// Input angle is an unsigned int from 0-255. +// Output is an unsigned int from 0 to 255. +// +// This approximation can vary to to 2% +// from the floating point value you'd get by doing +// float s = (sin( x ) * 128.0) + 128; +// +// Don't use this approximation for calculating the +// "real" trigonometric calculations, but it's great +// for art projects and LED displays. +// +// On Arduino/AVR, this approximation is more than +// 20X faster than floating point sin(x) and cos(x) + +#if defined(__AVR__) && !defined(LIB8_ATTINY) +#define sin8 sin8_avr +#else +#define sin8 sin8_C +#endif + + +const uint8_t b_m16_interleave[] = { 0, 49, 49, 41, 90, 27, 117, 10 }; + +/// Fast 8-bit approximation of sin(x). This approximation never varies more than +/// 2% from the floating point value you'd get by doing +/// +/// float s = (sin(x) * 128.0) + 128; +/// +/// @param theta input angle from 0-255 +/// @returns sin of theta, value between 0 and 255 +LIB8STATIC uint8_t sin8_avr( uint8_t theta) +{ + uint8_t offset = theta; + + asm volatile( + "sbrc %[theta],6 \n\t" + "com %[offset] \n\t" + : [theta] "+r" (theta), [offset] "+r" (offset) + ); + + offset &= 0x3F; // 0..63 + + uint8_t secoffset = offset & 0x0F; // 0..15 + if( theta & 0x40) secoffset++; + + uint8_t m16; uint8_t b; + + uint8_t section = offset >> 4; // 0..3 + uint8_t s2 = section * 2; + + const uint8_t* p = b_m16_interleave; + p += s2; + b = *p; + p++; + m16 = *p; + + uint8_t mx; + uint8_t xr1; + asm volatile( + "mul %[m16],%[secoffset] \n\t" + "mov %[mx],r0 \n\t" + "mov %[xr1],r1 \n\t" + "eor r1, r1 \n\t" + "swap %[mx] \n\t" + "andi %[mx],0x0F \n\t" + "swap %[xr1] \n\t" + "andi %[xr1], 0xF0 \n\t" + "or %[mx], %[xr1] \n\t" + : [mx] "=d" (mx), [xr1] "=d" (xr1) + : [m16] "d" (m16), [secoffset] "d" (secoffset) + ); + + int8_t y = mx + b; + if( theta & 0x80 ) y = -y; + + y += 128; + + return y; +} + + +/// Fast 8-bit approximation of sin(x). This approximation never varies more than +/// 2% from the floating point value you'd get by doing +/// +/// float s = (sin(x) * 128.0) + 128; +/// +/// @param theta input angle from 0-255 +/// @returns sin of theta, value between 0 and 255 +LIB8STATIC uint8_t sin8_C( uint8_t theta) +{ + uint8_t offset = theta; + if( theta & 0x40 ) { + offset = (uint8_t)255 - offset; + } + offset &= 0x3F; // 0..63 + + uint8_t secoffset = offset & 0x0F; // 0..15 + if( theta & 0x40) secoffset++; + + uint8_t section = offset >> 4; // 0..3 + uint8_t s2 = section * 2; + const uint8_t* p = b_m16_interleave; + p += s2; + uint8_t b = *p; + p++; + uint8_t m16 = *p; + + uint8_t mx = (m16 * secoffset) >> 4; + + int8_t y = mx + b; + if( theta & 0x80 ) y = -y; + + y += 128; + + return y; +} + +/// Fast 8-bit approximation of cos(x). This approximation never varies more than +/// 2% from the floating point value you'd get by doing +/// +/// float s = (cos(x) * 128.0) + 128; +/// +/// @param theta input angle from 0-255 +/// @returns sin of theta, value between 0 and 255 +LIB8STATIC uint8_t cos8( uint8_t theta) +{ + return sin8( theta + 64); +} + +///@} +#endif -- cgit v1.2.3