/* * Copyright 2019 Anton Khirnov * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "config.h" #include #include #include #include #include #include #include "common.h" #include "cpu.h" #include "mg2d_boundary.h" #include "mg2d_constants.h" #include "residual_calc.h" typedef void ResidualLineCalc(size_t linesize, double *dst, double *dst_max, ptrdiff_t u_stride, const double *u, const double *rhs, const double *diff_coeffs, ptrdiff_t diff_coeffs_offset, double res_mult); typedef void ResidualLineAdd (size_t linesize, double *dst, double *dst_max, ptrdiff_t u_stride, const double *u, const double *rhs, const double *diff_coeffs, ptrdiff_t diff_coeffs_offset, double res_mult, double u_mult); typedef struct ResidualCalcTask { size_t size[2]; double *dst; ptrdiff_t dst_stride; const double *u; ptrdiff_t u_stride; const double *rhs; ptrdiff_t rhs_stride; const double *diff_coeffs; ptrdiff_t diff_coeffs_stride; ptrdiff_t diff_coeffs_offset; double u_mult; double res_mult; int reflect; size_t reflect_dist; } ResidualCalcTask; struct ResidualCalcInternal { double *residual_max; size_t residual_max_size; ResidualLineCalc *residual_line_calc; ResidualLineAdd *residual_line_add; size_t calc_blocksize; ResidualCalcTask task; }; #if HAVE_NASM ResidualLineCalc mg2di_residual_line_calc_s1_avx2; ResidualLineCalc mg2di_residual_line_calc_s2_avx2; ResidualLineAdd mg2di_residual_line_add_s1_avx2; ResidualLineAdd mg2di_residual_line_add_s2_avx2; #endif static void derivatives_calc_s1(double *dst, const double *u, ptrdiff_t stride) { dst[MG2D_DIFF_COEFF_00] = u[0]; dst[MG2D_DIFF_COEFF_10] = (u[1] - u[-1]); dst[MG2D_DIFF_COEFF_01] = (u[stride] - u[-stride]); dst[MG2D_DIFF_COEFF_20] = (u[1] - 2.0 * u[0] + u[-1]); dst[MG2D_DIFF_COEFF_02] = (u[stride] - 2.0 * u[0] + u[-stride]); dst[MG2D_DIFF_COEFF_11] = (u[1 + stride] - u[stride - 1] - u[-stride + 1] + u[-stride - 1]); } static void derivatives_calc_s2(double *dst, const double *u, ptrdiff_t stride) { const double val = u[0]; const double valxp1 = u[ 1]; const double valxp2 = u[ 2]; const double valxm1 = u[-1]; const double valxm2 = u[-2]; const double valyp1 = u[ 1 * stride]; const double valyp2 = u[ 2 * stride]; const double valym1 = u[-1 * stride]; const double valym2 = u[-2 * stride]; const double valxp1yp1 = u[ 1 + 1 * stride]; const double valxp1yp2 = u[ 1 + 2 * stride]; const double valxp1ym1 = u[ 1 - 1 * stride]; const double valxp1ym2 = u[ 1 - 2 * stride]; const double valxp2yp1 = u[ 2 + 1 * stride]; const double valxp2yp2 = u[ 2 + 2 * stride]; const double valxp2ym1 = u[ 2 - 1 * stride]; const double valxp2ym2 = u[ 2 - 2 * stride]; const double valxm1yp1 = u[-1 + 1 * stride]; const double valxm1yp2 = u[-1 + 2 * stride]; const double valxm1ym1 = u[-1 - 1 * stride]; const double valxm1ym2 = u[-1 - 2 * stride]; const double valxm2yp1 = u[-2 + 1 * stride]; const double valxm2yp2 = u[-2 + 2 * stride]; const double valxm2ym1 = u[-2 - 1 * stride]; const double valxm2ym2 = u[-2 - 2 * stride]; dst[MG2D_DIFF_COEFF_00] = val; dst[MG2D_DIFF_COEFF_10] = (-1.0 * valxp2 + 8.0 * valxp1 - 8.0 * valxm1 + 1.0 * valxm2); dst[MG2D_DIFF_COEFF_01] = (-1.0 * valyp2 + 8.0 * valyp1 - 8.0 * valym1 + 1.0 * valym2); dst[MG2D_DIFF_COEFF_20] = (-1.0 * valxp2 + 16.0 * valxp1 - 30.0 * val + 16.0 * valxm1 - 1.0 * valxm2); dst[MG2D_DIFF_COEFF_02] = (-1.0 * valyp2 + 16.0 * valyp1 - 30.0 * val + 16.0 * valym1 - 1.0 * valym2); dst[MG2D_DIFF_COEFF_11] = ( 1.0 * valxp2yp2 - 8.0 * valxp2yp1 + 8.0 * valxp2ym1 - 1.0 * valxp2ym2 -8.0 * valxp1yp2 + 64.0 * valxp1yp1 - 64.0 * valxp1ym1 + 8.0 * valxp1ym2 +8.0 * valxm1yp2 - 64.0 * valxm1yp1 + 64.0 * valxm1ym1 - 8.0 * valxm1ym2 -1.0 * valxm2yp2 + 8.0 * valxm2yp1 - 8.0 * valxm2ym1 + 1.0 * valxm2ym2); } static void residual_calc_line_s1_c(size_t linesize, double *dst, double *dst_max, ptrdiff_t u_stride, const double *u, const double *rhs, const double *diff_coeffs, ptrdiff_t diff_coeffs_offset, double res_mult) { double res_max = 0.0, res_abs; for (size_t i = 0; i < linesize; i++) { double u_vals[MG2D_DIFF_COEFF_NB]; double res; derivatives_calc_s1(u_vals, u + i, u_stride); res = -rhs[i]; for (int j = 0; j < ARRAY_ELEMS(u_vals); j++) res += u_vals[j] * diff_coeffs[j * diff_coeffs_offset + i]; dst[i] = res_mult * res; res_abs = fabs(res); res_max = MAX(res_max, res_abs); } *dst_max = MAX(*dst_max, res_max); } static void residual_add_line_s1_c(size_t linesize, double *dst, double *dst_max, ptrdiff_t u_stride, const double *u, const double *rhs, const double *diff_coeffs, ptrdiff_t diff_coeffs_offset, double res_mult, double u_mult) { double res_max = 0.0, res_abs; for (size_t i = 0; i < linesize; i++) { double u_vals[MG2D_DIFF_COEFF_NB]; double res; derivatives_calc_s1(u_vals, u + i, u_stride); res = -rhs[i]; for (int j = 0; j < ARRAY_ELEMS(u_vals); j++) res += u_vals[j] * diff_coeffs[j * diff_coeffs_offset + i]; dst[i] = u_mult * u[i] + res_mult * res; res_abs = fabs(res); res_max = MAX(res_max, res_abs); } *dst_max = MAX(*dst_max, res_max); } static void residual_calc_line_s2_c(size_t linesize, double *dst, double *dst_max, ptrdiff_t u_stride, const double *u, const double *rhs, const double *diff_coeffs, ptrdiff_t diff_coeffs_offset, double res_mult) { double res_max = 0.0, res_abs; for (size_t i = 0; i < linesize; i++) { double u_vals[MG2D_DIFF_COEFF_NB]; double res; derivatives_calc_s2(u_vals, u + i, u_stride); res = -rhs[i]; for (int j = 0; j < ARRAY_ELEMS(u_vals); j++) res += u_vals[j] * diff_coeffs[j * diff_coeffs_offset + i]; dst[i] = res_mult * res; res_abs = fabs(res); res_max = MAX(res_max, res_abs); } *dst_max = MAX(*dst_max, res_max); } static void residual_add_line_s2_c(size_t linesize, double *dst, double *dst_max, ptrdiff_t u_stride, const double *u, const double *rhs, const double *diff_coeffs, ptrdiff_t diff_coeffs_offset, double res_mult, double u_mult) { double res_max = 0.0, res_abs; for (size_t i = 0; i < linesize; i++) { double u_vals[MG2D_DIFF_COEFF_NB]; double res; derivatives_calc_s2(u_vals, u + i, u_stride); res = -rhs[i]; for (int j = 0; j < ARRAY_ELEMS(u_vals); j++) res += u_vals[j] * diff_coeffs[j * diff_coeffs_offset + i]; dst[i] = u_mult * u[i] + res_mult * res; res_abs = fabs(res); res_max = MAX(res_max, res_abs); } *dst_max = MAX(*dst_max, res_max); } static int residual_calc_task(void *arg, unsigned int job_idx, unsigned int thread_idx) { ResidualCalcInternal *priv = arg; ResidualCalcTask *task = &priv->task; const double *diff_coeffs = task->diff_coeffs + job_idx * task->diff_coeffs_stride; double *dst = task->dst + job_idx * task->dst_stride; if (task->u_mult == 0.0) { priv->residual_line_calc(task->size[0], dst, priv->residual_max + thread_idx * priv->calc_blocksize, task->u_stride, task->u + job_idx * task->u_stride, task->rhs + job_idx * task->rhs_stride, diff_coeffs, task->diff_coeffs_offset, task->res_mult); } else { priv->residual_line_add(task->size[0], dst, priv->residual_max + thread_idx * priv->calc_blocksize, task->u_stride, task->u + job_idx * task->u_stride, task->rhs + job_idx * task->rhs_stride, diff_coeffs, task->diff_coeffs_offset, task->res_mult, task->u_mult); } if (task->reflect & (1 << MG2D_BOUNDARY_0L)) { for (int i = 1; i <= task->reflect_dist; i++) dst[-i] = dst[i]; } if (task->reflect & (1 << MG2D_BOUNDARY_0U)) { for (int i = 1; i <= task->reflect_dist; i++) dst[task->size[0] - 1 + i] = dst[task->size[0] - 1 - i]; } if ((task->reflect & (1 << MG2D_BOUNDARY_1L)) && job_idx > 0 && job_idx <= task->reflect_dist) { memcpy(task->dst - job_idx * task->dst_stride, dst, sizeof(*dst) * task->size[0]); } if ((task->reflect & (1 << MG2D_BOUNDARY_1U)) && job_idx >= task->size[1] - 1 - task->reflect_dist && job_idx < task->size[1] - 1) { memcpy(task->dst + (2 * (task->size[1] - 1) - job_idx) * task->dst_stride, dst, sizeof(*dst) * task->size[0]); } return 0; } int mg2di_residual_calc(ResidualCalcContext *ctx, size_t size[2], double *residual_max, double *dst, ptrdiff_t dst_stride, const double *u, ptrdiff_t u_stride, const double *rhs, ptrdiff_t rhs_stride, const double *diff_coeffs, ptrdiff_t diff_coeffs_stride, ptrdiff_t diff_coeffs_offset, double u_mult, double res_mult, int reflect, size_t reflect_dist) { ResidualCalcInternal *priv = ctx->priv; ResidualCalcTask *task = &priv->task; double res_max = 0.0; memset(priv->residual_max, 0, sizeof(*priv->residual_max) * priv->residual_max_size); task->size[0] = size[0]; task->size[1] = size[1]; task->dst = dst; task->dst_stride = dst_stride; task->u = u; task->u_stride = u_stride; task->rhs = rhs; task->rhs_stride = rhs_stride; task->diff_coeffs = diff_coeffs; task->diff_coeffs_stride = diff_coeffs_stride; task->diff_coeffs_offset = diff_coeffs_offset; task->u_mult = u_mult; task->res_mult = res_mult; task->reflect = reflect; task->reflect_dist = reflect_dist; tp_execute(ctx->tp, size[1], residual_calc_task, priv); for (size_t i = 0; i < priv->residual_max_size; i++) res_max = MAX(res_max, priv->residual_max[i]); *residual_max = res_max; return 0; } int mg2di_residual_calc_init(ResidualCalcContext *ctx) { ResidualCalcInternal *priv = ctx->priv; double *tmp; priv->calc_blocksize = 1; switch (ctx->fd_stencil) { case 1: priv->residual_line_calc = residual_calc_line_s1_c; priv->residual_line_add = residual_add_line_s1_c; #if HAVE_NASM if (ctx->cpuflags & MG2DI_CPU_FLAG_AVX2) { priv->residual_line_calc = mg2di_residual_line_calc_s1_avx2; priv->residual_line_add = mg2di_residual_line_add_s1_avx2; priv->calc_blocksize = 4; } #endif break; case 2: priv->residual_line_calc = residual_calc_line_s2_c; priv->residual_line_add = residual_add_line_s2_c; #if HAVE_NASM if (ctx->cpuflags & MG2DI_CPU_FLAG_AVX2) { priv->residual_line_calc = mg2di_residual_line_calc_s2_avx2; priv->residual_line_add = mg2di_residual_line_add_s2_avx2; priv->calc_blocksize = 4; } #endif break; } priv->residual_max_size = tp_get_nb_threads(ctx->tp) * priv->calc_blocksize; tmp = realloc(priv->residual_max, sizeof(*priv->residual_max) * priv->residual_max_size); if (!tmp) { priv->residual_max_size = 0; return -ENOMEM; } priv->residual_max = tmp; return 0; } ResidualCalcContext *mg2di_residual_calc_alloc(void) { ResidualCalcContext *ctx; ctx = calloc(1, sizeof(*ctx)); if (!ctx) return NULL; ctx->priv = calloc(1, sizeof(*ctx->priv)); if (!ctx->priv) { free(ctx); return NULL; } return ctx; } void mg2di_residual_calc_free(ResidualCalcContext **pctx) { ResidualCalcContext *ctx = *pctx; if (!ctx) return; free(ctx->priv->residual_max); free(ctx->priv); free(ctx); *pctx = NULL; }