#include #include #include #include #include #include "mg2d.h" #define MAXITER 64 #define TOL 1e-9 #if 1 static double sol(double x, double y) { return sin(M_PI * x) * sin(M_PI * y); } static double sol_dx(double x, double y) { return M_PI * cos(M_PI * x) * sin(M_PI * y); } static double sol_dy(double x, double y) { return M_PI * sin(M_PI * x) * cos(M_PI * y); } static double sol_dxx(double x, double y) { return -M_PI * M_PI * sol(x, y); } static double sol_dyy(double x, double y) { return -M_PI * M_PI * sol(x, y); } static double sol_dxy(double x, double y) { return M_PI * M_PI * cos(M_PI * x) * cos(M_PI * y); } #endif int main(int argc, char **argv) { MG2DContext *ctx; long int gridsize; int ret = 0; if (argc < 2) { fprintf(stderr, "Usage: %s \n", argv[0]); return 1; } gridsize = strtol(argv[1], NULL, 0); if (gridsize <= 0) { fprintf(stderr, "Invalid parameters: %ld\n", gridsize); return 1; } ctx = mg2d_solver_alloc(gridsize); if (!ctx) { fprintf(stderr, "Error allocating the solver context\n"); return 1; } ctx->step[0] = 1.0 / (gridsize - 1); ctx->step[1] = 1.0 / (gridsize - 1); ctx->fd_stencil = 2; ctx->maxiter = MAXITER; ctx->nb_relax_pre = 2; ctx->nb_cycles = 1; ctx->nb_relax_post = 2; ctx->tol = TOL; ctx->nb_threads = 1; { MG2DBoundary *bnd = ctx->boundaries[MG2D_BOUNDARY_0L]; bnd->type = MG2D_BC_TYPE_FIXVAL; memset(bnd->val, 0, gridsize * sizeof(*bnd->val)); for (int j = 1; j < ctx->fd_stencil; j++) { double *dst = bnd->val + j * bnd->val_stride; for (ptrdiff_t k = -j; k < (ptrdiff_t)ctx->domain_size + j; k++) dst[k] = sol(-j * ctx->step[0], k * ctx->step[1]); } } { MG2DBoundary *bnd = ctx->boundaries[MG2D_BOUNDARY_0U]; bnd->type = MG2D_BC_TYPE_FIXVAL; memset(bnd->val, 0, gridsize * sizeof(*bnd->val)); for (int j = 1; j < ctx->fd_stencil; j++) { double *dst = bnd->val + j * bnd->val_stride; for (ptrdiff_t k = -j; k < (ptrdiff_t)ctx->domain_size + j; k++) dst[k] = sol((gridsize - 1 + j) * ctx->step[0], k * ctx->step[1]); } } { MG2DBoundary *bnd = ctx->boundaries[MG2D_BOUNDARY_1L]; bnd->type = MG2D_BC_TYPE_FIXVAL; memset(bnd->val, 0, gridsize * sizeof(*bnd->val)); for (int j = 1; j < ctx->fd_stencil; j++) { double *dst = bnd->val + j * bnd->val_stride; for (ptrdiff_t k = -j; k < (ptrdiff_t)ctx->domain_size + j; k++) dst[k] = sol(k * ctx->step[0], -j * ctx->step[1]); } } { MG2DBoundary *bnd = ctx->boundaries[MG2D_BOUNDARY_1U]; bnd->type = MG2D_BC_TYPE_FIXVAL; memset(bnd->val, 0, gridsize * sizeof(*bnd->val)); for (int j = 1; j < ctx->fd_stencil; j++) { double *dst = bnd->val + j * bnd->val_stride; for (ptrdiff_t k = -j; k < (ptrdiff_t)ctx->domain_size + j; k++) dst[k] = sol(k * ctx->step[0], (gridsize - 1 + j) * ctx->step[1]); } } for (size_t y = 0; y < ctx->domain_size; y++) { const double y_coord = y * ctx->step[1]; memset(ctx->u + y * ctx->u_stride, 0, sizeof(*ctx->u) * ctx->domain_size); //memset(ctx->rhs + y * ctx->rhs_stride, 0, sizeof(*ctx->rhs) * ctx->domain_size[0]); for (size_t x = 0; x < ctx->domain_size; x++) { const double x_coord = x * ctx->step[0]; ctx->diff_coeffs[MG2D_DIFF_COEFF_02][ctx->diff_coeffs_stride * y + x] = 1.0; ctx->diff_coeffs[MG2D_DIFF_COEFF_20][ctx->diff_coeffs_stride * y + x] = 1.0; ctx->diff_coeffs[MG2D_DIFF_COEFF_11][ctx->diff_coeffs_stride * y + x] = 1.0; //ctx->diff_coeffs[ELL_RELAX_DIFF_COEFF_00][ctx->diff_coeffs_stride * y + x] = 2.0 * M_PI; ctx->rhs[y * ctx->rhs_stride + x] = sol_dxx(x_coord, y_coord) + sol_dyy(x_coord, y_coord) + sol_dxy(x_coord, y_coord); } memset(ctx->diff_coeffs[MG2D_DIFF_COEFF_00] + y * ctx->diff_coeffs_stride, 0, sizeof(*ctx->diff_coeffs[0]) * ctx->domain_size); memset(ctx->diff_coeffs[MG2D_DIFF_COEFF_01] + y * ctx->diff_coeffs_stride, 0, sizeof(*ctx->diff_coeffs[0]) * ctx->domain_size); memset(ctx->diff_coeffs[MG2D_DIFF_COEFF_10] + y * ctx->diff_coeffs_stride, 0, sizeof(*ctx->diff_coeffs[0]) * ctx->domain_size); } ret = mg2d_solve(ctx); if (ret < 0) { fprintf(stderr, "Error solving the equation\n"); ret = 1; goto fail; } mg2d_print_stats(ctx, NULL); { double max_err = 0.0; for (size_t y = 0; y < ctx->domain_size; y++) { const double y_coord = y * ctx->step[1]; for (size_t x = 0; x < ctx->domain_size; x++) { const double x_coord = x * ctx->step[0]; double err = fabs(ctx->u[y * ctx->u_stride + x] - sol(x_coord, y_coord)); if (err > max_err) max_err = err; } } fprintf(stderr, "max(|solution - exact|): %g\n", max_err); fprintf(stdout, "%ld %g\n", gridsize, max_err); } fail: mg2d_solver_free(&ctx); return ret; }