summaryrefslogtreecommitdiff
path: root/libavutil/tx_priv.h
blob: 88589fcbb47e293022578208829b53be47f89f09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef AVUTIL_TX_PRIV_H
#define AVUTIL_TX_PRIV_H

#include "tx.h"
#include "thread.h"
#include "mem_internal.h"
#include "avassert.h"
#include "attributes.h"

#ifdef TX_FLOAT
#define TX_NAME(x) x ## _float
#define SCALE_TYPE float
typedef float FFTSample;
typedef AVComplexFloat FFTComplex;
#elif defined(TX_DOUBLE)
#define TX_NAME(x) x ## _double
#define SCALE_TYPE double
typedef double FFTSample;
typedef AVComplexDouble FFTComplex;
#elif defined(TX_INT32)
#define TX_NAME(x) x ## _int32
#define SCALE_TYPE float
typedef int32_t FFTSample;
typedef AVComplexInt32 FFTComplex;
#else
typedef void FFTComplex;
#endif

#if defined(TX_FLOAT) || defined(TX_DOUBLE)

#define CMUL(dre, dim, are, aim, bre, bim)                                     \
    do {                                                                       \
        (dre) = (are) * (bre) - (aim) * (bim);                                 \
        (dim) = (are) * (bim) + (aim) * (bre);                                 \
    } while (0)

#define SMUL(dre, dim, are, aim, bre, bim)                                     \
    do {                                                                       \
        (dre) = (are) * (bre) - (aim) * (bim);                                 \
        (dim) = (are) * (bim) - (aim) * (bre);                                 \
    } while (0)

#define UNSCALE(x) (x)
#define RESCALE(x) (x)

#define FOLD(a, b) ((a) + (b))

#elif defined(TX_INT32)

/* Properly rounds the result */
#define CMUL(dre, dim, are, aim, bre, bim)                                     \
    do {                                                                       \
        int64_t accu;                                                          \
        (accu)  = (int64_t)(bre) * (are);                                      \
        (accu) -= (int64_t)(bim) * (aim);                                      \
        (dre)   = (int)(((accu) + 0x40000000) >> 31);                          \
        (accu)  = (int64_t)(bim) * (are);                                      \
        (accu) += (int64_t)(bre) * (aim);                                      \
        (dim)   = (int)(((accu) + 0x40000000) >> 31);                          \
    } while (0)

#define SMUL(dre, dim, are, aim, bre, bim)                                     \
    do {                                                                       \
        int64_t accu;                                                          \
        (accu)  = (int64_t)(bre) * (are);                                      \
        (accu) -= (int64_t)(bim) * (aim);                                      \
        (dre)   = (int)(((accu) + 0x40000000) >> 31);                          \
        (accu)  = (int64_t)(bim) * (are);                                      \
        (accu) -= (int64_t)(bre) * (aim);                                      \
        (dim)   = (int)(((accu) + 0x40000000) >> 31);                          \
    } while (0)

#define UNSCALE(x) ((double)x/2147483648.0)
#define RESCALE(x) (av_clip64(lrintf((x) * 2147483648.0), INT32_MIN, INT32_MAX))

#define FOLD(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)

#endif

#define BF(x, y, a, b)                                                         \
    do {                                                                       \
        x = (a) - (b);                                                         \
        y = (a) + (b);                                                         \
    } while (0)

#define CMUL3(c, a, b)                                                         \
    CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)

#define COSTABLE(size)                                                         \
    DECLARE_ALIGNED(32, FFTSample, TX_NAME(ff_cos_##size))[size/4 + 1]

/* Used by asm, reorder with care */
struct AVTXContext {
    int n;              /* Non-power-of-two part */
    int m;              /* Power-of-two part */
    int inv;            /* Is inverse */
    int type;           /* Type */
    uint64_t flags;     /* Flags */
    double scale;       /* Scale */

    FFTComplex *exptab; /* MDCT exptab */
    FFTComplex    *tmp; /* Temporary buffer needed for all compound transforms */
    int        *pfatab; /* Input/Output mapping for compound transforms */
    int        *revtab; /* Input mapping for power of two transforms */
    int   *inplace_idx; /* Required indices to revtab for in-place transforms */

    int      *revtab_c; /* Revtab for only the C transforms, needed because
                         * checkasm makes us reuse the same context. */

    av_tx_fn    top_tx; /* Used for computing transforms derived from other
                         * transforms, like full-length iMDCTs and RDFTs.
                         * NOTE: Do NOT use this to mix assembly with C code. */
};

/* Checks if type is an MDCT */
int ff_tx_type_is_mdct(enum AVTXType type);

/*
 * Generates the PFA permutation table into AVTXContext->pfatab. The end table
 * is appended to the start table.
 */
int ff_tx_gen_compound_mapping(AVTXContext *s);

/*
 * Generates a standard-ish (slightly modified) Split-Radix revtab into
 * AVTXContext->revtab
 */
int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup);

/*
 * Generates an index into AVTXContext->inplace_idx that if followed in the
 * specific order,  allows the revtab to be done in-place. AVTXContext->revtab
 * must already exist.
 */
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab);

/*
 * This generates a parity-based revtab of length len and direction inv.
 *
 * Parity means even and odd complex numbers will be split, e.g. the even
 * coefficients will come first, after which the odd coefficients will be
 * placed. For example, a 4-point transform's coefficients after reordering:
 * z[0].re, z[0].im, z[2].re, z[2].im, z[1].re, z[1].im, z[3].re, z[3].im
 *
 * The basis argument is the length of the largest non-composite transform
 * supported, and also implies that the basis/2 transform is supported as well,
 * as the split-radix algorithm requires it to be.
 *
 * The dual_stride argument indicates that both the basis, as well as the
 * basis/2 transforms support doing two transforms at once, and the coefficients
 * will be interleaved between each pair in a split-radix like so (stride == 2):
 * tx1[0], tx1[2], tx2[0], tx2[2], tx1[1], tx1[3], tx2[1], tx2[3]
 * A non-zero number switches this on, with the value indicating the stride
 * (how many values of 1 transform to put first before switching to the other).
 * Must be a power of two or 0. Must be less than the basis.
 * Value will be clipped to the transform size, so for a basis of 16 and a
 * dual_stride of 8, dual 8-point transforms will be laid out as if dual_stride
 * was set to 4.
 * Usually you'll set this to half the complex numbers that fit in a single
 * register or 0. This allows to reuse SSE functions as dual-transform
 * functions in AVX mode.
 *
 * If length is smaller than basis/2 this function will not do anything.
 */
void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv,
                                         int basis, int dual_stride);

/* Templated init functions */
int ff_tx_init_mdct_fft_float(AVTXContext *s, av_tx_fn *tx,
                              enum AVTXType type, int inv, int len,
                              const void *scale, uint64_t flags);
int ff_tx_init_mdct_fft_double(AVTXContext *s, av_tx_fn *tx,
                               enum AVTXType type, int inv, int len,
                               const void *scale, uint64_t flags);
int ff_tx_init_mdct_fft_int32(AVTXContext *s, av_tx_fn *tx,
                              enum AVTXType type, int inv, int len,
                              const void *scale, uint64_t flags);

typedef struct CosTabsInitOnce {
    void (*func)(void);
    AVOnce control;
} CosTabsInitOnce;

#endif /* AVUTIL_TX_PRIV_H */