summaryrefslogtreecommitdiff
path: root/libavfilter/opencl/tonemap.cl
blob: 9448ba4552ee4b486cd516fdd21cb6af87ccd538 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#define REFERENCE_WHITE 100.0f
extern float3 lrgb2yuv(float3);
extern float  lrgb2y(float3);
extern float3 yuv2lrgb(float3);
extern float3 lrgb2lrgb(float3);
extern float  get_luma_src(float3);
extern float  get_luma_dst(float3);
extern float3 ootf(float3 c, float peak);
extern float3 inverse_ootf(float3 c, float peak);
extern float3 get_chroma_sample(float3, float3, float3, float3);

struct detection_result {
    float peak;
    float average;
};

float hable_f(float in) {
    float a = 0.15f, b = 0.50f, c = 0.10f, d = 0.20f, e = 0.02f, f = 0.30f;
    return (in * (in * a + b * c) + d * e) / (in * (in * a + b) + d * f) - e / f;
}

float direct(float s, float peak) {
    return s;
}

float linear(float s, float peak) {
    return s * tone_param / peak;
}

float gamma(float s, float peak) {
    float p = s > 0.05f ? s /peak : 0.05f / peak;
    float v = powr(p, 1.0f / tone_param);
    return s > 0.05f ? v : (s * v /0.05f);
}

float clip(float s, float peak) {
    return clamp(s * tone_param, 0.0f, 1.0f);
}

float reinhard(float s, float peak) {
    return s / (s + tone_param) * (peak + tone_param) / peak;
}

float hable(float s, float peak) {
    return hable_f(s)/hable_f(peak);
}

float mobius(float s, float peak) {
    float j = tone_param;
    float a, b;

    if (s <= j)
        return s;

    a = -j * j * (peak - 1.0f) / (j * j - 2.0f * j + peak);
    b = (j * j - 2.0f * j * peak + peak) / max(peak - 1.0f, 1e-6f);

    return (b * b + 2.0f * b * j + j * j) / (b - a) * (s + a) / (s + b);
}

// detect peak/average signal of a frame, the algorithm was ported from:
// libplacebo (https://github.com/haasn/libplacebo)
struct detection_result
detect_peak_avg(global uint *util_buf, __local uint *sum_wg,
            float signal, float peak) {
// layout of the util buffer
//
// Name:             : Size (units of 4-bytes)
// average buffer    : detection_frames + 1
// peak buffer       : detection_frames + 1
// workgroup counter : 1
// total of peak     : 1
// total of average  : 1
// frame index       : 1
// frame number      : 1
    global uint *avg_buf = util_buf;
    global uint *peak_buf = avg_buf + DETECTION_FRAMES + 1;
    global uint *counter_wg_p = peak_buf + DETECTION_FRAMES + 1;
    global uint *max_total_p = counter_wg_p + 1;
    global uint *avg_total_p = max_total_p + 1;
    global uint *frame_idx_p = avg_total_p + 1;
    global uint *scene_frame_num_p = frame_idx_p + 1;

    uint frame_idx = *frame_idx_p;
    uint scene_frame_num = *scene_frame_num_p;

    size_t lidx = get_local_id(0);
    size_t lidy = get_local_id(1);
    size_t lsizex = get_local_size(0);
    size_t lsizey = get_local_size(1);
    uint num_wg = get_num_groups(0) * get_num_groups(1);
    size_t group_idx = get_group_id(0);
    size_t group_idy = get_group_id(1);
    struct detection_result r = {peak, sdr_avg};
    if (lidx == 0 && lidy == 0)
        *sum_wg = 0;
    barrier(CLK_LOCAL_MEM_FENCE);

    // update workgroup sum
    atomic_add(sum_wg, (uint)(signal * REFERENCE_WHITE));
    barrier(CLK_LOCAL_MEM_FENCE);

    // update frame peak/avg using work-group-average.
    if (lidx == 0 && lidy == 0) {
        uint avg_wg = *sum_wg / (lsizex * lsizey);
        atomic_max(&peak_buf[frame_idx], avg_wg);
        atomic_add(&avg_buf[frame_idx], avg_wg);
    }

    if (scene_frame_num > 0) {
        float peak = (float)*max_total_p / (REFERENCE_WHITE * scene_frame_num);
        float avg = (float)*avg_total_p / (REFERENCE_WHITE * scene_frame_num);
        r.peak = max(1.0f, peak);
        r.average = max(0.25f, avg);
    }

    if (lidx == 0 && lidy == 0 && atomic_add(counter_wg_p, 1) == num_wg - 1) {
        *counter_wg_p = 0;
        avg_buf[frame_idx] /= num_wg;

        if (scene_threshold > 0.0f) {
            uint cur_max = peak_buf[frame_idx];
            uint cur_avg = avg_buf[frame_idx];
            int diff = (int)(scene_frame_num * cur_avg) - (int)*avg_total_p;

            if (abs(diff) > scene_frame_num * scene_threshold * REFERENCE_WHITE) {
                for (uint i = 0; i < DETECTION_FRAMES + 1; i++)
                  avg_buf[i] = 0;
                for (uint i = 0; i < DETECTION_FRAMES + 1; i++)
                  peak_buf[i] = 0;
                *avg_total_p = *max_total_p = 0;
                *scene_frame_num_p = 0;
                avg_buf[frame_idx] = cur_avg;
                peak_buf[frame_idx] = cur_max;
            }
        }
        uint next = (frame_idx + 1) % (DETECTION_FRAMES + 1);
        // add current frame, subtract next frame
        *max_total_p += peak_buf[frame_idx] - peak_buf[next];
        *avg_total_p += avg_buf[frame_idx] - avg_buf[next];
        // reset next frame
        peak_buf[next] = avg_buf[next] = 0;
        *frame_idx_p = next;
        *scene_frame_num_p = min(*scene_frame_num_p + 1,
                                 (uint)DETECTION_FRAMES);
    }
    return r;
}

float3 map_one_pixel_rgb(float3 rgb, float peak, float average) {
    float sig = max(max(rgb.x, max(rgb.y, rgb.z)), 1e-6f);

    // Rescale the variables in order to bring it into a representation where
    // 1.0 represents the dst_peak. This is because all of the tone mapping
    // algorithms are defined in such a way that they map to the range [0.0, 1.0].
    if (target_peak > 1.0f) {
        sig *= 1.0f / target_peak;
        peak *= 1.0f / target_peak;
    }

    float sig_old = sig;

    // Scale the signal to compensate for differences in the average brightness
    float slope = min(1.0f, sdr_avg / average);
    sig *= slope;
    peak *= slope;

    // Desaturate the color using a coefficient dependent on the signal level
    if (desat_param > 0.0f) {
        float luma = get_luma_dst(rgb);
        float coeff = max(sig - 0.18f, 1e-6f) / max(sig, 1e-6f);
        coeff = native_powr(coeff, 10.0f / desat_param);
        rgb = mix(rgb, (float3)luma, (float3)coeff);
        sig = mix(sig, luma * slope, coeff);
    }

    sig = TONE_FUNC(sig, peak);

    sig = min(sig, 1.0f);
    rgb *= (sig/sig_old);
    return rgb;
}
// map from source space YUV to destination space RGB
float3 map_to_dst_space_from_yuv(float3 yuv, float peak) {
    float3 c = yuv2lrgb(yuv);
    c = ootf(c, peak);
    c = lrgb2lrgb(c);
    return c;
}

__kernel void tonemap(__write_only image2d_t dst1,
                      __read_only  image2d_t src1,
                      __write_only image2d_t dst2,
                      __read_only  image2d_t src2,
                      global uint *util_buf,
                      float peak
                      )
{
    __local uint sum_wg;
    const sampler_t sampler = (CLK_NORMALIZED_COORDS_FALSE |
                               CLK_ADDRESS_CLAMP_TO_EDGE   |
                               CLK_FILTER_NEAREST);
    int xi = get_global_id(0);
    int yi = get_global_id(1);
    // each work item process four pixels
    int x = 2 * xi;
    int y = 2 * yi;

    float y0 = read_imagef(src1, sampler, (int2)(x,     y)).x;
    float y1 = read_imagef(src1, sampler, (int2)(x + 1, y)).x;
    float y2 = read_imagef(src1, sampler, (int2)(x,     y + 1)).x;
    float y3 = read_imagef(src1, sampler, (int2)(x + 1, y + 1)).x;
    float2 uv = read_imagef(src2, sampler, (int2)(xi,     yi)).xy;

    float3 c0 = map_to_dst_space_from_yuv((float3)(y0, uv.x, uv.y), peak);
    float3 c1 = map_to_dst_space_from_yuv((float3)(y1, uv.x, uv.y), peak);
    float3 c2 = map_to_dst_space_from_yuv((float3)(y2, uv.x, uv.y), peak);
    float3 c3 = map_to_dst_space_from_yuv((float3)(y3, uv.x, uv.y), peak);

    float sig0 = max(c0.x, max(c0.y, c0.z));
    float sig1 = max(c1.x, max(c1.y, c1.z));
    float sig2 = max(c2.x, max(c2.y, c2.z));
    float sig3 = max(c3.x, max(c3.y, c3.z));
    float sig = max(sig0, max(sig1, max(sig2, sig3)));

    struct detection_result r = detect_peak_avg(util_buf, &sum_wg, sig, peak);

    float3 c0_old = c0, c1_old = c1, c2_old = c2;
    c0 = map_one_pixel_rgb(c0, r.peak, r.average);
    c1 = map_one_pixel_rgb(c1, r.peak, r.average);
    c2 = map_one_pixel_rgb(c2, r.peak, r.average);
    c3 = map_one_pixel_rgb(c3, r.peak, r.average);

    c0 = inverse_ootf(c0, target_peak);
    c1 = inverse_ootf(c1, target_peak);
    c2 = inverse_ootf(c2, target_peak);
    c3 = inverse_ootf(c3, target_peak);

    y0 = lrgb2y(c0);
    y1 = lrgb2y(c1);
    y2 = lrgb2y(c2);
    y3 = lrgb2y(c3);
    float3 chroma_c = get_chroma_sample(c0, c1, c2, c3);
    float3 chroma = lrgb2yuv(chroma_c);

    if (xi < get_image_width(dst2) && yi < get_image_height(dst2)) {
        write_imagef(dst1, (int2)(x, y), (float4)(y0, 0.0f, 0.0f, 1.0f));
        write_imagef(dst1, (int2)(x+1, y), (float4)(y1, 0.0f, 0.0f, 1.0f));
        write_imagef(dst1, (int2)(x, y+1), (float4)(y2, 0.0f, 0.0f, 1.0f));
        write_imagef(dst1, (int2)(x+1, y+1), (float4)(y3, 0.0f, 0.0f, 1.0f));
        write_imagef(dst2, (int2)(xi, yi),
                     (float4)(chroma.y, chroma.z, 0.0f, 1.0f));
    }
}