summaryrefslogtreecommitdiff
path: root/libavfilter/dnn/dnn_backend_native_layer_dense.c
blob: a22a484464f616a2101c239cd1ce460c77e75b7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
 * Copyright (c) 2020
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_dense.h"

int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
    DenseParams *dense_params;
    int kernel_size;
    int dnn_size = 0;
    dense_params = av_malloc(sizeof(*dense_params));
    if (!dense_params)
        return 0;

    dense_params->activation = (int32_t)avio_rl32(model_file_context);
    dense_params->input_num = (int32_t)avio_rl32(model_file_context);
    dense_params->output_num = (int32_t)avio_rl32(model_file_context);
    dense_params->has_bias = (int32_t)avio_rl32(model_file_context);
    dnn_size += 16;

    kernel_size = dense_params->input_num * dense_params->output_num;
    dnn_size += kernel_size * 4;
    if (dense_params->has_bias)
        dnn_size += dense_params->output_num * 4;

    if (dnn_size > file_size || dense_params->input_num <= 0 ||
        dense_params->output_num <= 0){
        av_freep(&dense_params);
        return 0;
    }

    dense_params->kernel = av_malloc(kernel_size * sizeof(float));
    if (!dense_params->kernel) {
        av_freep(&dense_params);
        return 0;
    }
    for (int i = 0; i < kernel_size; ++i) {
        dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
    }

    dense_params->biases = NULL;
    if (dense_params->has_bias) {
        dense_params->biases = av_malloc(dense_params->output_num * sizeof(float));
        if (!dense_params->biases){
            av_freep(&dense_params->kernel);
            av_freep(&dense_params);
            return 0;
        }
        for (int i = 0; i < dense_params->output_num; ++i){
            dense_params->biases[i] = av_int2float(avio_rl32(model_file_context));
        }
    }

    layer->params = dense_params;

    layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
    layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
    dnn_size += 8;

    if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
        return 0;
    }

    return dnn_size;
}

int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes,
                               int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
    float *output;
    int32_t input_operand_index = input_operand_indexes[0];
    int number = operands[input_operand_index].dims[0];
    int height = operands[input_operand_index].dims[1];
    int width = operands[input_operand_index].dims[2];
    int channel = operands[input_operand_index].dims[3];
    const float *input = operands[input_operand_index].data;
    const DenseParams *dense_params = parameters;

    int src_linesize = width * channel;
    DnnOperand *output_operand = &operands[output_operand_index];
    output_operand->dims[0] = number;
    output_operand->dims[1] = height;
    output_operand->dims[2] = width;
    output_operand->dims[3] = dense_params->output_num;
    output_operand->data_type = operands[input_operand_index].data_type;
    output_operand->length = ff_calculate_operand_data_length(output_operand);
    if (output_operand->length <= 0) {
        av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
        return AVERROR(EINVAL);
    }
    output_operand->data = av_realloc(output_operand->data, output_operand->length);
    if (!output_operand->data) {
        av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
        return AVERROR(ENOMEM);
    }
    output = output_operand->data;

    av_assert0(channel == dense_params->input_num);

    for (int y = 0; y < height; ++y) {
        for (int x = 0; x < width; ++x) {
            for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) {
                if (dense_params->has_bias)
                    output[n_filter] = dense_params->biases[n_filter];
                else
                    output[n_filter] = 0.f;

                for (int ch = 0; ch < dense_params->input_num; ++ch) {
                    float input_pel;
                    input_pel = input[y * src_linesize + x * dense_params->input_num + ch];
                    output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch];
                }
                switch (dense_params->activation){
                case RELU:
                    output[n_filter] = FFMAX(output[n_filter], 0.0);
                    break;
                case TANH:
                    output[n_filter] = 2.0f  / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
                    break;
                case SIGMOID:
                    output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
                    break;
                case NONE:
                    break;
                case LEAKY_RELU:
                    output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
                }
            }
            output += dense_params->output_num;
        }
    }
    return DNN_SUCCESS;
}