summaryrefslogtreecommitdiff
path: root/libavfilter/dnn/dnn_backend_native_layer_conv2d.c
blob: 614e300046636f0dcf929c4778f7826260dd34d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 * Copyright (c) 2018 Sergey Lavrushkin
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/avassert.h"
#include "libavutil/thread.h"
#include "libavutil/cpu.h"
#include "dnn_backend_native_layer_conv2d.h"

#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))

//struct to pass parameters
typedef struct ThreadCommonParam{
    DnnOperand *operands;
    const int32_t *input_operand_indexes;
    int32_t output_operand_index;
    const void *parameters;
    NativeContext *ctx;
    float *output_data;
} ThreadCommonParam;

typedef struct ThreadParam{
    ThreadCommonParam *thread_common_param;
    int thread_start, thread_end;
#if HAVE_PTHREAD_CANCEL
    pthread_t thread;
#endif
} ThreadParam;

int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
    ConvolutionalParams *conv_params;
    int kernel_size;
    int dnn_size = 0;
    conv_params = av_malloc(sizeof(*conv_params));
    if (!conv_params)
        return 0;

    conv_params->dilation = (int32_t)avio_rl32(model_file_context);
    conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
    conv_params->activation = (int32_t)avio_rl32(model_file_context);
    conv_params->input_num = (int32_t)avio_rl32(model_file_context);
    conv_params->output_num = (int32_t)avio_rl32(model_file_context);
    conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
    conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
    dnn_size += 28;

    kernel_size = conv_params->input_num * conv_params->output_num *
                      conv_params->kernel_size * conv_params->kernel_size;
    dnn_size += kernel_size * 4;
    if (conv_params->has_bias)
        dnn_size += conv_params->output_num * 4;

    if (dnn_size > file_size || conv_params->input_num <= 0 ||
        conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
        av_freep(&conv_params);
        return 0;
    }

    conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel));
    if (!conv_params->kernel) {
        av_freep(&conv_params);
        return 0;
    }
    for (int i = 0; i < kernel_size; ++i) {
        conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
    }

    conv_params->biases = NULL;
    if (conv_params->has_bias) {
        conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases));
        if (!conv_params->biases){
            av_freep(&conv_params->kernel);
            av_freep(&conv_params);
            return 0;
        }
        for (int i = 0; i < conv_params->output_num; ++i){
            conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
        }
    }

    layer->params = conv_params;

    layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
    layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
    dnn_size += 8;

    if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
        return 0;
    }

    return dnn_size;
}

static void * dnn_execute_layer_conv2d_thread(void *threadarg)
{
    //pass parameters
    ThreadParam *thread_param = threadarg;
    ThreadCommonParam *thread_common_param = thread_param->thread_common_param;
    DnnOperand *operands = thread_common_param->operands;
    int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
    int height = operands[input_operand_index].dims[1];
    int width = operands[input_operand_index].dims[2];
    int channel = operands[input_operand_index].dims[3];
    const float *input = operands[input_operand_index].data;
    const ConvolutionalParams *conv_params = thread_common_param->parameters;

    int radius = conv_params->kernel_size >> 1;
    int src_linesize = width * conv_params->input_num;
    int filter_linesize = conv_params->kernel_size * conv_params->input_num;
    int filter_size = conv_params->kernel_size * filter_linesize;
    int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;

    float *output = thread_common_param->output_data;
    output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);

    av_assert0(channel == conv_params->input_num);

    for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
        for (int x = pad_size; x < width - pad_size; ++x) {
            for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
                if (conv_params->has_bias)
                    output[n_filter] = conv_params->biases[n_filter];
                else
                    output[n_filter] = 0.f;

                for (int ch = 0; ch < conv_params->input_num; ++ch) {
                    for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
                        for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
                            float input_pel;
                            if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
                                int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
                                int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
                                input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
                            } else {
                                int y_pos = y + (kernel_y - radius) * conv_params->dilation;
                                int x_pos = x + (kernel_x - radius) * conv_params->dilation;
                                input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
                                                   input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
                            }


                            output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
                                                                                kernel_x * conv_params->input_num + ch];
                        }
                    }
                }
                switch (conv_params->activation){
                case RELU:
                    output[n_filter] = FFMAX(output[n_filter], 0.0);
                    break;
                case TANH:
                    output[n_filter] = 2.0f  / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
                    break;
                case SIGMOID:
                    output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
                    break;
                case NONE:
                    break;
                case LEAKY_RELU:
                    output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
                }
            }
            output += conv_params->output_num;
        }
    }
    return (void *)DNN_SUCCESS;
}


int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
                                int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
#if HAVE_PTHREAD_CANCEL
    int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
        ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
    int ret = DNN_SUCCESS, thread_stride;
    ThreadParam *thread_param;
#else
    ThreadParam thread_param = { 0 };
#endif
    ThreadCommonParam thread_common_param;
    const ConvolutionalParams *conv_params = parameters;
    int height = operands[input_operand_indexes[0]].dims[1];
    int width = operands[input_operand_indexes[0]].dims[2];
    int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
    DnnOperand *output_operand = &operands[output_operand_index];
    void *tmp;

    output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
    output_operand->dims[1] = height - pad_size * 2;
    output_operand->dims[2] = width - pad_size * 2;
    output_operand->dims[3] = conv_params->output_num;
    output_operand->data_type = operands[input_operand_indexes[0]].data_type;
    output_operand->length = ff_calculate_operand_data_length(output_operand);
    if (output_operand->length <= 0) {
        av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
        return DNN_ERROR;
    }
    tmp = av_realloc(output_operand->data, output_operand->length);
    if (!tmp) {
        av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
        return DNN_ERROR;
    }
    output_operand->data = tmp;
    thread_common_param.output_data = output_operand->data;
    thread_common_param.operands = operands;
    thread_common_param.input_operand_indexes = input_operand_indexes;
    thread_common_param.output_operand_index = output_operand_index;
    thread_common_param.parameters = parameters;
    thread_common_param.ctx = ctx;

#if HAVE_PTHREAD_CANCEL
    thread_param = av_malloc_array(thread_num, sizeof(*thread_param));
    if (!thread_param)
        return DNN_ERROR;
    thread_stride = (height - pad_size * 2) / thread_num;
    //create threads
    for (int i = 0; i < thread_num; i++){
        thread_param[i].thread_common_param = &thread_common_param;
        thread_param[i].thread_start = thread_stride * i + pad_size;
        thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride);
        if (pthread_create(&thread_param[i].thread, NULL,
                           dnn_execute_layer_conv2d_thread, &thread_param[i])) {
            thread_num = i;
            ret = DNN_ERROR;
            break;
        }
    }

    //join threads, res gets function return
    for (int i = 0; i < thread_num; i++){
        pthread_join(thread_param[i].thread, NULL);
    }

    //release memory
    av_freep(&thread_param);

    return ret;
#else
    thread_param.thread_common_param = &thread_common_param;
    thread_param.thread_start = pad_size;
    thread_param.thread_end = height - pad_size;
    dnn_execute_layer_conv2d_thread(&thread_param);

    return DNN_SUCCESS;
#endif
}