/* * Copyright (c) Lynne * * Power of two FFT: * Copyright (c) Lynne * Copyright (c) 2008 Loren Merritt * Copyright (c) 2002 Fabrice Bellard * Partly based on libdjbfft by D. J. Bernstein * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* All costabs for a type are defined here */ COSTABLE(16); COSTABLE(32); COSTABLE(64); COSTABLE(128); COSTABLE(256); COSTABLE(512); COSTABLE(1024); COSTABLE(2048); COSTABLE(4096); COSTABLE(8192); COSTABLE(16384); COSTABLE(32768); COSTABLE(65536); COSTABLE(131072); DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4]; DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_7))[3]; DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_9))[4]; static FFTSample * const cos_tabs[18] = { NULL, NULL, NULL, NULL, TX_NAME(ff_cos_16), TX_NAME(ff_cos_32), TX_NAME(ff_cos_64), TX_NAME(ff_cos_128), TX_NAME(ff_cos_256), TX_NAME(ff_cos_512), TX_NAME(ff_cos_1024), TX_NAME(ff_cos_2048), TX_NAME(ff_cos_4096), TX_NAME(ff_cos_8192), TX_NAME(ff_cos_16384), TX_NAME(ff_cos_32768), TX_NAME(ff_cos_65536), TX_NAME(ff_cos_131072), }; static av_always_inline void init_cos_tabs_idx(int index) { int m = 1 << index; double freq = 2*M_PI/m; FFTSample *tab = cos_tabs[index]; for (int i = 0; i < m/4; i++) *tab++ = RESCALE(cos(i*freq)); *tab = 0; } #define INIT_FF_COS_TABS_FUNC(index, size) \ static av_cold void init_cos_tabs_ ## size (void) \ { \ init_cos_tabs_idx(index); \ } INIT_FF_COS_TABS_FUNC(4, 16) INIT_FF_COS_TABS_FUNC(5, 32) INIT_FF_COS_TABS_FUNC(6, 64) INIT_FF_COS_TABS_FUNC(7, 128) INIT_FF_COS_TABS_FUNC(8, 256) INIT_FF_COS_TABS_FUNC(9, 512) INIT_FF_COS_TABS_FUNC(10, 1024) INIT_FF_COS_TABS_FUNC(11, 2048) INIT_FF_COS_TABS_FUNC(12, 4096) INIT_FF_COS_TABS_FUNC(13, 8192) INIT_FF_COS_TABS_FUNC(14, 16384) INIT_FF_COS_TABS_FUNC(15, 32768) INIT_FF_COS_TABS_FUNC(16, 65536) INIT_FF_COS_TABS_FUNC(17, 131072) static av_cold void ff_init_53_tabs(void) { TX_NAME(ff_cos_53)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 12)), RESCALE(cos(2 * M_PI / 12)) }; TX_NAME(ff_cos_53)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 6)), RESCALE(cos(2 * M_PI / 6)) }; TX_NAME(ff_cos_53)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 5)), RESCALE(sin(2 * M_PI / 5)) }; TX_NAME(ff_cos_53)[3] = (FFTComplex){ RESCALE(cos(2 * M_PI / 10)), RESCALE(sin(2 * M_PI / 10)) }; } static av_cold void ff_init_7_tabs(void) { TX_NAME(ff_cos_7)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 7)), RESCALE(sin(2 * M_PI / 7)) }; TX_NAME(ff_cos_7)[1] = (FFTComplex){ RESCALE(sin(2 * M_PI / 28)), RESCALE(cos(2 * M_PI / 28)) }; TX_NAME(ff_cos_7)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 14)), RESCALE(sin(2 * M_PI / 14)) }; } static av_cold void ff_init_9_tabs(void) { TX_NAME(ff_cos_9)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 3)), RESCALE( sin(2 * M_PI / 3)) }; TX_NAME(ff_cos_9)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 9)), RESCALE( sin(2 * M_PI / 9)) }; TX_NAME(ff_cos_9)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 36)), RESCALE( sin(2 * M_PI / 36)) }; TX_NAME(ff_cos_9)[3] = (FFTComplex){ TX_NAME(ff_cos_9)[1].re + TX_NAME(ff_cos_9)[2].im, TX_NAME(ff_cos_9)[1].im - TX_NAME(ff_cos_9)[2].re }; } static CosTabsInitOnce cos_tabs_init_once[] = { { ff_init_53_tabs, AV_ONCE_INIT }, { ff_init_7_tabs, AV_ONCE_INIT }, { ff_init_9_tabs, AV_ONCE_INIT }, { NULL }, { init_cos_tabs_16, AV_ONCE_INIT }, { init_cos_tabs_32, AV_ONCE_INIT }, { init_cos_tabs_64, AV_ONCE_INIT }, { init_cos_tabs_128, AV_ONCE_INIT }, { init_cos_tabs_256, AV_ONCE_INIT }, { init_cos_tabs_512, AV_ONCE_INIT }, { init_cos_tabs_1024, AV_ONCE_INIT }, { init_cos_tabs_2048, AV_ONCE_INIT }, { init_cos_tabs_4096, AV_ONCE_INIT }, { init_cos_tabs_8192, AV_ONCE_INIT }, { init_cos_tabs_16384, AV_ONCE_INIT }, { init_cos_tabs_32768, AV_ONCE_INIT }, { init_cos_tabs_65536, AV_ONCE_INIT }, { init_cos_tabs_131072, AV_ONCE_INIT }, }; static av_cold void init_cos_tabs(int index) { ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func); } static av_always_inline void fft3(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex tmp[2]; #ifdef TX_INT32 int64_t mtmp[4]; #endif BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im); BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re); out[0*stride].re = in[0].re + tmp[1].re; out[0*stride].im = in[0].im + tmp[1].im; #ifdef TX_INT32 mtmp[0] = (int64_t)TX_NAME(ff_cos_53)[0].re * tmp[0].re; mtmp[1] = (int64_t)TX_NAME(ff_cos_53)[0].im * tmp[0].im; mtmp[2] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].re; mtmp[3] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].im; out[1*stride].re = in[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31); out[1*stride].im = in[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31); out[2*stride].re = in[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31); out[2*stride].im = in[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31); #else tmp[0].re = TX_NAME(ff_cos_53)[0].re * tmp[0].re; tmp[0].im = TX_NAME(ff_cos_53)[0].im * tmp[0].im; tmp[1].re = TX_NAME(ff_cos_53)[1].re * tmp[1].re; tmp[1].im = TX_NAME(ff_cos_53)[1].re * tmp[1].im; out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re; out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im; out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re; out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im; #endif } #define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \ static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \ ptrdiff_t stride) \ { \ FFTComplex z0[4], t[6]; \ \ BF(t[1].im, t[0].re, in[1].re, in[4].re); \ BF(t[1].re, t[0].im, in[1].im, in[4].im); \ BF(t[3].im, t[2].re, in[2].re, in[3].re); \ BF(t[3].re, t[2].im, in[2].im, in[3].im); \ \ out[D0*stride].re = in[0].re + t[0].re + t[2].re; \ out[D0*stride].im = in[0].im + t[0].im + t[2].im; \ \ SMUL(t[4].re, t[0].re, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].re, t[0].re); \ SMUL(t[4].im, t[0].im, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].im, t[0].im); \ CMUL(t[5].re, t[1].re, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].re, t[1].re); \ CMUL(t[5].im, t[1].im, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].im, t[1].im); \ \ BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \ BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \ BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \ BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \ \ out[D1*stride].re = in[0].re + z0[3].re; \ out[D1*stride].im = in[0].im + z0[0].im; \ out[D2*stride].re = in[0].re + z0[2].re; \ out[D2*stride].im = in[0].im + z0[1].im; \ out[D3*stride].re = in[0].re + z0[1].re; \ out[D3*stride].im = in[0].im + z0[2].im; \ out[D4*stride].re = in[0].re + z0[0].re; \ out[D4*stride].im = in[0].im + z0[3].im; \ } DECL_FFT5(fft5, 0, 1, 2, 3, 4) DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9) DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4) DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14) static av_always_inline void fft7(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex t[6], z[3]; const FFTComplex *tab = TX_NAME(ff_cos_7); #ifdef TX_INT32 int64_t mtmp[12]; #endif BF(t[1].re, t[0].re, in[1].re, in[6].re); BF(t[1].im, t[0].im, in[1].im, in[6].im); BF(t[3].re, t[2].re, in[2].re, in[5].re); BF(t[3].im, t[2].im, in[2].im, in[5].im); BF(t[5].re, t[4].re, in[3].re, in[4].re); BF(t[5].im, t[4].im, in[3].im, in[4].im); out[0*stride].re = in[0].re + t[0].re + t[2].re + t[4].re; out[0*stride].im = in[0].im + t[0].im + t[2].im + t[4].im; #ifdef TX_INT32 /* NOTE: it's possible to do this with 16 mults but 72 adds */ mtmp[ 0] = ((int64_t)tab[0].re)*t[0].re - ((int64_t)tab[2].re)*t[4].re; mtmp[ 1] = ((int64_t)tab[0].re)*t[4].re - ((int64_t)tab[1].re)*t[0].re; mtmp[ 2] = ((int64_t)tab[0].re)*t[2].re - ((int64_t)tab[2].re)*t[0].re; mtmp[ 3] = ((int64_t)tab[0].re)*t[0].im - ((int64_t)tab[1].re)*t[2].im; mtmp[ 4] = ((int64_t)tab[0].re)*t[4].im - ((int64_t)tab[1].re)*t[0].im; mtmp[ 5] = ((int64_t)tab[0].re)*t[2].im - ((int64_t)tab[2].re)*t[0].im; mtmp[ 6] = ((int64_t)tab[2].im)*t[1].im + ((int64_t)tab[1].im)*t[5].im; mtmp[ 7] = ((int64_t)tab[0].im)*t[5].im + ((int64_t)tab[2].im)*t[3].im; mtmp[ 8] = ((int64_t)tab[2].im)*t[5].im + ((int64_t)tab[1].im)*t[3].im; mtmp[ 9] = ((int64_t)tab[0].im)*t[1].re + ((int64_t)tab[1].im)*t[3].re; mtmp[10] = ((int64_t)tab[2].im)*t[3].re + ((int64_t)tab[0].im)*t[5].re; mtmp[11] = ((int64_t)tab[2].im)*t[1].re + ((int64_t)tab[1].im)*t[5].re; z[0].re = (int32_t)(mtmp[ 0] - ((int64_t)tab[1].re)*t[2].re + 0x40000000 >> 31); z[1].re = (int32_t)(mtmp[ 1] - ((int64_t)tab[2].re)*t[2].re + 0x40000000 >> 31); z[2].re = (int32_t)(mtmp[ 2] - ((int64_t)tab[1].re)*t[4].re + 0x40000000 >> 31); z[0].im = (int32_t)(mtmp[ 3] - ((int64_t)tab[2].re)*t[4].im + 0x40000000 >> 31); z[1].im = (int32_t)(mtmp[ 4] - ((int64_t)tab[2].re)*t[2].im + 0x40000000 >> 31); z[2].im = (int32_t)(mtmp[ 5] - ((int64_t)tab[1].re)*t[4].im + 0x40000000 >> 31); t[0].re = (int32_t)(mtmp[ 6] - ((int64_t)tab[0].im)*t[3].im + 0x40000000 >> 31); t[2].re = (int32_t)(mtmp[ 7] - ((int64_t)tab[1].im)*t[1].im + 0x40000000 >> 31); t[4].re = (int32_t)(mtmp[ 8] + ((int64_t)tab[0].im)*t[1].im + 0x40000000 >> 31); t[0].im = (int32_t)(mtmp[ 9] + ((int64_t)tab[2].im)*t[5].re + 0x40000000 >> 31); t[2].im = (int32_t)(mtmp[10] - ((int64_t)tab[1].im)*t[1].re + 0x40000000 >> 31); t[4].im = (int32_t)(mtmp[11] - ((int64_t)tab[0].im)*t[3].re + 0x40000000 >> 31); #else z[0].re = tab[0].re*t[0].re - tab[2].re*t[4].re - tab[1].re*t[2].re; z[1].re = tab[0].re*t[4].re - tab[1].re*t[0].re - tab[2].re*t[2].re; z[2].re = tab[0].re*t[2].re - tab[2].re*t[0].re - tab[1].re*t[4].re; z[0].im = tab[0].re*t[0].im - tab[1].re*t[2].im - tab[2].re*t[4].im; z[1].im = tab[0].re*t[4].im - tab[1].re*t[0].im - tab[2].re*t[2].im; z[2].im = tab[0].re*t[2].im - tab[2].re*t[0].im - tab[1].re*t[4].im; /* It's possible to do t[4].re and t[0].im with 2 multiplies only by * multiplying the sum of all with the average of the twiddles */ t[0].re = tab[2].im*t[1].im + tab[1].im*t[5].im - tab[0].im*t[3].im; t[2].re = tab[0].im*t[5].im + tab[2].im*t[3].im - tab[1].im*t[1].im; t[4].re = tab[2].im*t[5].im + tab[1].im*t[3].im + tab[0].im*t[1].im; t[0].im = tab[0].im*t[1].re + tab[1].im*t[3].re + tab[2].im*t[5].re; t[2].im = tab[2].im*t[3].re + tab[0].im*t[5].re - tab[1].im*t[1].re; t[4].im = tab[2].im*t[1].re + tab[1].im*t[5].re - tab[0].im*t[3].re; #endif BF(t[1].re, z[0].re, z[0].re, t[4].re); BF(t[3].re, z[1].re, z[1].re, t[2].re); BF(t[5].re, z[2].re, z[2].re, t[0].re); BF(t[1].im, z[0].im, z[0].im, t[0].im); BF(t[3].im, z[1].im, z[1].im, t[2].im); BF(t[5].im, z[2].im, z[2].im, t[4].im); out[1*stride].re = in[0].re + z[0].re; out[1*stride].im = in[0].im + t[1].im; out[2*stride].re = in[0].re + t[3].re; out[2*stride].im = in[0].im + z[1].im; out[3*stride].re = in[0].re + z[2].re; out[3*stride].im = in[0].im + t[5].im; out[4*stride].re = in[0].re + t[5].re; out[4*stride].im = in[0].im + z[2].im; out[5*stride].re = in[0].re + z[1].re; out[5*stride].im = in[0].im + t[3].im; out[6*stride].re = in[0].re + t[1].re; out[6*stride].im = in[0].im + z[0].im; } static av_always_inline void fft9(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { const FFTComplex *tab = TX_NAME(ff_cos_9); FFTComplex t[16], w[4], x[5], y[5], z[2]; #ifdef TX_INT32 int64_t mtmp[12]; #endif BF(t[1].re, t[0].re, in[1].re, in[8].re); BF(t[1].im, t[0].im, in[1].im, in[8].im); BF(t[3].re, t[2].re, in[2].re, in[7].re); BF(t[3].im, t[2].im, in[2].im, in[7].im); BF(t[5].re, t[4].re, in[3].re, in[6].re); BF(t[5].im, t[4].im, in[3].im, in[6].im); BF(t[7].re, t[6].re, in[4].re, in[5].re); BF(t[7].im, t[6].im, in[4].im, in[5].im); w[0].re = t[0].re - t[6].re; w[0].im = t[0].im - t[6].im; w[1].re = t[2].re - t[6].re; w[1].im = t[2].im - t[6].im; w[2].re = t[1].re - t[7].re; w[2].im = t[1].im - t[7].im; w[3].re = t[3].re + t[7].re; w[3].im = t[3].im + t[7].im; z[0].re = in[0].re + t[4].re; z[0].im = in[0].im + t[4].im; z[1].re = t[0].re + t[2].re + t[6].re; z[1].im = t[0].im + t[2].im + t[6].im; out[0*stride].re = z[0].re + z[1].re; out[0*stride].im = z[0].im + z[1].im; #ifdef TX_INT32 mtmp[0] = t[1].re - t[3].re + t[7].re; mtmp[1] = t[1].im - t[3].im + t[7].im; y[3].re = (int32_t)(((int64_t)tab[0].im)*mtmp[0] + 0x40000000 >> 31); y[3].im = (int32_t)(((int64_t)tab[0].im)*mtmp[1] + 0x40000000 >> 31); mtmp[0] = (int32_t)(((int64_t)tab[0].re)*z[1].re + 0x40000000 >> 31); mtmp[1] = (int32_t)(((int64_t)tab[0].re)*z[1].im + 0x40000000 >> 31); mtmp[2] = (int32_t)(((int64_t)tab[0].re)*t[4].re + 0x40000000 >> 31); mtmp[3] = (int32_t)(((int64_t)tab[0].re)*t[4].im + 0x40000000 >> 31); x[3].re = z[0].re + (int32_t)mtmp[0]; x[3].im = z[0].im + (int32_t)mtmp[1]; z[0].re = in[0].re + (int32_t)mtmp[2]; z[0].im = in[0].im + (int32_t)mtmp[3]; mtmp[0] = ((int64_t)tab[1].re)*w[0].re; mtmp[1] = ((int64_t)tab[1].re)*w[0].im; mtmp[2] = ((int64_t)tab[2].im)*w[0].re; mtmp[3] = ((int64_t)tab[2].im)*w[0].im; mtmp[4] = ((int64_t)tab[1].im)*w[2].re; mtmp[5] = ((int64_t)tab[1].im)*w[2].im; mtmp[6] = ((int64_t)tab[2].re)*w[2].re; mtmp[7] = ((int64_t)tab[2].re)*w[2].im; x[1].re = (int32_t)(mtmp[0] + ((int64_t)tab[2].im)*w[1].re + 0x40000000 >> 31); x[1].im = (int32_t)(mtmp[1] + ((int64_t)tab[2].im)*w[1].im + 0x40000000 >> 31); x[2].re = (int32_t)(mtmp[2] - ((int64_t)tab[3].re)*w[1].re + 0x40000000 >> 31); x[2].im = (int32_t)(mtmp[3] - ((int64_t)tab[3].re)*w[1].im + 0x40000000 >> 31); y[1].re = (int32_t)(mtmp[4] + ((int64_t)tab[2].re)*w[3].re + 0x40000000 >> 31); y[1].im = (int32_t)(mtmp[5] + ((int64_t)tab[2].re)*w[3].im + 0x40000000 >> 31); y[2].re = (int32_t)(mtmp[6] - ((int64_t)tab[3].im)*w[3].re + 0x40000000 >> 31); y[2].im = (int32_t)(mtmp[7] - ((int64_t)tab[3].im)*w[3].im + 0x40000000 >> 31); y[0].re = (int32_t)(((int64_t)tab[0].im)*t[5].re + 0x40000000 >> 31); y[0].im = (int32_t)(((int64_t)tab[0].im)*t[5].im + 0x40000000 >> 31); #else y[3].re = tab[0].im*(t[1].re - t[3].re + t[7].re); y[3].im = tab[0].im*(t[1].im - t[3].im + t[7].im); x[3].re = z[0].re + tab[0].re*z[1].re; x[3].im = z[0].im + tab[0].re*z[1].im; z[0].re = in[0].re + tab[0].re*t[4].re; z[0].im = in[0].im + tab[0].re*t[4].im; x[1].re = tab[1].re*w[0].re + tab[2].im*w[1].re; x[1].im = tab[1].re*w[0].im + tab[2].im*w[1].im; x[2].re = tab[2].im*w[0].re - tab[3].re*w[1].re; x[2].im = tab[2].im*w[0].im - tab[3].re*w[1].im; y[1].re = tab[1].im*w[2].re + tab[2].re*w[3].re; y[1].im = tab[1].im*w[2].im + tab[2].re*w[3].im; y[2].re = tab[2].re*w[2].re - tab[3].im*w[3].re; y[2].im = tab[2].re*w[2].im - tab[3].im*w[3].im; y[0].re = tab[0].im*t[5].re; y[0].im = tab[0].im*t[5].im; #endif x[4].re = x[1].re + x[2].re; x[4].im = x[1].im + x[2].im; y[4].re = y[1].re - y[2].re; y[4].im = y[1].im - y[2].im; x[1].re = z[0].re + x[1].re; x[1].im = z[0].im + x[1].im; y[1].re = y[0].re + y[1].re; y[1].im = y[0].im + y[1].im; x[2].re = z[0].re + x[2].re; x[2].im = z[0].im + x[2].im; y[2].re = y[2].re - y[0].re; y[2].im = y[2].im - y[0].im; x[4].re = z[0].re - x[4].re; x[4].im = z[0].im - x[4].im; y[4].re = y[0].re - y[4].re; y[4].im = y[0].im - y[4].im; out[1*stride] = (FFTComplex){ x[1].re + y[1].im, x[1].im - y[1].re }; out[2*stride] = (FFTComplex){ x[2].re + y[2].im, x[2].im - y[2].re }; out[3*stride] = (FFTComplex){ x[3].re + y[3].im, x[3].im - y[3].re }; out[4*stride] = (FFTComplex){ x[4].re + y[4].im, x[4].im - y[4].re }; out[5*stride] = (FFTComplex){ x[4].re - y[4].im, x[4].im + y[4].re }; out[6*stride] = (FFTComplex){ x[3].re - y[3].im, x[3].im + y[3].re }; out[7*stride] = (FFTComplex){ x[2].re - y[2].im, x[2].im + y[2].re }; out[8*stride] = (FFTComplex){ x[1].re - y[1].im, x[1].im + y[1].re }; } static av_always_inline void fft15(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex tmp[15]; for (int i = 0; i < 5; i++) fft3(tmp + i, in + i*3, 5); fft5_m1(out, tmp + 0, stride); fft5_m2(out, tmp + 5, stride); fft5_m3(out, tmp + 10, stride); } #define BUTTERFLIES(a0,a1,a2,a3) \ do { \ r0=a0.re; \ i0=a0.im; \ r1=a1.re; \ i1=a1.im; \ BF(t3, t5, t5, t1); \ BF(a2.re, a0.re, r0, t5); \ BF(a3.im, a1.im, i1, t3); \ BF(t4, t6, t2, t6); \ BF(a3.re, a1.re, r1, t4); \ BF(a2.im, a0.im, i0, t6); \ } while (0) #define TRANSFORM(a0,a1,a2,a3,wre,wim) \ do { \ CMUL(t1, t2, a2.re, a2.im, wre, -wim); \ CMUL(t5, t6, a3.re, a3.im, wre, wim); \ BUTTERFLIES(a0, a1, a2, a3); \ } while (0) /* z[0...8n-1], w[1...2n-1] */ static void split_radix_combine(FFTComplex *z, const FFTSample *cos, int n) { int o1 = 2*n; int o2 = 4*n; int o3 = 6*n; const FFTSample *wim = cos + o1 - 7; FFTSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; for (int i = 0; i < n; i += 4) { TRANSFORM(z[0], z[o1 + 0], z[o2 + 0], z[o3 + 0], cos[0], wim[7]); TRANSFORM(z[2], z[o1 + 2], z[o2 + 2], z[o3 + 2], cos[2], wim[5]); TRANSFORM(z[4], z[o1 + 4], z[o2 + 4], z[o3 + 4], cos[4], wim[3]); TRANSFORM(z[6], z[o1 + 6], z[o2 + 6], z[o3 + 6], cos[6], wim[1]); TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], cos[1], wim[6]); TRANSFORM(z[3], z[o1 + 3], z[o2 + 3], z[o3 + 3], cos[3], wim[4]); TRANSFORM(z[5], z[o1 + 5], z[o2 + 5], z[o3 + 5], cos[5], wim[2]); TRANSFORM(z[7], z[o1 + 7], z[o2 + 7], z[o3 + 7], cos[7], wim[0]); z += 2*4; cos += 2*4; wim -= 2*4; } } #define DECL_FFT(n, n2, n4) \ static void fft##n(FFTComplex *z) \ { \ fft##n2(z); \ fft##n4(z + n4*2); \ fft##n4(z + n4*3); \ split_radix_combine(z, TX_NAME(ff_cos_##n), n4/2); \ } static void fft2(FFTComplex *z) { FFTComplex tmp; BF(tmp.re, z[0].re, z[0].re, z[1].re); BF(tmp.im, z[0].im, z[0].im, z[1].im); z[1] = tmp; } static void fft4(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); BF(t8, t6, z[3].re, z[2].re); BF(z[2].re, z[0].re, t1, t6); BF(t4, t2, z[0].im, z[1].im); BF(t7, t5, z[2].im, z[3].im); BF(z[3].im, z[1].im, t4, t8); BF(z[3].re, z[1].re, t3, t7); BF(z[2].im, z[0].im, t2, t5); } static void fft8(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; fft4(z); BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t5, z[7].re, z[6].re, -z[7].re); BF(t6, z[7].im, z[6].im, -z[7].im); BUTTERFLIES(z[0], z[2], z[4], z[6]); TRANSFORM(z[1], z[3], z[5], z[7], RESCALE(M_SQRT1_2), RESCALE(M_SQRT1_2)); } static void fft16(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1]; FFTSample cos_16_2 = TX_NAME(ff_cos_16)[2]; FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3]; fft8(z + 0); fft4(z + 8); fft4(z + 12); t1 = z[ 8].re; t2 = z[ 8].im; t5 = z[12].re; t6 = z[12].im; BUTTERFLIES(z[0], z[4], z[8], z[12]); TRANSFORM(z[ 2], z[ 6], z[10], z[14], cos_16_2, cos_16_2); TRANSFORM(z[ 1], z[ 5], z[ 9], z[13], cos_16_1, cos_16_3); TRANSFORM(z[ 3], z[ 7], z[11], z[15], cos_16_3, cos_16_1); } DECL_FFT(32,16,8) DECL_FFT(64,32,16) DECL_FFT(128,64,32) DECL_FFT(256,128,64) DECL_FFT(512,256,128) DECL_FFT(1024,512,256) DECL_FFT(2048,1024,512) DECL_FFT(4096,2048,1024) DECL_FFT(8192,4096,2048) DECL_FFT(16384,8192,4096) DECL_FFT(32768,16384,8192) DECL_FFT(65536,32768,16384) DECL_FFT(131072,65536,32768) static void (* const fft_dispatch[])(FFTComplex*) = { NULL, fft2, fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072 }; #define DECL_COMP_FFT(N) \ static void compound_fft_##N##xM(AVTXContext *s, void *_out, \ void *_in, ptrdiff_t stride) \ { \ const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \ FFTComplex *in = _in; \ FFTComplex *out = _out; \ FFTComplex fft##N##in[N]; \ void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m)]; \ \ for (int i = 0; i < m; i++) { \ for (int j = 0; j < N; j++) \ fft##N##in[j] = in[in_map[i*N + j]]; \ fft##N(s->tmp + s->revtab_c[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < N*m; i++) \ out[i] = s->tmp[out_map[i]]; \ } DECL_COMP_FFT(3) DECL_COMP_FFT(5) DECL_COMP_FFT(7) DECL_COMP_FFT(9) DECL_COMP_FFT(15) static void split_radix_fft(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride) { FFTComplex *in = _in; FFTComplex *out = _out; int m = s->m, mb = av_log2(m); if (s->flags & AV_TX_INPLACE) { FFTComplex tmp; int src, dst, *inplace_idx = s->inplace_idx; src = *inplace_idx++; do { tmp = out[src]; dst = s->revtab_c[src]; do { FFSWAP(FFTComplex, tmp, out[dst]); dst = s->revtab_c[dst]; } while (dst != src); /* Can be > as well, but is less predictable */ out[dst] = tmp; } while ((src = *inplace_idx++)); } else { for (int i = 0; i < m; i++) out[i] = in[s->revtab_c[i]]; } fft_dispatch[mb](out); } static void naive_fft(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride) { FFTComplex *in = _in; FFTComplex *out = _out; const int n = s->n; double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n; for(int i = 0; i < n; i++) { FFTComplex tmp = { 0 }; for(int j = 0; j < n; j++) { const double factor = phase*i*j; const FFTComplex mult = { RESCALE(cos(factor)), RESCALE(sin(factor)), }; FFTComplex res; CMUL3(res, in[j], mult); tmp.re += res.re; tmp.im += res.im; } out[i] = tmp; } } #define DECL_COMP_IMDCT(N) \ static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ ptrdiff_t stride) \ { \ FFTComplex fft##N##in[N]; \ FFTComplex *z = _dst, *exp = s->exptab; \ const int m = s->m, len8 = N*m >> 1; \ const int *in_map = s->pfatab, *out_map = in_map + N*m; \ const FFTSample *src = _src, *in1, *in2; \ void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \ \ stride /= sizeof(*src); /* To convert it from bytes */ \ in1 = src; \ in2 = src + ((N*m*2) - 1) * stride; \ \ for (int i = 0; i < m; i++) { \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \ CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \ } \ fft##N(s->tmp + s->revtab_c[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \ FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \ \ CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \ CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \ } \ } DECL_COMP_IMDCT(3) DECL_COMP_IMDCT(5) DECL_COMP_IMDCT(7) DECL_COMP_IMDCT(9) DECL_COMP_IMDCT(15) #define DECL_COMP_MDCT(N) \ static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ ptrdiff_t stride) \ { \ FFTSample *src = _src, *dst = _dst; \ FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \ const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \ const int *in_map = s->pfatab, *out_map = in_map + N*m; \ void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \ \ stride /= sizeof(*dst); \ \ for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ if (k < len4) { \ tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \ tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \ } else { \ tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \ tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \ } \ CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \ exp[k >> 1].re, exp[k >> 1].im); \ } \ fft##N(s->tmp + s->revtab_c[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \ FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \ \ CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \ exp[i0].im, exp[i0].re); \ CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \ exp[i1].im, exp[i1].re); \ } \ } DECL_COMP_MDCT(3) DECL_COMP_MDCT(5) DECL_COMP_MDCT(7) DECL_COMP_MDCT(9) DECL_COMP_MDCT(15) static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { FFTComplex *z = _dst, *exp = s->exptab; const int m = s->m, len8 = m >> 1; const FFTSample *src = _src, *in1, *in2; void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; stride /= sizeof(*src); in1 = src; in2 = src + ((m*2) - 1) * stride; for (int i = 0; i < m; i++) { FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] }; CMUL3(z[s->revtab_c[i]], tmp, exp[i]); } fftp(z); for (int i = 0; i < len8; i++) { const int i0 = len8 + i, i1 = len8 - i - 1; FFTComplex src1 = { z[i1].im, z[i1].re }; FFTComplex src0 = { z[i0].im, z[i0].re }; CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); } } static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { FFTSample *src = _src, *dst = _dst; FFTComplex *exp = s->exptab, tmp, *z = _dst; const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1; void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; stride /= sizeof(*dst); for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ const int k = 2*i; if (k < len4) { tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); } else { tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); } CMUL(z[s->revtab_c[i]].im, z[s->revtab_c[i]].re, tmp.re, tmp.im, exp[i].re, exp[i].im); } fftp(z); for (int i = 0; i < len8; i++) { const int i0 = len8 + i, i1 = len8 - i - 1; FFTComplex src1 = { z[i1].re, z[i1].im }; FFTComplex src0 = { z[i0].re, z[i0].im }; CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, exp[i0].im, exp[i0].re); CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, exp[i1].im, exp[i1].re); } } static void naive_imdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { int len = s->n; int len2 = len*2; FFTSample *src = _src; FFTSample *dst = _dst; double scale = s->scale; const double phase = M_PI/(4.0*len2); stride /= sizeof(*src); for (int i = 0; i < len; i++) { double sum_d = 0.0; double sum_u = 0.0; double i_d = phase * (4*len - 2*i - 1); double i_u = phase * (3*len2 + 2*i + 1); for (int j = 0; j < len2; j++) { double a = (2 * j + 1); double a_d = cos(a * i_d); double a_u = cos(a * i_u); double val = UNSCALE(src[j*stride]); sum_d += a_d * val; sum_u += a_u * val; } dst[i + 0] = RESCALE( sum_d*scale); dst[i + len] = RESCALE(-sum_u*scale); } } static void naive_mdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { int len = s->n*2; FFTSample *src = _src; FFTSample *dst = _dst; double scale = s->scale; const double phase = M_PI/(4.0*len); stride /= sizeof(*dst); for (int i = 0; i < len; i++) { double sum = 0.0; for (int j = 0; j < len*2; j++) { int a = (2*j + 1 + len) * (2*i + 1); sum += UNSCALE(src[j]) * cos(a * phase); } dst[i*stride] = RESCALE(sum*scale); } } static void full_imdct_wrapper_fn(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { int len = s->m*s->n*4; int len2 = len >> 1; int len4 = len >> 2; FFTSample *dst = _dst; s->top_tx(s, dst + len4, _src, stride); stride /= sizeof(*dst); for (int i = 0; i < len4; i++) { dst[ i*stride] = -dst[(len2 - i - 1)*stride]; dst[(len - i - 1)*stride] = dst[(len2 + i + 0)*stride]; } } static int gen_mdct_exptab(AVTXContext *s, int len4, double scale) { const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0; if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab)))) return AVERROR(ENOMEM); scale = sqrt(fabs(scale)); for (int i = 0; i < len4; i++) { const double alpha = M_PI_2 * (i + theta) / len4; s->exptab[i].re = RESCALE(cos(alpha) * scale); s->exptab[i].im = RESCALE(sin(alpha) * scale); } return 0; } int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags) { const int is_mdct = ff_tx_type_is_mdct(type); int err, l, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) - 1); if (is_mdct) len >>= 1; l = len; #define CHECK_FACTOR(DST, FACTOR, SRC) \ if (DST == 1 && !(SRC % FACTOR)) { \ DST = FACTOR; \ SRC /= FACTOR; \ } CHECK_FACTOR(n, 15, len) CHECK_FACTOR(n, 9, len) CHECK_FACTOR(n, 7, len) CHECK_FACTOR(n, 5, len) CHECK_FACTOR(n, 3, len) #undef CHECK_FACTOR /* len must be a power of two now */ if (!(len & (len - 1)) && len >= 2 && len <= max_ptwo) { m = len; len = 1; } s->n = n; s->m = m; s->inv = inv; s->type = type; s->flags = flags; /* If we weren't able to split the length into factors we can handle, * resort to using the naive and slow FT. This also filters out * direct 3, 5 and 15 transforms as they're too niche. */ if (len > 1 || m == 1) { if (is_mdct && (l & 1)) /* Odd (i)MDCTs are not supported yet */ return AVERROR(ENOSYS); if (flags & AV_TX_INPLACE) /* Neither are in-place naive transforms */ return AVERROR(ENOSYS); s->n = l; s->m = 1; *tx = naive_fft; if (is_mdct) { s->scale = *((SCALE_TYPE *)scale); *tx = inv ? naive_imdct : naive_mdct; if (inv && (flags & AV_TX_FULL_IMDCT)) { s->top_tx = *tx; *tx = full_imdct_wrapper_fn; } } return 0; } if (n > 1 && m > 1) { /* 2D transform case */ if ((err = ff_tx_gen_compound_mapping(s))) return err; if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp)))) return AVERROR(ENOMEM); if (!(m & (m - 1))) { *tx = n == 3 ? compound_fft_3xM : n == 5 ? compound_fft_5xM : n == 7 ? compound_fft_7xM : n == 9 ? compound_fft_9xM : compound_fft_15xM; if (is_mdct) *tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM : n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM : n == 7 ? inv ? compound_imdct_7xM : compound_mdct_7xM : n == 9 ? inv ? compound_imdct_9xM : compound_mdct_9xM : inv ? compound_imdct_15xM : compound_mdct_15xM; } } else { /* Direct transform case */ *tx = split_radix_fft; if (is_mdct) *tx = inv ? monolithic_imdct : monolithic_mdct; } if (n == 3 || n == 5 || n == 15) init_cos_tabs(0); else if (n == 7) init_cos_tabs(1); else if (n == 9) init_cos_tabs(2); if (m != 1 && !(m & (m - 1))) { if ((err = ff_tx_gen_ptwo_revtab(s, n == 1 && !is_mdct && !(flags & AV_TX_INPLACE)))) return err; if (flags & AV_TX_INPLACE) { if (is_mdct) /* In-place MDCTs are not supported yet */ return AVERROR(ENOSYS); if ((err = ff_tx_gen_ptwo_inplace_revtab_idx(s, s->revtab_c))) return err; } for (int i = 4; i <= av_log2(m); i++) init_cos_tabs(i); } if (is_mdct) { if (inv && (flags & AV_TX_FULL_IMDCT)) { s->top_tx = *tx; *tx = full_imdct_wrapper_fn; } return gen_mdct_exptab(s, n*m, *((SCALE_TYPE *)scale)); } return 0; }