/* * Copyright (c) 2019 Lynne * Power of two FFT: * Copyright (c) 2008 Loren Merritt * Copyright (c) 2002 Fabrice Bellard * Partly based on libdjbfft by D. J. Bernstein * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "tx.h" #include "thread.h" #include "mem.h" #include "avassert.h" typedef float FFTSample; typedef AVComplexFloat FFTComplex; struct AVTXContext { int n; /* Nptwo part */ int m; /* Ptwo part */ FFTComplex *exptab; /* MDCT exptab */ FFTComplex *tmp; /* Temporary buffer needed for all compound transforms */ int *pfatab; /* Input/Output mapping for compound transforms */ int *revtab; /* Input mapping for power of two transforms */ }; #define FFT_NAME(x) x #define COSTABLE(size) \ static DECLARE_ALIGNED(32, FFTSample, FFT_NAME(ff_cos_##size))[size/2] static FFTSample * const FFT_NAME(ff_cos_tabs)[18]; COSTABLE(16); COSTABLE(32); COSTABLE(64); COSTABLE(128); COSTABLE(256); COSTABLE(512); COSTABLE(1024); COSTABLE(2048); COSTABLE(4096); COSTABLE(8192); COSTABLE(16384); COSTABLE(32768); COSTABLE(65536); COSTABLE(131072); static av_cold void init_ff_cos_tabs(int index) { int m = 1 << index; double freq = 2*M_PI/m; FFTSample *tab = FFT_NAME(ff_cos_tabs)[index]; for(int i = 0; i <= m/4; i++) tab[i] = cos(i*freq); for(int i = 1; i < m/4; i++) tab[m/2 - i] = tab[i]; } typedef struct CosTabsInitOnce { void (*func)(void); AVOnce control; } CosTabsInitOnce; #define INIT_FF_COS_TABS_FUNC(index, size) \ static av_cold void init_ff_cos_tabs_ ## size (void) \ { \ init_ff_cos_tabs(index); \ } INIT_FF_COS_TABS_FUNC(4, 16) INIT_FF_COS_TABS_FUNC(5, 32) INIT_FF_COS_TABS_FUNC(6, 64) INIT_FF_COS_TABS_FUNC(7, 128) INIT_FF_COS_TABS_FUNC(8, 256) INIT_FF_COS_TABS_FUNC(9, 512) INIT_FF_COS_TABS_FUNC(10, 1024) INIT_FF_COS_TABS_FUNC(11, 2048) INIT_FF_COS_TABS_FUNC(12, 4096) INIT_FF_COS_TABS_FUNC(13, 8192) INIT_FF_COS_TABS_FUNC(14, 16384) INIT_FF_COS_TABS_FUNC(15, 32768) INIT_FF_COS_TABS_FUNC(16, 65536) INIT_FF_COS_TABS_FUNC(17, 131072) static CosTabsInitOnce cos_tabs_init_once[] = { { NULL }, { NULL }, { NULL }, { NULL }, { init_ff_cos_tabs_16, AV_ONCE_INIT }, { init_ff_cos_tabs_32, AV_ONCE_INIT }, { init_ff_cos_tabs_64, AV_ONCE_INIT }, { init_ff_cos_tabs_128, AV_ONCE_INIT }, { init_ff_cos_tabs_256, AV_ONCE_INIT }, { init_ff_cos_tabs_512, AV_ONCE_INIT }, { init_ff_cos_tabs_1024, AV_ONCE_INIT }, { init_ff_cos_tabs_2048, AV_ONCE_INIT }, { init_ff_cos_tabs_4096, AV_ONCE_INIT }, { init_ff_cos_tabs_8192, AV_ONCE_INIT }, { init_ff_cos_tabs_16384, AV_ONCE_INIT }, { init_ff_cos_tabs_32768, AV_ONCE_INIT }, { init_ff_cos_tabs_65536, AV_ONCE_INIT }, { init_ff_cos_tabs_131072, AV_ONCE_INIT }, }; static FFTSample * const FFT_NAME(ff_cos_tabs)[] = { NULL, NULL, NULL, NULL, FFT_NAME(ff_cos_16), FFT_NAME(ff_cos_32), FFT_NAME(ff_cos_64), FFT_NAME(ff_cos_128), FFT_NAME(ff_cos_256), FFT_NAME(ff_cos_512), FFT_NAME(ff_cos_1024), FFT_NAME(ff_cos_2048), FFT_NAME(ff_cos_4096), FFT_NAME(ff_cos_8192), FFT_NAME(ff_cos_16384), FFT_NAME(ff_cos_32768), FFT_NAME(ff_cos_65536), FFT_NAME(ff_cos_131072), }; static av_cold void ff_init_ff_cos_tabs(int index) { ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func); } static AVOnce tabs_53_once = AV_ONCE_INIT; static DECLARE_ALIGNED(32, FFTComplex, FFT_NAME(ff_53_tabs))[4]; static av_cold void ff_init_53_tabs(void) { ff_53_tabs[0] = (FFTComplex){ cos(2 * M_PI / 12), cos(2 * M_PI / 12) }; ff_53_tabs[1] = (FFTComplex){ 0.5, 0.5 }; ff_53_tabs[2] = (FFTComplex){ cos(2 * M_PI / 5), sin(2 * M_PI / 5) }; ff_53_tabs[3] = (FFTComplex){ cos(2 * M_PI / 10), sin(2 * M_PI / 10) }; } #define BF(x, y, a, b) do { \ x = (a) - (b); \ y = (a) + (b); \ } while (0) #define CMUL(dre, dim, are, aim, bre, bim) do { \ (dre) = (are) * (bre) - (aim) * (bim); \ (dim) = (are) * (bim) + (aim) * (bre); \ } while (0) #define CMUL3(c, a, b) CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im) static av_always_inline void fft3(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex tmp[2]; tmp[0].re = in[1].im - in[2].im; tmp[0].im = in[1].re - in[2].re; tmp[1].re = in[1].re + in[2].re; tmp[1].im = in[1].im + in[2].im; out[0*stride].re = in[0].re + tmp[1].re; out[0*stride].im = in[0].im + tmp[1].im; tmp[0].re *= ff_53_tabs[0].re; tmp[0].im *= ff_53_tabs[0].im; tmp[1].re *= ff_53_tabs[1].re; tmp[1].im *= ff_53_tabs[1].re; out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re; out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im; out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re; out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im; } #define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \ static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \ ptrdiff_t stride) \ { \ FFTComplex z0[4], t[6]; \ \ t[0].re = in[1].re + in[4].re; \ t[0].im = in[1].im + in[4].im; \ t[1].im = in[1].re - in[4].re; \ t[1].re = in[1].im - in[4].im; \ t[2].re = in[2].re + in[3].re; \ t[2].im = in[2].im + in[3].im; \ t[3].im = in[2].re - in[3].re; \ t[3].re = in[2].im - in[3].im; \ \ out[D0*stride].re = in[0].re + in[1].re + in[2].re + \ in[3].re + in[4].re; \ out[D0*stride].im = in[0].im + in[1].im + in[2].im + \ in[3].im + in[4].im; \ \ t[4].re = ff_53_tabs[2].re * t[2].re - ff_53_tabs[3].re * t[0].re; \ t[4].im = ff_53_tabs[2].re * t[2].im - ff_53_tabs[3].re * t[0].im; \ t[0].re = ff_53_tabs[2].re * t[0].re - ff_53_tabs[3].re * t[2].re; \ t[0].im = ff_53_tabs[2].re * t[0].im - ff_53_tabs[3].re * t[2].im; \ t[5].re = ff_53_tabs[2].im * t[3].re - ff_53_tabs[3].im * t[1].re; \ t[5].im = ff_53_tabs[2].im * t[3].im - ff_53_tabs[3].im * t[1].im; \ t[1].re = ff_53_tabs[2].im * t[1].re + ff_53_tabs[3].im * t[3].re; \ t[1].im = ff_53_tabs[2].im * t[1].im + ff_53_tabs[3].im * t[3].im; \ \ z0[0].re = t[0].re - t[1].re; \ z0[0].im = t[0].im - t[1].im; \ z0[1].re = t[4].re + t[5].re; \ z0[1].im = t[4].im + t[5].im; \ \ z0[2].re = t[4].re - t[5].re; \ z0[2].im = t[4].im - t[5].im; \ z0[3].re = t[0].re + t[1].re; \ z0[3].im = t[0].im + t[1].im; \ \ out[D1*stride].re = in[0].re + z0[3].re; \ out[D1*stride].im = in[0].im + z0[0].im; \ out[D2*stride].re = in[0].re + z0[2].re; \ out[D2*stride].im = in[0].im + z0[1].im; \ out[D3*stride].re = in[0].re + z0[1].re; \ out[D3*stride].im = in[0].im + z0[2].im; \ out[D4*stride].re = in[0].re + z0[0].re; \ out[D4*stride].im = in[0].im + z0[3].im; \ } DECL_FFT5(fft5, 0, 1, 2, 3, 4) DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9) DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4) DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14) static av_always_inline void fft15(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex tmp[15]; for (int i = 0; i < 5; i++) fft3(tmp + i, in + i*3, 5); fft5_m1(out, tmp + 0, stride); fft5_m2(out, tmp + 5, stride); fft5_m3(out, tmp + 10, stride); } #define BUTTERFLIES(a0,a1,a2,a3) {\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, a0.re, t5);\ BF(a3.im, a1.im, a1.im, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, a1.re, t4);\ BF(a2.im, a0.im, a0.im, t6);\ } // force loading all the inputs before storing any. // this is slightly slower for small data, but avoids store->load aliasing // for addresses separated by large powers of 2. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, r0, t5);\ BF(a3.im, a1.im, i1, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, r1, t4);\ BF(a2.im, a0.im, i0, t6);\ } #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ CMUL(t1, t2, a2.re, a2.im, wre, -wim);\ CMUL(t5, t6, a3.re, a3.im, wre, wim);\ BUTTERFLIES(a0,a1,a2,a3)\ } #define TRANSFORM_ZERO(a0,a1,a2,a3) {\ t1 = a2.re;\ t2 = a2.im;\ t5 = a3.re;\ t6 = a3.im;\ BUTTERFLIES(a0,a1,a2,a3)\ } /* z[0...8n-1], w[1...2n-1] */ #define PASS(name)\ static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ {\ FFTSample t1, t2, t3, t4, t5, t6;\ int o1 = 2*n;\ int o2 = 4*n;\ int o3 = 6*n;\ const FFTSample *wim = wre+o1;\ n--;\ \ TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ do {\ z += 2;\ wre += 2;\ wim -= 2;\ TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ } while(--n);\ } PASS(pass) #undef BUTTERFLIES #define BUTTERFLIES BUTTERFLIES_BIG PASS(pass_big) #define DECL_FFT(n,n2,n4)\ static void fft##n(FFTComplex *z)\ {\ fft##n2(z);\ fft##n4(z+n4*2);\ fft##n4(z+n4*3);\ pass(z,FFT_NAME(ff_cos_##n),n4/2);\ } static void fft4(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); BF(t8, t6, z[3].re, z[2].re); BF(z[2].re, z[0].re, t1, t6); BF(t4, t2, z[0].im, z[1].im); BF(t7, t5, z[2].im, z[3].im); BF(z[3].im, z[1].im, t4, t8); BF(z[3].re, z[1].re, t3, t7); BF(z[2].im, z[0].im, t2, t5); } static void fft8(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6; fft4(z); BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t5, z[7].re, z[6].re, -z[7].re); BF(t6, z[7].im, z[6].im, -z[7].im); BUTTERFLIES(z[0],z[2],z[4],z[6]); TRANSFORM(z[1],z[3],z[5],z[7],M_SQRT1_2,M_SQRT1_2); } static void fft16(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6; FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1]; FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3]; fft8(z); fft4(z+8); fft4(z+12); TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); TRANSFORM(z[2],z[6],z[10],z[14],M_SQRT1_2,M_SQRT1_2); TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3); TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1); } DECL_FFT(32,16,8) DECL_FFT(64,32,16) DECL_FFT(128,64,32) DECL_FFT(256,128,64) DECL_FFT(512,256,128) #define pass pass_big DECL_FFT(1024,512,256) DECL_FFT(2048,1024,512) DECL_FFT(4096,2048,1024) DECL_FFT(8192,4096,2048) DECL_FFT(16384,8192,4096) DECL_FFT(32768,16384,8192) DECL_FFT(65536,32768,16384) DECL_FFT(131072,65536,32768) static void (* const fft_dispatch[])(FFTComplex*) = { fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072 }; #define DECL_COMP_FFT(N) \ static void compound_fft_##N##xM(AVTXContext *s, void *_out, \ void *_in, ptrdiff_t stride) \ { \ const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \ FFTComplex *in = _in; \ FFTComplex *out = _out; \ FFTComplex fft##N##in[N]; \ void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m) - 2]; \ \ for (int i = 0; i < m; i++) { \ for (int j = 0; j < N; j++) \ fft##N##in[j] = in[in_map[i*N + j]]; \ fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < N*m; i++) \ out[i] = s->tmp[out_map[i]]; \ } DECL_COMP_FFT(3) DECL_COMP_FFT(5) DECL_COMP_FFT(15) static void monolithic_fft(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride) { FFTComplex *in = _in; FFTComplex *out = _out; int m = s->m, mb = av_log2(m) - 2; for (int i = 0; i < m; i++) out[s->revtab[i]] = in[i]; fft_dispatch[mb](out); } #define DECL_COMP_IMDCT(N) \ static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ ptrdiff_t stride) \ { \ FFTComplex fft##N##in[N]; \ FFTComplex *z = _dst, *exp = s->exptab; \ const int m = s->m, len8 = N*m >> 1; \ const int *in_map = s->pfatab, *out_map = in_map + N*m; \ const float *src = _src, *in1, *in2; \ void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2]; \ \ stride /= sizeof(*src); /* To convert it from bytes */ \ in1 = src; \ in2 = src + ((N*m*2) - 1) * stride; \ \ for (int i = 0; i < m; i++) { \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \ CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \ } \ fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \ FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \ \ CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \ CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \ } \ } DECL_COMP_IMDCT(3) DECL_COMP_IMDCT(5) DECL_COMP_IMDCT(15) #define DECL_COMP_MDCT(N) \ static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ ptrdiff_t stride) \ { \ float *src = _src, *dst = _dst; \ FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \ const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \ const int *in_map = s->pfatab, *out_map = in_map + N*m; \ void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2]; \ \ stride /= sizeof(*dst); \ \ for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ if (k < len4) { \ tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k]; \ tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k]; \ } else { \ tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k]; \ tmp.im = src[-len4 + k] - src[1*len3 - 1 - k]; \ } \ CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \ exp[k >> 1].re, exp[k >> 1].im); \ } \ fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \ FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \ \ CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \ exp[i0].im, exp[i0].re); \ CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \ exp[i1].im, exp[i1].re); \ } \ } DECL_COMP_MDCT(3) DECL_COMP_MDCT(5) DECL_COMP_MDCT(15) static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { FFTComplex *z = _dst, *exp = s->exptab; const int m = s->m, len8 = m >> 1; const float *src = _src, *in1, *in2; void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2]; stride /= sizeof(*src); in1 = src; in2 = src + ((m*2) - 1) * stride; for (int i = 0; i < m; i++) { FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] }; CMUL3(z[s->revtab[i]], tmp, exp[i]); } fftp(z); for (int i = 0; i < len8; i++) { const int i0 = len8 + i, i1 = len8 - i - 1; FFTComplex src1 = { z[i1].im, z[i1].re }; FFTComplex src0 = { z[i0].im, z[i0].re }; CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); } } static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { float *src = _src, *dst = _dst; FFTComplex *exp = s->exptab, tmp, *z = _dst; const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1; void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2]; stride /= sizeof(*dst); for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ const int k = 2*i; if (k < len4) { tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k]; tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k]; } else { tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k]; tmp.im = src[-len4 + k] - src[1*len3 - 1 - k]; } CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im, exp[i].re, exp[i].im); } fftp(z); for (int i = 0; i < len8; i++) { const int i0 = len8 + i, i1 = len8 - i - 1; FFTComplex src1 = { z[i1].re, z[i1].im }; FFTComplex src0 = { z[i0].re, z[i0].im }; CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, exp[i0].im, exp[i0].re); CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, exp[i1].im, exp[i1].re); } } /* Calculates the modular multiplicative inverse, not fast, replace */ static int mulinv(int n, int m) { n = n % m; for (int x = 1; x < m; x++) if (((n * x) % m) == 1) return x; av_assert0(0); /* Never reached */ } /* Guaranteed to work for any n, m where gcd(n, m) == 1 */ static int gen_compound_mapping(AVTXContext *s, int n, int m, int inv, enum AVTXType type) { int *in_map, *out_map; const int len = n*m; const int m_inv = mulinv(m, n); const int n_inv = mulinv(n, m); const int mdct = type == AV_TX_FLOAT_MDCT; if (!(s->pfatab = av_malloc(2*len*sizeof(*s->pfatab)))) return AVERROR(ENOMEM); in_map = s->pfatab; out_map = s->pfatab + n*m; /* Ruritanian map for input, CRT map for output, can be swapped */ for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { /* Shifted by 1 to simplify forward MDCTs */ in_map[j*n + i] = ((i*m + j*n) % len) << mdct; out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j; } } /* Change transform direction by reversing all ACs */ if (inv) { for (int i = 0; i < m; i++) { int *in = &in_map[i*n + 1]; /* Skip the DC */ for (int j = 0; j < ((n - 1) >> 1); j++) FFSWAP(int, in[j], in[n - j - 2]); } } /* Our 15-point transform is also a compound one, so embed its input map */ if (n == 15) { for (int k = 0; k < m; k++) { int tmp[15]; memcpy(tmp, &in_map[k*15], 15*sizeof(*tmp)); for (int i = 0; i < 5; i++) { for (int j = 0; j < 3; j++) in_map[k*15 + i*3 + j] = tmp[(i*3 + j*5) % 15]; } } } return 0; } static int split_radix_permutation(int i, int n, int inverse) { int m; if (n <= 2) return i & 1; m = n >> 1; if (!(i & m)) return split_radix_permutation(i, m, inverse)*2; m >>= 1; if (inverse == !(i & m)) return split_radix_permutation(i, m, inverse)*4 + 1; else return split_radix_permutation(i, m, inverse)*4 - 1; } static int get_ptwo_revtab(AVTXContext *s, int m, int inv) { if (!(s->revtab = av_malloc(m*sizeof(*s->revtab)))) return AVERROR(ENOMEM); /* Default */ for (int i = 0; i < m; i++) { int k = -split_radix_permutation(i, m, inv) & (m - 1); s->revtab[k] = i; } return 0; } static int gen_mdct_exptab(AVTXContext *s, int len4, double scale) { const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0; if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab)))) return AVERROR(ENOMEM); scale = sqrt(fabs(scale)); for (int i = 0; i < len4; i++) { const double alpha = M_PI_2 * (i + theta) / len4; s->exptab[i].re = cos(alpha) * scale; s->exptab[i].im = sin(alpha) * scale; } return 0; } av_cold void av_tx_uninit(AVTXContext **ctx) { if (!(*ctx)) return; av_free((*ctx)->pfatab); av_free((*ctx)->exptab); av_free((*ctx)->revtab); av_free((*ctx)->tmp); av_freep(ctx); } static int init_mdct_fft(AVTXContext *s, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags) { int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) + 1); if (type == AV_TX_FLOAT_MDCT) len >>= 1; #define CHECK_FACTOR(DST, FACTOR, SRC) \ if (DST == 1 && !(SRC % FACTOR)) { \ DST = FACTOR; \ SRC /= FACTOR; \ } CHECK_FACTOR(n, 15, len) CHECK_FACTOR(n, 5, len) CHECK_FACTOR(n, 3, len) #undef CHECK_NPTWO_FACTOR /* len must be a power of two now */ if (!(len & (len - 1)) && len >= 4 && len <= max_ptwo) { m = len; len = 1; } /* Filter out direct 3, 5 and 15 transforms, too niche */ if (len > 1 || m == 1) { av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, " "m = %i, residual = %i!\n", n, m, len); return AVERROR(EINVAL); } else if (n > 1 && m > 1) { /* 2D transform case */ if ((err = gen_compound_mapping(s, n, m, inv, type))) return err; if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp)))) return AVERROR(ENOMEM); *tx = n == 3 ? compound_fft_3xM : n == 5 ? compound_fft_5xM : compound_fft_15xM; if (type == AV_TX_FLOAT_MDCT) *tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM : n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM : inv ? compound_imdct_15xM : compound_mdct_15xM; } else { /* Direct transform case */ *tx = monolithic_fft; if (type == AV_TX_FLOAT_MDCT) *tx = inv ? monolithic_imdct : monolithic_mdct; } if (n != 1) ff_thread_once(&tabs_53_once, ff_init_53_tabs); if (m != 1) { get_ptwo_revtab(s, m, inv); for (int i = 4; i <= av_log2(m); i++) ff_init_ff_cos_tabs(i); } if (type == AV_TX_FLOAT_MDCT) if ((err = gen_mdct_exptab(s, n*m, *((float *)scale)))) return err; s->n = n; s->m = m; return 0; } av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags) { int err; AVTXContext *s = av_mallocz(sizeof(*s)); if (!s) return AVERROR(ENOMEM); switch (type) { case AV_TX_FLOAT_FFT: case AV_TX_FLOAT_MDCT: if ((err = init_mdct_fft(s, tx, type, inv, len, scale, flags))) goto fail; break; default: err = AVERROR(EINVAL); goto fail; } *ctx = s; return 0; fail: av_tx_uninit(&s); *tx = NULL; return err; }