/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Copyright (C) 2000, Intel Corporation, all rights reserved. * Copyright (C) 2013, OpenCV Foundation, all rights reserved. * Third party copyrights are property of their respective owners. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistribution's of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistribution's in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * The name of the copyright holders may not be used to endorse or promote products * derived from this software without specific prior written permission. * * This software is provided by the copyright holders and contributors "as is" and * any express or implied warranties, including, but not limited to, the implied * warranties of merchantability and fitness for a particular purpose are disclaimed. * In no event shall the Intel Corporation or contributors be liable for any direct, * indirect, incidental, special, exemplary, or consequential damages * (including, but not limited to, procurement of substitute goods or services; * loss of use, data, or profits; or business interruption) however caused * and on any theory of liability, whether in contract, strict liability, * or tort (including negligence or otherwise) arising in any way out of * the use of this software, even if advised of the possibility of such damage. */ #define HARRIS_THRESHOLD 3.0f // Block size over which to compute harris response // // Note that changing this will require fiddling with the local array sizes in // harris_response #define HARRIS_RADIUS 2 #define DISTANCE_THRESHOLD 80 // Sub-pixel refinement window for feature points #define REFINE_WIN_HALF_W 5 #define REFINE_WIN_HALF_H 5 #define REFINE_WIN_W 11 // REFINE_WIN_HALF_W * 2 + 1 #define REFINE_WIN_H 11 // Non-maximum suppression window size #define NONMAX_WIN 30 #define NONMAX_WIN_HALF 15 // NONMAX_WIN / 2 typedef struct PointPair { // Previous frame float2 p1; // Current frame float2 p2; } PointPair; typedef struct SmoothedPointPair { // Non-smoothed point in current frame int2 p1; // Smoothed point in current frame float2 p2; } SmoothedPointPair; typedef struct MotionVector { PointPair p; // Used to mark vectors as potential outliers int should_consider; } MotionVector; const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const sampler_t sampler_linear = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR; const sampler_t sampler_linear_mirror = CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_MIRRORED_REPEAT | CLK_FILTER_LINEAR; // Writes to a 1D array at loc, treating it as a 2D array with the same // dimensions as the global work size. static void write_to_1d_arrf(__global float *buf, int2 loc, float val) { buf[loc.x + loc.y * get_global_size(0)] = val; } static void write_to_1d_arrul8(__global ulong8 *buf, int2 loc, ulong8 val) { buf[loc.x + loc.y * get_global_size(0)] = val; } static void write_to_1d_arrvec(__global MotionVector *buf, int2 loc, MotionVector val) { buf[loc.x + loc.y * get_global_size(0)] = val; } static void write_to_1d_arrf2(__global float2 *buf, int2 loc, float2 val) { buf[loc.x + loc.y * get_global_size(0)] = val; } static ulong8 read_from_1d_arrul8(__global const ulong8 *buf, int2 loc) { return buf[loc.x + loc.y * get_global_size(0)]; } static float2 read_from_1d_arrf2(__global const float2 *buf, int2 loc) { return buf[loc.x + loc.y * get_global_size(0)]; } // Returns the grayscale value at the given point. static float pixel_grayscale(__read_only image2d_t src, int2 loc) { float4 pixel = read_imagef(src, sampler, loc); return (pixel.x + pixel.y + pixel.z) / 3.0f; } static float convolve( __local const float *grayscale, int local_idx_x, int local_idx_y, float mask[3][3] ) { float ret = 0; // These loops touch each pixel surrounding loc as well as loc itself for (int i = 1, i2 = 0; i >= -1; --i, ++i2) { for (int j = -1, j2 = 0; j <= 1; ++j, ++j2) { ret += mask[i2][j2] * grayscale[(local_idx_x + 3 + j) + (local_idx_y + 3 + i) * 14]; } } return ret; } // Sums dx * dy for all pixels within radius of loc static float sum_deriv_prod( __local const float *grayscale, float mask_x[3][3], float mask_y[3][3] ) { float ret = 0; for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) { for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) { ret += convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_x) * convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_y); } } return ret; } // Sums d<>^2 (determined by mask) for all pixels within radius of loc static float sum_deriv_pow(__local const float *grayscale, float mask[3][3]) { float ret = 0; for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) { for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) { float deriv = convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask); ret += deriv * deriv; } } return ret; } // Fills a box with the given radius and pixel around loc static void draw_box(__write_only image2d_t dst, int2 loc, float4 pixel, int radius) { for (int i = -radius; i <= radius; ++i) { for (int j = -radius; j <= radius; ++j) { write_imagef( dst, (int2)( // Clamp to avoid writing outside image bounds clamp(loc.x + i, 0, get_image_dim(dst).x - 1), clamp(loc.y + j, 0, get_image_dim(dst).y - 1) ), pixel ); } } } // Converts the src image to grayscale __kernel void grayscale( __read_only image2d_t src, __write_only image2d_t grayscale ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); write_imagef(grayscale, loc, (float4)(pixel_grayscale(src, loc), 0.0f, 0.0f, 1.0f)); } // This kernel computes the harris response for the given grayscale src image // within the given radius and writes it to harris_buf __kernel void harris_response( __read_only image2d_t grayscale, __global float *harris_buf ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); if (loc.x > get_image_width(grayscale) - 1 || loc.y > get_image_height(grayscale) - 1) { write_to_1d_arrf(harris_buf, loc, 0); return; } float scale = 1.0f / ((1 << 2) * HARRIS_RADIUS * 255.0f); float sobel_mask_x[3][3] = { {-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1} }; float sobel_mask_y[3][3] = { { 1, 2, 1}, { 0, 0, 0}, {-1, -2, -1} }; // 8 x 8 local work + 3 pixels around each side (needed to accommodate for the // block size radius of 2) __local float grayscale_data[196]; int idx = get_group_id(0) * get_local_size(0); int idy = get_group_id(1) * get_local_size(1); for (int i = idy - 3, it = 0; i < idy + (int)get_local_size(1) + 3; i++, it++) { for (int j = idx - 3, jt = 0; j < idx + (int)get_local_size(0) + 3; j++, jt++) { grayscale_data[jt + it * 14] = read_imagef(grayscale, sampler, (int2)(j, i)).x; } } barrier(CLK_LOCAL_MEM_FENCE); float sumdxdy = sum_deriv_prod(grayscale_data, sobel_mask_x, sobel_mask_y); float sumdx2 = sum_deriv_pow(grayscale_data, sobel_mask_x); float sumdy2 = sum_deriv_pow(grayscale_data, sobel_mask_y); float trace = sumdx2 + sumdy2; // r = det(M) - k(trace(M))^2 // k usually between 0.04 to 0.06 float r = (sumdx2 * sumdy2 - sumdxdy * sumdxdy) - 0.04f * (trace * trace) * pown(scale, 4); // Threshold the r value harris_buf[loc.x + loc.y * get_image_width(grayscale)] = r * step(HARRIS_THRESHOLD, r); } // Gets a patch centered around a float coordinate from a grayscale image using // bilinear interpolation static void get_rect_sub_pix( __read_only image2d_t grayscale, float *buffer, int size_x, int size_y, float2 center ) { float2 offset = ((float2)(size_x, size_y) - 1.0f) * 0.5f; for (int i = 0; i < size_y; i++) { for (int j = 0; j < size_x; j++) { buffer[i * size_x + j] = read_imagef( grayscale, sampler_linear, (float2)(j, i) + center - offset ).x * 255.0f; } } } // Refines detected features at a sub-pixel level // // This function is ported from OpenCV static float2 corner_sub_pix( __read_only image2d_t grayscale, float2 feature, float *mask ) { float2 init = feature; int src_width = get_global_size(0); int src_height = get_global_size(1); const int max_iters = 40; const float eps = 0.001f * 0.001f; int i, j, k; int iter = 0; float err = 0; float subpix[(REFINE_WIN_W + 2) * (REFINE_WIN_H + 2)]; const float flt_epsilon = 0x1.0p-23f; do { float2 feature_tmp; float a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0; get_rect_sub_pix(grayscale, subpix, REFINE_WIN_W + 2, REFINE_WIN_H + 2, feature); float *subpix_ptr = subpix; subpix_ptr += REFINE_WIN_W + 2 + 1; // process gradient for (i = 0, k = 0; i < REFINE_WIN_H; i++, subpix_ptr += REFINE_WIN_W + 2) { float py = i - REFINE_WIN_HALF_H; for (j = 0; j < REFINE_WIN_W; j++, k++) { float m = mask[k]; float tgx = subpix_ptr[j + 1] - subpix_ptr[j - 1]; float tgy = subpix_ptr[j + REFINE_WIN_W + 2] - subpix_ptr[j - REFINE_WIN_W - 2]; float gxx = tgx * tgx * m; float gxy = tgx * tgy * m; float gyy = tgy * tgy * m; float px = j - REFINE_WIN_HALF_W; a += gxx; b += gxy; c += gyy; bb1 += gxx * px + gxy * py; bb2 += gxy * px + gyy * py; } } float det = a * c - b * b; if (fabs(det) <= flt_epsilon * flt_epsilon) { break; } // 2x2 matrix inversion float scale = 1.0f / det; feature_tmp.x = (float)(feature.x + (c * scale * bb1) - (b * scale * bb2)); feature_tmp.y = (float)(feature.y - (b * scale * bb1) + (a * scale * bb2)); err = dot(feature_tmp - feature, feature_tmp - feature); feature = feature_tmp; if (feature.x < 0 || feature.x >= src_width || feature.y < 0 || feature.y >= src_height) { break; } } while (++iter < max_iters && err > eps); // Make sure new point isn't too far from the initial point (indicates poor convergence) if (fabs(feature.x - init.x) > REFINE_WIN_HALF_W || fabs(feature.y - init.y) > REFINE_WIN_HALF_H) { feature = init; } return feature; } // Performs non-maximum suppression on the harris response and writes the resulting // feature locations to refined_features. // // Assumes that refined_features and the global work sizes are set up such that the image // is split up into a grid of 32x32 blocks where each block has a single slot in the // refined_features buffer. This kernel finds the best corner in each block (if the // block has any) and writes it to the corresponding slot in the buffer. // // If subpixel_refine is true, the features are additionally refined at a sub-pixel // level for increased precision. __kernel void refine_features( __read_only image2d_t grayscale, __global const float *harris_buf, __global float2 *refined_features, int subpixel_refine ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); // The location in the grayscale buffer rather than the compacted grid int2 loc_i = (int2)(loc.x * 32, loc.y * 32); float new_val; float max_val = 0; float2 loc_max = (float2)(-1, -1); int end_x = min(loc_i.x + 32, (int)get_image_dim(grayscale).x - 1); int end_y = min(loc_i.y + 32, (int)get_image_dim(grayscale).y - 1); for (int i = loc_i.x; i < end_x; ++i) { for (int j = loc_i.y; j < end_y; ++j) { new_val = harris_buf[i + j * get_image_dim(grayscale).x]; if (new_val > max_val) { max_val = new_val; loc_max = (float2)(i, j); } } } if (max_val == 0) { // There are no features in this part of the frame write_to_1d_arrf2(refined_features, loc, loc_max); return; } if (subpixel_refine) { float mask[REFINE_WIN_H * REFINE_WIN_W]; for (int i = 0; i < REFINE_WIN_H; i++) { float y = (float)(i - REFINE_WIN_HALF_H) / REFINE_WIN_HALF_H; float vy = exp(-y * y); for (int j = 0; j < REFINE_WIN_W; j++) { float x = (float)(j - REFINE_WIN_HALF_W) / REFINE_WIN_HALF_W; mask[i * REFINE_WIN_W + j] = (float)(vy * exp(-x * x)); } } loc_max = corner_sub_pix(grayscale, loc_max, mask); } write_to_1d_arrf2(refined_features, loc, loc_max); } // Extracts BRIEF descriptors from the grayscale src image for the given features // using the provided sampler. __kernel void brief_descriptors( __read_only image2d_t grayscale, __global const float2 *refined_features, // for 512 bit descriptors __global ulong8 *desc_buf, __global const PointPair *brief_pattern ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); float2 feature = read_from_1d_arrf2(refined_features, loc); // There was no feature in this part of the frame if (feature.x == -1) { write_to_1d_arrul8(desc_buf, loc, (ulong8)(0)); return; } ulong8 desc = 0; ulong *p = &desc; for (int i = 0; i < 8; ++i) { for (int j = 0; j < 64; ++j) { PointPair pair = brief_pattern[j * (i + 1)]; float l1 = read_imagef(grayscale, sampler_linear, feature + pair.p1).x; float l2 = read_imagef(grayscale, sampler_linear, feature + pair.p2).x; if (l1 < l2) { p[i] |= 1UL << j; } } } write_to_1d_arrul8(desc_buf, loc, desc); } // Given buffers with descriptors for the current and previous frame, determines // which ones match, writing correspondences to matches_buf. // // Feature and descriptor buffers are assumed to be compacted (each element sourced // from a 32x32 block in the frame being processed). __kernel void match_descriptors( __global const float2 *prev_refined_features, __global const float2 *refined_features, __global const ulong8 *desc_buf, __global const ulong8 *prev_desc_buf, __global MotionVector *matches_buf ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); ulong8 desc = read_from_1d_arrul8(desc_buf, loc); const int search_radius = 3; MotionVector invalid_vector = (MotionVector) { (PointPair) { (float2)(-1, -1), (float2)(-1, -1) }, 0 }; if (desc.s0 == 0 && desc.s1 == 0) { // There was no feature in this part of the frame write_to_1d_arrvec( matches_buf, loc, invalid_vector ); return; } int2 start = max(loc - search_radius, 0); int2 end = min(loc + search_radius, (int2)(get_global_size(0) - 1, get_global_size(1) - 1)); for (int i = start.x; i < end.x; ++i) { for (int j = start.y; j < end.y; ++j) { int2 prev_point = (int2)(i, j); int total_dist = 0; ulong8 prev_desc = read_from_1d_arrul8(prev_desc_buf, prev_point); if (prev_desc.s0 == 0 && prev_desc.s1 == 0) { continue; } ulong *prev_desc_p = &prev_desc; ulong *desc_p = &desc; for (int i = 0; i < 8; i++) { total_dist += popcount(desc_p[i] ^ prev_desc_p[i]); } if (total_dist < DISTANCE_THRESHOLD) { write_to_1d_arrvec( matches_buf, loc, (MotionVector) { (PointPair) { read_from_1d_arrf2(prev_refined_features, prev_point), read_from_1d_arrf2(refined_features, loc) }, 1 } ); return; } } } // There is no found match for this point write_to_1d_arrvec( matches_buf, loc, invalid_vector ); } // Returns the position of the given point after the transform is applied static float2 transformed_point(float2 p, __global const float *transform) { float2 ret; ret.x = p.x * transform[0] + p.y * transform[1] + transform[2]; ret.y = p.x * transform[3] + p.y * transform[4] + transform[5]; return ret; } // Performs the given transform on the src image __kernel void transform( __read_only image2d_t src, __write_only image2d_t dst, __global const float *transform ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); float2 norm = convert_float2(get_image_dim(src)); write_imagef( dst, loc, read_imagef( src, sampler_linear_mirror, transformed_point((float2)(loc.x, loc.y), transform) / norm ) ); } // Returns the new location of the given point using the given crop bounding box // and the width and height of the original frame. static float2 cropped_point( float2 p, float2 top_left, float2 bottom_right, int2 orig_dim ) { float2 ret; float crop_width = bottom_right.x - top_left.x; float crop_height = bottom_right.y - top_left.y; float width_norm = p.x / (float)orig_dim.x; float height_norm = p.y / (float)orig_dim.y; ret.x = (width_norm * crop_width) + top_left.x; ret.y = (height_norm * crop_height) + ((float)orig_dim.y - bottom_right.y); return ret; } // Upscales the given cropped region to the size of the original frame __kernel void crop_upscale( __read_only image2d_t src, __write_only image2d_t dst, float2 top_left, float2 bottom_right ) { int2 loc = (int2)(get_global_id(0), get_global_id(1)); write_imagef( dst, loc, read_imagef( src, sampler_linear, cropped_point((float2)(loc.x, loc.y), top_left, bottom_right, get_image_dim(dst)) ) ); } // Draws boxes to represent the given point matches and uses the given transform // and crop info to make sure their positions are accurate on the transformed frame. // // model_matches is an array of three points that were used by the RANSAC process // to generate the given transform __kernel void draw_debug_info( __write_only image2d_t dst, __global const MotionVector *matches, __global const MotionVector *model_matches, int num_model_matches, __global const float *transform ) { int loc = get_global_id(0); MotionVector vec = matches[loc]; // Black box: matched point that RANSAC considered an outlier float4 big_rect_color = (float4)(0.1f, 0.1f, 0.1f, 1.0f); if (vec.should_consider) { // Green box: matched point that RANSAC considered an inlier big_rect_color = (float4)(0.0f, 1.0f, 0.0f, 1.0f); } for (int i = 0; i < num_model_matches; i++) { if (vec.p.p2.x == model_matches[i].p.p2.x && vec.p.p2.y == model_matches[i].p.p2.y) { // Orange box: point used to calculate model big_rect_color = (float4)(1.0f, 0.5f, 0.0f, 1.0f); } } float2 transformed_p1 = transformed_point(vec.p.p1, transform); float2 transformed_p2 = transformed_point(vec.p.p2, transform); draw_box(dst, (int2)(transformed_p2.x, transformed_p2.y), big_rect_color, 5); // Small light blue box: the point in the previous frame draw_box(dst, (int2)(transformed_p1.x, transformed_p1.y), (float4)(0.0f, 0.3f, 0.7f, 1.0f), 3); }