/* * Copyright (c) 2020 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "dnn_backend_native_layer_dense.h" int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) { DenseParams *dense_params; int kernel_size; int dnn_size = 0; dense_params = av_malloc(sizeof(*dense_params)); if (!dense_params) return 0; dense_params->activation = (int32_t)avio_rl32(model_file_context); dense_params->input_num = (int32_t)avio_rl32(model_file_context); dense_params->output_num = (int32_t)avio_rl32(model_file_context); dense_params->has_bias = (int32_t)avio_rl32(model_file_context); dnn_size += 16; kernel_size = dense_params->input_num * dense_params->output_num; dnn_size += kernel_size * 4; if (dense_params->has_bias) dnn_size += dense_params->output_num * 4; if (dnn_size > file_size || dense_params->input_num <= 0 || dense_params->output_num <= 0){ av_freep(&dense_params); return 0; } dense_params->kernel = av_malloc(kernel_size * sizeof(float)); if (!dense_params->kernel) { av_freep(&dense_params); return 0; } for (int i = 0; i < kernel_size; ++i) { dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); } dense_params->biases = NULL; if (dense_params->has_bias) { dense_params->biases = av_malloc(dense_params->output_num * sizeof(float)); if (!dense_params->biases){ av_freep(&dense_params->kernel); av_freep(&dense_params); return 0; } for (int i = 0; i < dense_params->output_num; ++i){ dense_params->biases[i] = av_int2float(avio_rl32(model_file_context)); } } layer->params = dense_params; layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); layer->output_operand_index = (int32_t)avio_rl32(model_file_context); dnn_size += 8; if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { return 0; } return dnn_size; } int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const void *parameters, NativeContext *ctx) { float *output; int32_t input_operand_index = input_operand_indexes[0]; int number = operands[input_operand_index].dims[0]; int height = operands[input_operand_index].dims[1]; int width = operands[input_operand_index].dims[2]; int channel = operands[input_operand_index].dims[3]; const float *input = operands[input_operand_index].data; const DenseParams *dense_params = parameters; int src_linesize = width * channel; DnnOperand *output_operand = &operands[output_operand_index]; output_operand->dims[0] = number; output_operand->dims[1] = height; output_operand->dims[2] = width; output_operand->dims[3] = dense_params->output_num; output_operand->data_type = operands[input_operand_index].data_type; output_operand->length = ff_calculate_operand_data_length(output_operand); if (output_operand->length <= 0) { av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); return DNN_ERROR; } output_operand->data = av_realloc(output_operand->data, output_operand->length); if (!output_operand->data) { av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); return DNN_ERROR; } output = output_operand->data; av_assert0(channel == dense_params->input_num); for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) { if (dense_params->has_bias) output[n_filter] = dense_params->biases[n_filter]; else output[n_filter] = 0.f; for (int ch = 0; ch < dense_params->input_num; ++ch) { float input_pel; input_pel = input[y * src_linesize + x * dense_params->input_num + ch]; output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch]; } switch (dense_params->activation){ case RELU: output[n_filter] = FFMAX(output[n_filter], 0.0); break; case TANH: output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; break; case SIGMOID: output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); break; case NONE: break; case LEAKY_RELU: output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); } } output += dense_params->output_num; } } return 0; }