/* * Copyright (c) 2012-2013 Clément Bœsch * Copyright (c) 2013 Rudolf Polzer * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini). */ #include #include "libavcodec/avfft.h" #include "libavutil/audio_fifo.h" #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "audio.h" #include "video.h" #include "avfilter.h" #include "internal.h" #include "window_func.h" enum DisplayMode { COMBINED, SEPARATE, NB_MODES }; enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES }; enum ColorMode { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, NB_CLMODES }; enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES }; enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS }; typedef struct { const AVClass *class; int w, h; AVFrame *outpicref; int nb_display_channels; int orientation; int channel_width; int channel_height; int sliding; ///< 1 if sliding mode, 0 otherwise int mode; ///< channel display mode int color_mode; ///< display color scheme int scale; float saturation; ///< color saturation multiplier int xpos; ///< x position (current column) FFTContext *fft; ///< Fast Fourier Transform context int fft_bits; ///< number of bits (FFT window size = 1<priv; int i; av_freep(&s->combine_buffer); av_fft_end(s->fft); if (s->fft_data) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_data[i]); } av_freep(&s->fft_data); av_freep(&s->window_func_lut); if (s->magnitudes) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->magnitudes[i]); } av_freep(&s->magnitudes); av_frame_free(&s->outpicref); av_audio_fifo_free(s->fifo); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_NONE }; int ret; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0) return ret; layouts = ff_all_channel_layouts(); if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0) return ret; /* set output video format */ formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0) return ret; return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowSpectrumContext *s = ctx->priv; int i, fft_bits, h, w; float overlap; if (!strcmp(ctx->filter->name, "showspectrumpic")) s->single_pic = 1; outlink->w = s->w; outlink->h = s->h; h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? outlink->h : outlink->h / inlink->channels; w = (s->mode == COMBINED || s->orientation == VERTICAL) ? outlink->w : outlink->w / inlink->channels; s->channel_height = h; s->channel_width = w; if (s->orientation == VERTICAL) { /* FFT window size (precision) according to the requested output frame height */ for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++); } else { /* FFT window size (precision) according to the requested output frame width */ for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++); } s->win_size = 1 << fft_bits; /* (re-)configuration if the video output changed (or first init) */ if (fft_bits != s->fft_bits) { AVFrame *outpicref; av_fft_end(s->fft); s->fft = av_fft_init(fft_bits, 0); if (!s->fft) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. " "The window size might be too high.\n"); return AVERROR(EINVAL); } s->fft_bits = fft_bits; /* FFT buffers: x2 for each (display) channel buffer. * Note: we use free and malloc instead of a realloc-like function to * make sure the buffer is aligned in memory for the FFT functions. */ for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_data[i]); av_freep(&s->fft_data); s->nb_display_channels = inlink->channels; s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes)); if (!s->magnitudes) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes)); if (!s->magnitudes[i]) return AVERROR(ENOMEM); } s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data)); if (!s->fft_data) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->fft_data[i] = av_calloc(s->win_size, sizeof(**s->fft_data)); if (!s->fft_data[i]) return AVERROR(ENOMEM); } /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); ff_generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1) s->overlap = overlap; s->skip_samples = (1. - s->overlap) * s->win_size; if (s->skip_samples < 1) { av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); return AVERROR(EINVAL); } for (s->win_scale = 0, i = 0; i < s->win_size; i++) { s->win_scale += s->window_func_lut[i] * s->window_func_lut[i]; } s->win_scale = 1. / sqrt(s->win_scale); /* prepare the initial picref buffer (black frame) */ av_frame_free(&s->outpicref); s->outpicref = outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!outpicref) return AVERROR(ENOMEM); outlink->sample_aspect_ratio = (AVRational){1,1}; for (i = 0; i < outlink->h; i++) { memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w); memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w); memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w); } } if ((s->orientation == VERTICAL && s->xpos >= outlink->w) || (s->orientation == HORIZONTAL && s->xpos >= outlink->h)) s->xpos = 0; outlink->frame_rate = av_make_q(inlink->sample_rate, s->win_size * (1.-s->overlap)); if (s->orientation == VERTICAL && s->sliding == FULLFRAME) outlink->frame_rate.den *= outlink->w; if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME) outlink->frame_rate.den *= outlink->h; if (s->orientation == VERTICAL) { s->combine_buffer = av_realloc_f(s->combine_buffer, outlink->h * 3, sizeof(*s->combine_buffer)); } else { s->combine_buffer = av_realloc_f(s->combine_buffer, outlink->w * 3, sizeof(*s->combine_buffer)); } av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n", s->w, s->h, s->win_size); av_audio_fifo_free(s->fifo); s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size); if (!s->fifo) return AVERROR(ENOMEM); return 0; } static void run_fft(ShowSpectrumContext *s, AVFrame *fin) { int ch, n; /* fill FFT input with the number of samples available */ for (ch = 0; ch < s->nb_display_channels; ch++) { const float *p = (float *)fin->extended_data[ch]; for (n = 0; n < s->win_size; n++) { s->fft_data[ch][n].re = p[n] * s->window_func_lut[n]; s->fft_data[ch][n].im = 0; } } /* run FFT on each samples set */ for (ch = 0; ch < s->nb_display_channels; ch++) { av_fft_permute(s->fft, s->fft_data[ch]); av_fft_calc(s->fft, s->fft_data[ch]); } } #define RE(y, ch) s->fft_data[ch][y].re #define IM(y, ch) s->fft_data[ch][y].im #define MAGNITUDE(y, ch) hypot(RE(y, ch), IM(y, ch)) static void calc_magnitudes(ShowSpectrumContext *s) { int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] = MAGNITUDE(y, ch); } } static void acalc_magnitudes(ShowSpectrumContext *s) { int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] += MAGNITUDE(y, ch); } } static void scale_magnitudes(ShowSpectrumContext *s, float scale) { int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] *= scale; } } static void pick_color(ShowSpectrumContext *s, float yf, float uf, float vf, float a, float *out) { if (s->color_mode > CHANNEL) { const int cm = s->color_mode; float y, u, v; int i; for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++) if (color_table[cm][i].a >= a) break; // i now is the first item >= the color // now we know to interpolate between item i - 1 and i if (a <= color_table[cm][i - 1].a) { y = color_table[cm][i - 1].y; u = color_table[cm][i - 1].u; v = color_table[cm][i - 1].v; } else if (a >= color_table[cm][i].a) { y = color_table[cm][i].y; u = color_table[cm][i].u; v = color_table[cm][i].v; } else { float start = color_table[cm][i - 1].a; float end = color_table[cm][i].a; float lerpfrac = (a - start) / (end - start); y = color_table[cm][i - 1].y * (1.0f - lerpfrac) + color_table[cm][i].y * lerpfrac; u = color_table[cm][i - 1].u * (1.0f - lerpfrac) + color_table[cm][i].u * lerpfrac; v = color_table[cm][i - 1].v * (1.0f - lerpfrac) + color_table[cm][i].v * lerpfrac; } out[0] += y * yf; out[1] += u * uf; out[2] += v * vf; } else { out[0] += a * yf; out[1] += a * uf; out[2] += a * vf; } } static void clear_combine_buffer(ShowSpectrumContext *s, int size) { int y; for (y = 0; y < size; y++) { s->combine_buffer[3 * y ] = 0; s->combine_buffer[3 * y + 1] = 127.5; s->combine_buffer[3 * y + 2] = 127.5; } } static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) { int ret; AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; AVFrame *outpicref = s->outpicref; const double w = s->win_scale; const float g = s->gain; int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; int ch, plane, x, y; /* fill a new spectrum column */ /* initialize buffer for combining to black */ clear_combine_buffer(s, s->orientation == VERTICAL ? outlink->h : outlink->w); for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; float yf, uf, vf; /* decide color range */ switch (s->mode) { case COMBINED: // reduce range by channel count yf = 256.0f / s->nb_display_channels; switch (s->color_mode) { case RAINBOW: case MORELAND: case NEBULAE: case FIRE: case FIERY: case FRUIT: case INTENSITY: uf = yf; vf = yf; break; case CHANNEL: /* adjust saturation for mixed UV coloring */ /* this factor is correct for infinite channels, an approximation otherwise */ uf = yf * M_PI; vf = yf * M_PI; break; default: av_assert0(0); } break; case SEPARATE: // full range yf = 256.0f; uf = 256.0f; vf = 256.0f; break; default: av_assert0(0); } if (s->color_mode == CHANNEL) { if (s->nb_display_channels > 1) { uf *= 0.5 * sin((2 * M_PI * ch) / s->nb_display_channels); vf *= 0.5 * cos((2 * M_PI * ch) / s->nb_display_channels); } else { uf = 0.0f; vf = 0.0f; } } uf *= s->saturation; vf *= s->saturation; /* draw the channel */ for (y = 0; y < h; y++) { int row = (s->mode == COMBINED) ? y : ch * h + y; float *out = &s->combine_buffer[3 * row]; /* get magnitude */ float a = g * w * magnitudes[y]; /* apply scale */ switch (s->scale) { case LINEAR: break; case SQRT: a = sqrt(a); break; case CBRT: a = cbrt(a); break; case FOURTHRT: a = pow(a, 0.25); break; case FIFTHRT: a = pow(a, 0.20); break; case LOG: a = 1 + log10(av_clipd(a * w, 1e-6, 1)) / 6; // zero = -120dBFS break; default: av_assert0(0); } pick_color(s, yf, uf, vf, a, out); } } av_frame_make_writable(s->outpicref); /* copy to output */ if (s->orientation == VERTICAL) { if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < outlink->h; y++) { uint8_t *p = outpicref->data[plane] + y * outpicref->linesize[plane]; memmove(p, p + 1, outlink->w - 1); } } s->xpos = outlink->w - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < outlink->h; y++) { uint8_t *p = outpicref->data[plane] + y * outpicref->linesize[plane]; memmove(p + 1, p, outlink->w - 1); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + (outlink->h - 1) * outpicref->linesize[plane] + s->xpos; for (y = 0; y < outlink->h; y++) { *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255)); p -= outpicref->linesize[plane]; } } } else { if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 1; y < outlink->h; y++) { memmove(outpicref->data[plane] + (y-1) * outpicref->linesize[plane], outpicref->data[plane] + (y ) * outpicref->linesize[plane], outlink->w); } } s->xpos = outlink->h - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3; plane++) { for (y = outlink->h - 1; y >= 1; y--) { memmove(outpicref->data[plane] + (y ) * outpicref->linesize[plane], outpicref->data[plane] + (y-1) * outpicref->linesize[plane], outlink->w); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->xpos * outpicref->linesize[plane]; for (x = 0; x < outlink->w; x++) { *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255)); p++; } } } if (s->sliding != FULLFRAME || s->xpos == 0) outpicref->pts = insamples->pts; s->xpos++; if (s->orientation == VERTICAL && s->xpos >= outlink->w) s->xpos = 0; if (s->orientation == HORIZONTAL && s->xpos >= outlink->h) s->xpos = 0; if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) { ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref)); if (ret < 0) return ret; } return s->win_size; } #if CONFIG_SHOWSPECTRUM_FILTER static int request_frame(AVFilterLink *outlink) { ShowSpectrumContext *s = outlink->src->priv; AVFilterLink *inlink = outlink->src->inputs[0]; unsigned i; int ret; ret = ff_request_frame(inlink); if (ret == AVERROR_EOF && s->sliding == FULLFRAME && s->xpos > 0 && s->outpicref) { if (s->orientation == VERTICAL) { for (i = 0; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos); } } else { for (i = s->xpos; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w); } } ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; } return ret; } static int filter_frame(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; ShowSpectrumContext *s = ctx->priv; AVFrame *fin = NULL; int ret = 0; av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples); av_frame_free(&insamples); while (av_audio_fifo_size(s->fifo) >= s->win_size) { fin = ff_get_audio_buffer(inlink, s->win_size); if (!fin) { ret = AVERROR(ENOMEM); goto fail; } fin->pts = s->pts; s->pts += s->skip_samples; ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size); if (ret < 0) goto fail; av_assert0(fin->nb_samples == s->win_size); run_fft(s, fin); calc_magnitudes(s); ret = plot_spectrum_column(inlink, fin); av_frame_free(&fin); av_audio_fifo_drain(s->fifo, s->skip_samples); if (ret < 0) goto fail; } fail: av_frame_free(&fin); return ret; } static const AVFilterPad showspectrum_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad showspectrum_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter ff_avf_showspectrum = { .name = "showspectrum", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."), .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowSpectrumContext), .inputs = showspectrum_inputs, .outputs = showspectrum_outputs, .priv_class = &showspectrum_class, }; #endif // CONFIG_SHOWSPECTRUM_FILTER #if CONFIG_SHOWSPECTRUMPIC_FILTER static const AVOption showspectrumpic_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS }, { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" }, { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" }, { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" }, { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" }, { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" }, { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" }, { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" }, { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" }, { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" }, { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" }, { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" }, { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" }, { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" }, { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" }, { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" }, { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" }, { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" }, { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" }, { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" }, { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" }, { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" }, { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" }, { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" }, { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" }, { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" }, { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" }, { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" }, { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" }, { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" }, { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" }, { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" }, { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showspectrumpic); static int showspectrumpic_request_frame(AVFilterLink *outlink) { ShowSpectrumContext *s = outlink->src->priv; AVFilterLink *inlink = outlink->src->inputs[0]; int ret; ret = ff_request_frame(inlink); if (ret == AVERROR_EOF && s->outpicref) { int samples = av_audio_fifo_size(s->fifo); int consumed = 0; int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h; int ch, spf, spb; AVFrame *fin; spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz)))); spb = (samples / (spf * sz)) * spf; fin = ff_get_audio_buffer(inlink, s->win_size); if (!fin) return AVERROR(ENOMEM); while (x < sz) { ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size); if (ret < 0) { av_frame_free(&fin); return ret; } av_audio_fifo_drain(s->fifo, spf); if (ret < s->win_size) { for (ch = 0; ch < s->nb_display_channels; ch++) { memset(fin->extended_data[ch] + ret * sizeof(float), 0, (s->win_size - ret) * sizeof(float)); } } run_fft(s, fin); acalc_magnitudes(s); consumed += spf; if (consumed >= spb) { int h = s->orientation == VERTICAL ? s->h : s->w; scale_magnitudes(s, 1. / (consumed / spf)); plot_spectrum_column(inlink, fin); consumed = 0; x++; for (ch = 0; ch < s->nb_display_channels; ch++) memset(s->magnitudes[ch], 0, h * sizeof(float)); } } av_frame_free(&fin); s->outpicref->pts = 0; ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; } return ret; } static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; ShowSpectrumContext *s = ctx->priv; int ret; ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples); av_frame_free(&insamples); return ret; } static const AVFilterPad showspectrumpic_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = showspectrumpic_filter_frame, }, { NULL } }; static const AVFilterPad showspectrumpic_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = showspectrumpic_request_frame, }, { NULL } }; AVFilter ff_avf_showspectrumpic = { .name = "showspectrumpic", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."), .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowSpectrumContext), .inputs = showspectrumpic_inputs, .outputs = showspectrumpic_outputs, .priv_class = &showspectrumpic_class, }; #endif // CONFIG_SHOWSPECTRUMPIC_FILTER