/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje * Copyright (C) 2013 Clément Bœsch * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "videodsp.h" #include "vp56.h" #include "vp9.h" #include "vp9data.h" static const uint8_t bwh_tab[2][N_BS_SIZES][2] = { { { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, }, { { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, } }; // differential forward probability updates static void decode_mode(VP9Context *s, VP9Block *const b) { static const uint8_t left_ctx[N_BS_SIZES] = { 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf }; static const uint8_t above_ctx[N_BS_SIZES] = { 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf }; static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = { TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16, TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4 }; int row = b->row, col = b->col, row7 = b->row7; enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs]; int w4 = FFMIN(s->cols - col, bwh_tab[1][b->bs][0]); int h4 = FFMIN(s->rows - row, bwh_tab[1][b->bs][1]); int have_a = row > 0, have_l = col > s->tiling.tile_col_start; int y; if (!s->segmentation.enabled) { b->seg_id = 0; } else if (s->keyframe || s->intraonly) { b->seg_id = s->segmentation.update_map ? vp8_rac_get_tree(&s->c, ff_vp9_segmentation_tree, s->prob.seg) : 0; } else if (!s->segmentation.update_map || (s->segmentation.temporal && vp56_rac_get_prob_branchy(&s->c, s->prob.segpred[s->above_segpred_ctx[col] + s->left_segpred_ctx[row7]]))) { int pred = MAX_SEGMENT - 1; int x; for (y = 0; y < h4; y++) for (x = 0; x < w4; x++) pred = FFMIN(pred, s->segmentation_map[(y + row) * 8 * s->sb_cols + x + col]); b->seg_id = pred; memset(&s->above_segpred_ctx[col], 1, w4); memset(&s->left_segpred_ctx[row7], 1, h4); } else { b->seg_id = vp8_rac_get_tree(&s->c, ff_vp9_segmentation_tree, s->prob.seg); memset(&s->above_segpred_ctx[col], 0, w4); memset(&s->left_segpred_ctx[row7], 0, h4); } if ((s->segmentation.enabled && s->segmentation.update_map) || s->keyframe) { for (y = 0; y < h4; y++) memset(&s->segmentation_map[(y + row) * 8 * s->sb_cols + col], b->seg_id, w4); } b->skip = s->segmentation.enabled && s->segmentation.feat[b->seg_id].skip_enabled; if (!b->skip) { int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col]; b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]); s->counts.skip[c][b->skip]++; } if (s->keyframe || s->intraonly) { b->intra = 1; } else if (s->segmentation.feat[b->seg_id].ref_enabled) { b->intra = !s->segmentation.feat[b->seg_id].ref_val; } else { int c, bit; if (have_a && have_l) { c = s->above_intra_ctx[col] + s->left_intra_ctx[row7]; c += (c == 2); } else { c = have_a ? 2 * s->above_intra_ctx[col] : have_l ? 2 * s->left_intra_ctx[row7] : 0; } bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]); s->counts.intra[c][bit]++; b->intra = !bit; } if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) { int c; if (have_a) { if (have_l) { c = (s->above_skip_ctx[col] ? max_tx : s->above_txfm_ctx[col]) + (s->left_skip_ctx[row7] ? max_tx : s->left_txfm_ctx[row7]) > max_tx; } else { c = s->above_skip_ctx[col] ? 1 : (s->above_txfm_ctx[col] * 2 > max_tx); } } else if (have_l) { c = s->left_skip_ctx[row7] ? 1 : (s->left_txfm_ctx[row7] * 2 > max_tx); } else { c = 1; } switch (max_tx) { case TX_32X32: b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]); if (b->tx) { b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]); if (b->tx == 2) b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]); } s->counts.tx32p[c][b->tx]++; break; case TX_16X16: b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]); if (b->tx) b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]); s->counts.tx16p[c][b->tx]++; break; case TX_8X8: b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]); s->counts.tx8p[c][b->tx]++; break; case TX_4X4: b->tx = TX_4X4; break; } } else { b->tx = FFMIN(max_tx, s->txfmmode); } if (s->keyframe || s->intraonly) { uint8_t *a = &s->above_mode_ctx[col * 2]; uint8_t *l = &s->left_mode_ctx[(row7) << 1]; b->comp = 0; if (b->bs > BS_8x8) { // FIXME the memory storage intermediates here aren't really // necessary, they're just there to make the code slightly // simpler for now b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[0]][l[0]]); if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[1]][b->mode[0]]); l[0] = a[1] = b->mode[1]; } else { l[0] = a[1] = b->mode[1] = b->mode[0]; } if (b->bs != BS_4x8) { b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[0]][l[1]]); if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[a[1]][b->mode[2]]); l[1] = a[1] = b->mode[3]; } else { l[1] = a[1] = b->mode[3] = b->mode[2]; } } else { b->mode[2] = b->mode[0]; l[1] = a[1] = b->mode[3] = b->mode[1]; } } else { b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, ff_vp9_default_kf_ymode_probs[*a][*l]); b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0]; // FIXME this can probably be optimized memset(a, b->mode[0], bwh_tab[0][b->bs][0]); memset(l, b->mode[0], bwh_tab[0][b->bs][1]); } b->uvmode = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, ff_vp9_default_kf_uvmode_probs[b->mode[3]]); } else if (b->intra) { b->comp = 0; if (b->bs > BS_8x8) { b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[0]]++; if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[1]]++; } else { b->mode[1] = b->mode[0]; } if (b->bs != BS_4x8) { b->mode[2] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[2]]++; if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[3]]++; } else { b->mode[3] = b->mode[2]; } } else { b->mode[2] = b->mode[0]; b->mode[3] = b->mode[1]; } } else { static const uint8_t size_group[10] = { 3, 3, 3, 3, 2, 2, 2, 1, 1, 1 }; int sz = size_group[b->bs]; b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, s->prob.p.y_mode[sz]); b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0]; s->counts.y_mode[sz][b->mode[3]]++; } b->uvmode = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree, s->prob.p.uv_mode[b->mode[3]]); s->counts.uv_mode[b->mode[3]][b->uvmode]++; } else { static const uint8_t inter_mode_ctx_lut[14][14] = { { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 }, }; if (s->segmentation.feat[b->seg_id].ref_enabled) { av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0); b->comp = 0; b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1; } else { // read comp_pred flag if (s->comppredmode != PRED_SWITCHABLE) { b->comp = s->comppredmode == PRED_COMPREF; } else { int c; // FIXME add intra as ref=0xff (or -1) to make these easier? if (have_a) { if (have_l) { if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) { c = 4; } else if (s->above_comp_ctx[col]) { c = 2 + (s->left_intra_ctx[row7] || s->left_ref_ctx[row7] == s->fixcompref); } else if (s->left_comp_ctx[row7]) { c = 2 + (s->above_intra_ctx[col] || s->above_ref_ctx[col] == s->fixcompref); } else { c = (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref) ^ (!s->left_intra_ctx[row7] && s->left_ref_ctx[row & 7] == s->fixcompref); } } else { c = s->above_comp_ctx[col] ? 3 : (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref); } } else if (have_l) { c = s->left_comp_ctx[row7] ? 3 : (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref); } else { c = 1; } b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]); s->counts.comp[c][b->comp]++; } // read actual references // FIXME probably cache a few variables here to prevent repetitive // memory accesses below if (b->comp) { /* two references */ int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit; b->ref[fix_idx] = s->fixcompref; // FIXME can this codeblob be replaced by some sort of LUT? if (have_a) { if (have_l) { if (s->above_intra_ctx[col]) { if (s->left_intra_ctx[row7]) { c = 2; } else { c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]); } } else if (s->left_intra_ctx[row7]) { c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]); } else { int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col]; if (refl == refa && refa == s->varcompref[1]) { c = 0; } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) { if ((refa == s->fixcompref && refl == s->varcompref[0]) || (refl == s->fixcompref && refa == s->varcompref[0])) { c = 4; } else { c = (refa == refl) ? 3 : 1; } } else if (!s->left_comp_ctx[row7]) { if (refa == s->varcompref[1] && refl != s->varcompref[1]) { c = 1; } else { c = (refl == s->varcompref[1] && refa != s->varcompref[1]) ? 2 : 4; } } else if (!s->above_comp_ctx[col]) { if (refl == s->varcompref[1] && refa != s->varcompref[1]) { c = 1; } else { c = (refa == s->varcompref[1] && refl != s->varcompref[1]) ? 2 : 4; } } else { c = (refl == refa) ? 4 : 2; } } } else { if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]); } else { c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]); } } } else if (have_l) { if (s->left_intra_ctx[row7]) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]); } else { c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]); } } else { c = 2; } bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]); b->ref[var_idx] = s->varcompref[bit]; s->counts.comp_ref[c][bit]++; } else { /* single reference */ int bit, c; if (have_a && !s->above_intra_ctx[col]) { if (have_l && !s->left_intra_ctx[row7]) { if (s->left_comp_ctx[row7]) { if (s->above_comp_ctx[col]) { c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] || !s->above_ref_ctx[col]); } else { c = (3 * !s->above_ref_ctx[col]) + (!s->fixcompref || !s->left_ref_ctx[row7]); } } else if (s->above_comp_ctx[col]) { c = (3 * !s->left_ref_ctx[row7]) + (!s->fixcompref || !s->above_ref_ctx[col]); } else { c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col]; } } else if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]); } else { c = 4 * (!s->above_ref_ctx[col]); } } else if (have_l && !s->left_intra_ctx[row7]) { if (s->left_intra_ctx[row7]) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]); } else { c = 4 * (!s->left_ref_ctx[row7]); } } else { c = 2; } bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]); s->counts.single_ref[c][0][bit]++; if (!bit) { b->ref[0] = 0; } else { // FIXME can this codeblob be replaced by some sort of LUT? if (have_a) { if (have_l) { if (s->left_intra_ctx[row7]) { if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 1 + 2 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } else if (!s->above_ref_ctx[col]) { c = 3; } else { c = 4 * (s->above_ref_ctx[col] == 1); } } else if (s->above_intra_ctx[col]) { if (s->left_intra_ctx[row7]) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 1 + 2 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else if (!s->left_ref_ctx[row7]) { c = 3; } else { c = 4 * (s->left_ref_ctx[row7] == 1); } } else if (s->above_comp_ctx[col]) { if (s->left_comp_ctx[row7]) { if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) { c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else { c = 2; } } else if (!s->left_ref_ctx[row7]) { c = 1 + 2 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } else { c = 3 * (s->left_ref_ctx[row7] == 1) + (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } } else if (s->left_comp_ctx[row7]) { if (!s->above_ref_ctx[col]) { c = 1 + 2 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else { c = 3 * (s->above_ref_ctx[col] == 1) + (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } } else if (!s->above_ref_ctx[col]) { if (!s->left_ref_ctx[row7]) { c = 3; } else { c = 4 * (s->left_ref_ctx[row7] == 1); } } else if (!s->left_ref_ctx[row7]) { c = 4 * (s->above_ref_ctx[col] == 1); } else { c = 2 * (s->left_ref_ctx[row7] == 1) + 2 * (s->above_ref_ctx[col] == 1); } } else { if (s->above_intra_ctx[col] || (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) { c = 2; } else if (s->above_comp_ctx[col]) { c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } else { c = 4 * (s->above_ref_ctx[col] == 1); } } } else if (have_l) { if (s->left_intra_ctx[row7] || (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else { c = 4 * (s->left_ref_ctx[row7] == 1); } } else { c = 2; } bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]); s->counts.single_ref[c][1][bit]++; b->ref[0] = 1 + bit; } } } if (b->bs <= BS_8x8) { if (s->segmentation.feat[b->seg_id].skip_enabled) { b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV; } else { static const uint8_t off[10] = { 3, 0, 0, 1, 0, 0, 0, 0, 0, 0 }; // FIXME this needs to use the LUT tables from find_ref_mvs // because not all are -1,0/0,-1 int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]] [s->left_mode_ctx[row7 + off[b->bs]]]; b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0]; s->counts.mv_mode[c][b->mode[0] - 10]++; } } if (s->filtermode == FILTER_SWITCHABLE) { int c; if (have_a && s->above_mode_ctx[col] >= NEARESTMV) { if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) { c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ? s->left_filter_ctx[row7] : 3; } else { c = s->above_filter_ctx[col]; } } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) { c = s->left_filter_ctx[row7]; } else { c = 3; } b->filter = vp8_rac_get_tree(&s->c, ff_vp9_filter_tree, s->prob.p.filter[c]); s->counts.filter[c][b->filter]++; } else { b->filter = s->filtermode; } if (b->bs > BS_8x8) { int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]]; b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[0] - 10]++; ff_vp9_fill_mv(s, b->mv[0], b->mode[0], 0); if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[1] - 10]++; ff_vp9_fill_mv(s, b->mv[1], b->mode[1], 1); } else { b->mode[1] = b->mode[0]; AV_COPY32(&b->mv[1][0], &b->mv[0][0]); AV_COPY32(&b->mv[1][1], &b->mv[0][1]); } if (b->bs != BS_4x8) { b->mode[2] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[2] - 10]++; ff_vp9_fill_mv(s, b->mv[2], b->mode[2], 2); if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[3] - 10]++; ff_vp9_fill_mv(s, b->mv[3], b->mode[3], 3); } else { b->mode[3] = b->mode[2]; AV_COPY32(&b->mv[3][0], &b->mv[2][0]); AV_COPY32(&b->mv[3][1], &b->mv[2][1]); } } else { b->mode[2] = b->mode[0]; AV_COPY32(&b->mv[2][0], &b->mv[0][0]); AV_COPY32(&b->mv[2][1], &b->mv[0][1]); b->mode[3] = b->mode[1]; AV_COPY32(&b->mv[3][0], &b->mv[1][0]); AV_COPY32(&b->mv[3][1], &b->mv[1][1]); } } else { ff_vp9_fill_mv(s, b->mv[0], b->mode[0], -1); AV_COPY32(&b->mv[1][0], &b->mv[0][0]); AV_COPY32(&b->mv[2][0], &b->mv[0][0]); AV_COPY32(&b->mv[3][0], &b->mv[0][0]); AV_COPY32(&b->mv[1][1], &b->mv[0][1]); AV_COPY32(&b->mv[2][1], &b->mv[0][1]); AV_COPY32(&b->mv[3][1], &b->mv[0][1]); } } // FIXME this can probably be optimized memset(&s->above_skip_ctx[col], b->skip, w4); memset(&s->left_skip_ctx[row7], b->skip, h4); memset(&s->above_txfm_ctx[col], b->tx, w4); memset(&s->left_txfm_ctx[row7], b->tx, h4); memset(&s->above_partition_ctx[col], above_ctx[b->bs], w4); memset(&s->left_partition_ctx[row7], left_ctx[b->bs], h4); if (!s->keyframe && !s->intraonly) { memset(&s->above_intra_ctx[col], b->intra, w4); memset(&s->left_intra_ctx[row7], b->intra, h4); memset(&s->above_comp_ctx[col], b->comp, w4); memset(&s->left_comp_ctx[row7], b->comp, h4); memset(&s->above_mode_ctx[col], b->mode[3], w4); memset(&s->left_mode_ctx[row7], b->mode[3], h4); if (s->filtermode == FILTER_SWITCHABLE && !b->intra) { memset(&s->above_filter_ctx[col], b->filter, w4); memset(&s->left_filter_ctx[row7], b->filter, h4); b->filter = ff_vp9_filter_lut[b->filter]; } if (b->bs > BS_8x8) { int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]); AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]); AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]); AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0); AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1); AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]); AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]); AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0); AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1); } else { int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]); for (n = 0; n < w4 * 2; n++) { AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0); AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1); } for (n = 0; n < h4 * 2; n++) { AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0); AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1); } } if (!b->intra) { // FIXME write 0xff or -1 if intra, so we can use this // as a direct check in above branches int vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0]; memset(&s->above_ref_ctx[col], vref, w4); memset(&s->left_ref_ctx[row7], vref, h4); } } // FIXME kinda ugly for (y = 0; y < h4; y++) { int x, o = (row + y) * s->sb_cols * 8 + col; if (b->intra) { for (x = 0; x < w4; x++) { s->mv[0][o + x].ref[0] = s->mv[0][o + x].ref[1] = -1; } } else if (b->comp) { for (x = 0; x < w4; x++) { s->mv[0][o + x].ref[0] = b->ref[0]; s->mv[0][o + x].ref[1] = b->ref[1]; AV_COPY32(&s->mv[0][o + x].mv[0], &b->mv[3][0]); AV_COPY32(&s->mv[0][o + x].mv[1], &b->mv[3][1]); } } else { for (x = 0; x < w4; x++) { s->mv[0][o + x].ref[0] = b->ref[0]; s->mv[0][o + x].ref[1] = -1; AV_COPY32(&s->mv[0][o + x].mv[0], &b->mv[3][0]); } } } } // FIXME remove tx argument, and merge cnt/eob arguments? static int decode_block_coeffs(VP56RangeCoder *c, int16_t *coef, int n_coeffs, enum TxfmMode tx, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t(*p)[6][11], int nnz, const int16_t *scan, const int16_t(*nb)[2], const int16_t *band_counts, const int16_t *qmul) { int i = 0, band = 0, band_left = band_counts[band]; uint8_t *tp = p[0][nnz]; uint8_t cache[1024]; do { int val, rc; val = vp56_rac_get_prob_branchy(c, tp[0]); // eob eob[band][nnz][val]++; if (!val) break; skip_eob: if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero cnt[band][nnz][0]++; if (!--band_left) band_left = band_counts[++band]; cache[scan[i]] = 0; nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1; tp = p[band][nnz]; if (++i == n_coeffs) break; //invalid input; blocks should end with EOB goto skip_eob; } rc = scan[i]; if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one cnt[band][nnz][1]++; val = 1; cache[rc] = 1; } else { // fill in p[3-10] (model fill) - only once per frame for each pos if (!tp[3]) memcpy(&tp[3], ff_vp9_model_pareto8[tp[2]], 8); cnt[band][nnz][2]++; if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4 if (!vp56_rac_get_prob_branchy(c, tp[4])) { cache[rc] = val = 2; } else { val = 3 + vp56_rac_get_prob(c, tp[5]); cache[rc] = 3; } } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2 cache[rc] = 4; if (!vp56_rac_get_prob_branchy(c, tp[7])) { val = vp56_rac_get_prob(c, 159) + 5; } else { val = (vp56_rac_get_prob(c, 165) << 1) + 7; val += vp56_rac_get_prob(c, 145); } } else { // cat 3-6 cache[rc] = 5; if (!vp56_rac_get_prob_branchy(c, tp[8])) { if (!vp56_rac_get_prob_branchy(c, tp[9])) { val = (vp56_rac_get_prob(c, 173) << 2) + 11; val += (vp56_rac_get_prob(c, 148) << 1); val += vp56_rac_get_prob(c, 140); } else { val = (vp56_rac_get_prob(c, 176) << 3) + 19; val += (vp56_rac_get_prob(c, 155) << 2); val += (vp56_rac_get_prob(c, 140) << 1); val += vp56_rac_get_prob(c, 135); } } else if (!vp56_rac_get_prob_branchy(c, tp[10])) { val = (vp56_rac_get_prob(c, 180) << 4) + 35; val += (vp56_rac_get_prob(c, 157) << 3); val += (vp56_rac_get_prob(c, 141) << 2); val += (vp56_rac_get_prob(c, 134) << 1); val += vp56_rac_get_prob(c, 130); } else { val = (vp56_rac_get_prob(c, 254) << 13) + 67; val += (vp56_rac_get_prob(c, 254) << 12); val += (vp56_rac_get_prob(c, 254) << 11); val += (vp56_rac_get_prob(c, 252) << 10); val += (vp56_rac_get_prob(c, 249) << 9); val += (vp56_rac_get_prob(c, 243) << 8); val += (vp56_rac_get_prob(c, 230) << 7); val += (vp56_rac_get_prob(c, 196) << 6); val += (vp56_rac_get_prob(c, 177) << 5); val += (vp56_rac_get_prob(c, 153) << 4); val += (vp56_rac_get_prob(c, 140) << 3); val += (vp56_rac_get_prob(c, 133) << 2); val += (vp56_rac_get_prob(c, 130) << 1); val += vp56_rac_get_prob(c, 129); } } } if (!--band_left) band_left = band_counts[++band]; if (tx == TX_32X32) // FIXME slow coef[rc] = ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2; else coef[rc] = (vp8_rac_get(c) ? -val : val) * qmul[!!i]; nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1; tp = p[band][nnz]; } while (++i < n_coeffs); return i; } static int decode_coeffs(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; VP9Block *const b = &s->b; int row = b->row, col = b->col; uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra]; unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra]; unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra]; int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1; int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int n, pl, x, y, step1d = 1 << b->tx, step = 1 << (b->tx * 2); int uvstep1d = 1 << b->uvtx, uvstep = 1 << (b->uvtx * 2), ret; int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul; int tx = 4 * s->lossless + b->tx; const int16_t **yscans = ff_vp9_scans[tx]; const int16_t (**ynbs)[2] = ff_vp9_scans_nb[tx]; const int16_t *uvscan = ff_vp9_scans[b->uvtx][DCT_DCT]; const int16_t (*uvnb)[2] = ff_vp9_scans_nb[b->uvtx][DCT_DCT]; uint8_t *a = &s->above_y_nnz_ctx[col * 2]; uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1]; static const int16_t band_counts[4][8] = { { 1, 2, 3, 4, 3, 16 - 13, 0 }, { 1, 2, 3, 4, 11, 64 - 21, 0 }, { 1, 2, 3, 4, 11, 256 - 21, 0 }, { 1, 2, 3, 4, 11, 1024 - 21, 0 }, }; const int16_t *y_band_counts = band_counts[b->tx]; const int16_t *uv_band_counts = band_counts[b->uvtx]; /* y tokens */ if (b->tx > TX_4X4) { // FIXME slow for (y = 0; y < end_y; y += step1d) for (x = 1; x < step1d; x++) l[y] |= l[y + x]; for (x = 0; x < end_x; x += step1d) for (y = 1; y < step1d; y++) a[x] |= a[x + y]; } for (n = 0, y = 0; y < end_y; y += step1d) { for (x = 0; x < end_x; x += step1d, n += step) { enum TxfmType txtp = ff_vp9_intra_txfm_type[b->mode[b->tx == TX_4X4 && b->bs > BS_8x8 ? n : 0]]; int nnz = a[x] + l[y]; if ((ret = decode_block_coeffs(&s->c, s->block + 16 * n, 16 * step, b->tx, c, e, p, nnz, yscans[txtp], ynbs[txtp], y_band_counts, qmul[0])) < 0) return ret; a[x] = l[y] = !!ret; if (b->tx > TX_8X8) AV_WN16A(&s->eob[n], ret); else s->eob[n] = ret; } } if (b->tx > TX_4X4) { // FIXME slow for (y = 0; y < end_y; y += step1d) memset(&l[y + 1], l[y], FFMIN(end_y - y - 1, step1d - 1)); for (x = 0; x < end_x; x += step1d) memset(&a[x + 1], a[x], FFMIN(end_x - x - 1, step1d - 1)); } p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra]; c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra]; e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra]; w4 >>= 1; h4 >>= 1; end_x >>= 1; end_y >>= 1; for (pl = 0; pl < 2; pl++) { a = &s->above_uv_nnz_ctx[pl][col]; l = &s->left_uv_nnz_ctx[pl][row & 7]; if (b->uvtx > TX_4X4) { // FIXME slow for (y = 0; y < end_y; y += uvstep1d) for (x = 1; x < uvstep1d; x++) l[y] |= l[y + x]; for (x = 0; x < end_x; x += uvstep1d) for (y = 1; y < uvstep1d; y++) a[x] |= a[x + y]; } for (n = 0, y = 0; y < end_y; y += uvstep1d) { for (x = 0; x < end_x; x += uvstep1d, n += uvstep) { int nnz = a[x] + l[y]; if ((ret = decode_block_coeffs(&s->c, s->uvblock[pl] + 16 * n, 16 * uvstep, b->uvtx, c, e, p, nnz, uvscan, uvnb, uv_band_counts, qmul[1])) < 0) return ret; a[x] = l[y] = !!ret; if (b->uvtx > TX_8X8) AV_WN16A(&s->uveob[pl][n], ret); else s->uveob[pl][n] = ret; } } if (b->uvtx > TX_4X4) { // FIXME slow for (y = 0; y < end_y; y += uvstep1d) memset(&l[y + 1], l[y], FFMIN(end_y - y - 1, uvstep1d - 1)); for (x = 0; x < end_x; x += uvstep1d) memset(&a[x + 1], a[x], FFMIN(end_x - x - 1, uvstep1d - 1)); } } return 0; } static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a, uint8_t *dst_edge, ptrdiff_t stride_edge, uint8_t *dst_inner, ptrdiff_t stride_inner, uint8_t *l, int col, int x, int w, int row, int y, enum TxfmMode tx, int p) { int have_top = row > 0 || y > 0; int have_left = col > s->tiling.tile_col_start || x > 0; int have_right = x < w - 1; static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = { [VERT_PRED] = { { DC_127_PRED, VERT_PRED }, { DC_127_PRED, VERT_PRED } }, [HOR_PRED] = { { DC_129_PRED, DC_129_PRED }, { HOR_PRED, HOR_PRED } }, [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED }, { LEFT_DC_PRED, DC_PRED } }, [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED }, { DC_127_PRED, DIAG_DOWN_LEFT_PRED } }, [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED }, { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } }, [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED }, { VERT_RIGHT_PRED, VERT_RIGHT_PRED } }, [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED }, { HOR_DOWN_PRED, HOR_DOWN_PRED } }, [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED }, { DC_127_PRED, VERT_LEFT_PRED } }, [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED }, { HOR_UP_PRED, HOR_UP_PRED } }, [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED }, { HOR_PRED, TM_VP8_PRED } }, }; static const struct { uint8_t needs_left:1; uint8_t needs_top:1; uint8_t needs_topleft:1; uint8_t needs_topright:1; } edges[N_INTRA_PRED_MODES] = { [VERT_PRED] = { .needs_top = 1 }, [HOR_PRED] = { .needs_left = 1 }, [DC_PRED] = { .needs_top = 1, .needs_left = 1 }, [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 }, [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 }, [HOR_UP_PRED] = { .needs_left = 1 }, [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [LEFT_DC_PRED] = { .needs_left = 1 }, [TOP_DC_PRED] = { .needs_top = 1 }, [DC_128_PRED] = { 0 }, [DC_127_PRED] = { 0 }, [DC_129_PRED] = { 0 } }; av_assert2(mode >= 0 && mode < 10); mode = mode_conv[mode][have_left][have_top]; if (edges[mode].needs_top) { uint8_t *top = NULL, *topleft = NULL; int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !p) - x) * 4; int n_px_need_tr = 0; if (tx == TX_4X4 && edges[mode].needs_topright && have_right) n_px_need_tr = 4; // if top of sb64-row, use s->intra_pred_data[] instead of // dst[-stride] for intra prediction (it contains pre- instead of // post-loopfilter data) if (have_top) { top = !(row & 7) && !y ? s->intra_pred_data[p] + col * (8 >> !!p) + x * 4 : y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner]; if (have_left) topleft = !(row & 7) && !y ? s->intra_pred_data[p] + col * (8 >> !!p) + x * 4 : y == 0 || x == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner]; } if (have_top && (!edges[mode].needs_topleft || (have_left && top == topleft)) && (tx != TX_4X4 || !edges[mode].needs_topright || have_right) && n_px_need + n_px_need_tr <= n_px_have) { *a = top; } else { if (have_top) { if (n_px_need <= n_px_have) { memcpy(*a, top, n_px_need); } else { memcpy(*a, top, n_px_have); memset(&(*a)[n_px_have], (*a)[n_px_have - 1], n_px_need - n_px_have); } } else { memset(*a, 127, n_px_need); } if (edges[mode].needs_topleft) { if (have_left && have_top) (*a)[-1] = topleft[-1]; else (*a)[-1] = have_top ? 129 : 127; } if (tx == TX_4X4 && edges[mode].needs_topright) { if (have_top && have_right && n_px_need + n_px_need_tr <= n_px_have) { memcpy(&(*a)[4], &top[4], 4); } else { memset(&(*a)[4], (*a)[3], 4); } } } } if (edges[mode].needs_left) { if (have_left) { int i; int n_px_need = 4 << tx; int n_px_have = (((s->rows - row) << !p) - y) * 4; uint8_t *dst = x == 0 ? dst_edge : dst_inner; ptrdiff_t stride = x == 0 ? stride_edge : stride_inner; if (n_px_need <= n_px_have) { for (i = 0; i < n_px_need; i++) l[i] = dst[i * stride - 1]; } else { for (i = 0; i < n_px_have; i++) l[i] = dst[i * stride - 1]; memset(&l[i], l[i - 1], n_px_need - n_px_have); } } else { memset(l, 129, 4 << tx); } } return mode; } static void intra_recon(AVCodecContext *avctx, ptrdiff_t y_off, ptrdiff_t uv_off) { VP9Context *s = avctx->priv_data; VP9Block *const b = &s->b; int row = b->row, col = b->col; int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n; int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2); int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless; int uvstep1d = 1 << b->uvtx, p; uint8_t *dst = b->dst[0], *dst_r = s->cur_frame->data[0] + y_off; for (n = 0, y = 0; y < end_y; y += step1d) { uint8_t *ptr = dst, *ptr_r = dst_r; for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d, ptr_r += 4 * step1d, n += step) { int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ? y * 2 + x : 0]; LOCAL_ALIGNED_16(uint8_t, a_buf, [48]); uint8_t *a = &a_buf[16], l[32]; enum TxfmType txtp = ff_vp9_intra_txfm_type[mode]; int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n]; mode = check_intra_mode(s, mode, &a, ptr_r, s->cur_frame->linesize[0], ptr, b->y_stride, l, col, x, w4, row, y, b->tx, 0); s->dsp.intra_pred[b->tx][mode](ptr, b->y_stride, l, a); if (eob) s->dsp.itxfm_add[tx][txtp](ptr, b->y_stride, s->block + 16 * n, eob); } dst_r += 4 * s->cur_frame->linesize[0] * step1d; dst += 4 * b->y_stride * step1d; } // U/V h4 >>= 1; w4 >>= 1; end_x >>= 1; end_y >>= 1; step = 1 << (b->uvtx * 2); for (p = 0; p < 2; p++) { dst = b->dst[1 + p]; dst_r = s->cur_frame->data[1 + p] + uv_off; for (n = 0, y = 0; y < end_y; y += uvstep1d) { uint8_t *ptr = dst, *ptr_r = dst_r; for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d, ptr_r += 4 * uvstep1d, n += step) { int mode = b->uvmode; LOCAL_ALIGNED_16(uint8_t, a_buf, [48]); uint8_t *a = &a_buf[16], l[32]; int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n]; mode = check_intra_mode(s, mode, &a, ptr_r, s->cur_frame->linesize[1], ptr, b->uv_stride, l, col, x, w4, row, y, b->uvtx, p + 1); s->dsp.intra_pred[b->uvtx][mode](ptr, b->uv_stride, l, a); if (eob) s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, b->uv_stride, s->uvblock[p] + 16 * n, eob); } dst_r += 4 * uvstep1d * s->cur_frame->linesize[1]; dst += 4 * uvstep1d * b->uv_stride; } } } static av_always_inline void mc_luma_dir(VP9Context *s, vp9_mc_func(*mc)[2], uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, ptrdiff_t ref_stride, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h) { int mx = mv->x, my = mv->y; y += my >> 3; x += mx >> 3; ref += y * ref_stride + x; mx &= 7; my &= 7; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref - !!my * 3 * ref_stride - !!mx * 3, 80, ref_stride, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3; ref_stride = 80; } mc[!!mx][!!my](dst, ref, dst_stride, ref_stride, bh, mx << 1, my << 1); } static av_always_inline void mc_chroma_dir(VP9Context *s, vp9_mc_func(*mc)[2], uint8_t *dst_u, uint8_t *dst_v, ptrdiff_t dst_stride, const uint8_t *ref_u, ptrdiff_t src_stride_u, const uint8_t *ref_v, ptrdiff_t src_stride_v, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h) { int mx = mv->x, my = mv->y; y += my >> 4; x += mx >> 4; ref_u += y * src_stride_u + x; ref_v += y * src_stride_v + x; mx &= 15; my &= 15; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_u - !!my * 3 * src_stride_u - !!mx * 3, 80, src_stride_u, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_u = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3; mc[!!mx][!!my](dst_u, ref_u, dst_stride, 80, bh, mx, my); s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_v - !!my * 3 * src_stride_v - !!mx * 3, 80, src_stride_v, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_v = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3; mc[!!mx][!!my](dst_v, ref_v, dst_stride, 80, bh, mx, my); } else { mc[!!mx][!!my](dst_u, ref_u, dst_stride, src_stride_u, bh, mx, my); mc[!!mx][!!my](dst_v, ref_v, dst_stride, src_stride_v, bh, mx, my); } } static int inter_recon(AVCodecContext *avctx) { static const uint8_t bwlog_tab[2][N_BS_SIZES] = { { 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 }, { 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4 }, }; VP9Context *s = avctx->priv_data; VP9Block *const b = &s->b; int row = b->row, col = b->col; AVFrame *ref1 = s->refs[s->refidx[b->ref[0]]]; AVFrame *ref2 = b->comp ? s->refs[s->refidx[b->ref[1]]] : NULL; int w = avctx->width, h = avctx->height; ptrdiff_t ls_y = b->y_stride, ls_uv = b->uv_stride; if (!ref1->data[0] || (b->comp && !ref2->data[0])) return AVERROR_INVALIDDATA; // y inter pred if (b->bs > BS_8x8) { if (b->bs == BS_8x4) { mc_luma_dir(s, s->dsp.mc[3][b->filter][0], b->dst[0], ls_y, ref1->data[0], ref1->linesize[0], row << 3, col << 3, &b->mv[0][0], 8, 4, w, h); mc_luma_dir(s, s->dsp.mc[3][b->filter][0], b->dst[0] + 4 * ls_y, ls_y, ref1->data[0], ref1->linesize[0], (row << 3) + 4, col << 3, &b->mv[2][0], 8, 4, w, h); if (b->comp) { mc_luma_dir(s, s->dsp.mc[3][b->filter][1], b->dst[0], ls_y, ref2->data[0], ref2->linesize[0], row << 3, col << 3, &b->mv[0][1], 8, 4, w, h); mc_luma_dir(s, s->dsp.mc[3][b->filter][1], b->dst[0] + 4 * ls_y, ls_y, ref2->data[0], ref2->linesize[0], (row << 3) + 4, col << 3, &b->mv[2][1], 8, 4, w, h); } } else if (b->bs == BS_4x8) { mc_luma_dir(s, s->dsp.mc[4][b->filter][0], b->dst[0], ls_y, ref1->data[0], ref1->linesize[0], row << 3, col << 3, &b->mv[0][0], 4, 8, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][0], b->dst[0] + 4, ls_y, ref1->data[0], ref1->linesize[0], row << 3, (col << 3) + 4, &b->mv[1][0], 4, 8, w, h); if (b->comp) { mc_luma_dir(s, s->dsp.mc[4][b->filter][1], b->dst[0], ls_y, ref2->data[0], ref2->linesize[0], row << 3, col << 3, &b->mv[0][1], 4, 8, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][1], b->dst[0] + 4, ls_y, ref2->data[0], ref2->linesize[0], row << 3, (col << 3) + 4, &b->mv[1][1], 4, 8, w, h); } } else { av_assert2(b->bs == BS_4x4); // FIXME if two horizontally adjacent blocks have the same MV, // do a w8 instead of a w4 call mc_luma_dir(s, s->dsp.mc[4][b->filter][0], b->dst[0], ls_y, ref1->data[0], ref1->linesize[0], row << 3, col << 3, &b->mv[0][0], 4, 4, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][0], b->dst[0] + 4, ls_y, ref1->data[0], ref1->linesize[0], row << 3, (col << 3) + 4, &b->mv[1][0], 4, 4, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][0], b->dst[0] + 4 * ls_y, ls_y, ref1->data[0], ref1->linesize[0], (row << 3) + 4, col << 3, &b->mv[2][0], 4, 4, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][0], b->dst[0] + 4 * ls_y + 4, ls_y, ref1->data[0], ref1->linesize[0], (row << 3) + 4, (col << 3) + 4, &b->mv[3][0], 4, 4, w, h); if (b->comp) { mc_luma_dir(s, s->dsp.mc[4][b->filter][1], b->dst[0], ls_y, ref2->data[0], ref2->linesize[0], row << 3, col << 3, &b->mv[0][1], 4, 4, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][1], b->dst[0] + 4, ls_y, ref2->data[0], ref2->linesize[0], row << 3, (col << 3) + 4, &b->mv[1][1], 4, 4, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][1], b->dst[0] + 4 * ls_y, ls_y, ref2->data[0], ref2->linesize[0], (row << 3) + 4, col << 3, &b->mv[2][1], 4, 4, w, h); mc_luma_dir(s, s->dsp.mc[4][b->filter][1], b->dst[0] + 4 * ls_y + 4, ls_y, ref2->data[0], ref2->linesize[0], (row << 3) + 4, (col << 3) + 4, &b->mv[3][1], 4, 4, w, h); } } } else { int bwl = bwlog_tab[0][b->bs]; int bw = bwh_tab[0][b->bs][0] * 4; int bh = bwh_tab[0][b->bs][1] * 4; mc_luma_dir(s, s->dsp.mc[bwl][b->filter][0], b->dst[0], ls_y, ref1->data[0], ref1->linesize[0], row << 3, col << 3, &b->mv[0][0], bw, bh, w, h); if (b->comp) mc_luma_dir(s, s->dsp.mc[bwl][b->filter][1], b->dst[0], ls_y, ref2->data[0], ref2->linesize[0], row << 3, col << 3, &b->mv[0][1], bw, bh, w, h); } // uv inter pred { int bwl = bwlog_tab[1][b->bs]; int bw = bwh_tab[1][b->bs][0] * 4, bh = bwh_tab[1][b->bs][1] * 4; VP56mv mvuv; w = (w + 1) >> 1; h = (h + 1) >> 1; if (b->bs > BS_8x8) { mvuv.x = ROUNDED_DIV(b->mv[0][0].x + b->mv[1][0].x + b->mv[2][0].x + b->mv[3][0].x, 4); mvuv.y = ROUNDED_DIV(b->mv[0][0].y + b->mv[1][0].y + b->mv[2][0].y + b->mv[3][0].y, 4); } else { mvuv = b->mv[0][0]; } mc_chroma_dir(s, s->dsp.mc[bwl][b->filter][0], b->dst[1], b->dst[2], ls_uv, ref1->data[1], ref1->linesize[1], ref1->data[2], ref1->linesize[2], row << 2, col << 2, &mvuv, bw, bh, w, h); if (b->comp) { if (b->bs > BS_8x8) { mvuv.x = ROUNDED_DIV(b->mv[0][1].x + b->mv[1][1].x + b->mv[2][1].x + b->mv[3][1].x, 4); mvuv.y = ROUNDED_DIV(b->mv[0][1].y + b->mv[1][1].y + b->mv[2][1].y + b->mv[3][1].y, 4); } else { mvuv = b->mv[0][1]; } mc_chroma_dir(s, s->dsp.mc[bwl][b->filter][1], b->dst[1], b->dst[2], ls_uv, ref2->data[1], ref2->linesize[1], ref2->data[2], ref2->linesize[2], row << 2, col << 2, &mvuv, bw, bh, w, h); } } if (!b->skip) { /* mostly copied intra_reconn() */ int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n; int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2); int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless; int uvstep1d = 1 << b->uvtx, p; uint8_t *dst = b->dst[0]; // y itxfm add for (n = 0, y = 0; y < end_y; y += step1d) { uint8_t *ptr = dst; for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d, n += step) { int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n]; if (eob) s->dsp.itxfm_add[tx][DCT_DCT](ptr, b->y_stride, s->block + 16 * n, eob); } dst += 4 * b->y_stride * step1d; } // uv itxfm add h4 >>= 1; w4 >>= 1; end_x >>= 1; end_y >>= 1; step = 1 << (b->uvtx * 2); for (p = 0; p < 2; p++) { dst = b->dst[p + 1]; for (n = 0, y = 0; y < end_y; y += uvstep1d) { uint8_t *ptr = dst; for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d, n += step) { int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n]; if (eob) s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, b->uv_stride, s->uvblock[p] + 16 * n, eob); } dst += 4 * uvstep1d * b->uv_stride; } } } return 0; } static av_always_inline void mask_edges(VP9Filter *lflvl, int is_uv, int row_and_7, int col_and_7, int w, int h, int col_end, int row_end, enum TxfmMode tx, int skip_inter) { // FIXME I'm pretty sure all loops can be replaced by a single LUT if // we make VP9Filter.mask uint64_t (i.e. row/col all single variable) // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7) // the intended behaviour of the vp9 loopfilter is to work on 8-pixel // edges. This means that for UV, we work on two subsampled blocks at // a time, and we only use the topleft block's mode information to set // things like block strength. Thus, for any block size smaller than // 16x16, ignore the odd portion of the block. if (tx == TX_4X4 && is_uv) { if (h == 1) { if (row_and_7 & 1) return; if (!row_end) h += 1; } if (w == 1) { if (col_and_7 & 1) return; if (!col_end) w += 1; } } if (tx == TX_4X4 && !skip_inter) { int t = 1 << col_and_7, m_col = (t << w) - t, y; int m_col_odd = (t << (w - 1)) - t; // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide if (is_uv) { int m_row_8 = m_col & 0x01, m_row_4 = m_col - m_row_8; for (y = row_and_7; y < h + row_and_7; y++) { int col_mask_id = 2 - !(y & 7); lflvl->mask[is_uv][0][y][1] |= m_row_8; lflvl->mask[is_uv][0][y][2] |= m_row_4; // for odd lines, if the odd col is not being filtered, // skip odd row also: // .---. <-- a // | | // |___| <-- b // ^ ^ // c d // // if a/c are even row/col and b/d are odd, and d is skipped, // e.g. right edge of size-66x66.webm, then skip b also (bug) if ((col_end & 1) && (y & 1)) { lflvl->mask[is_uv][1][y][col_mask_id] |= m_col_odd; } else { lflvl->mask[is_uv][1][y][col_mask_id] |= m_col; } } } else { int m_row_8 = m_col & 0x11, m_row_4 = m_col - m_row_8; for (y = row_and_7; y < h + row_and_7; y++) { int col_mask_id = 2 - !(y & 3); lflvl->mask[is_uv][0][y][1] |= m_row_8; // row edge lflvl->mask[is_uv][0][y][2] |= m_row_4; lflvl->mask[is_uv][1][y][col_mask_id] |= m_col; // col edge lflvl->mask[is_uv][0][y][3] |= m_col; lflvl->mask[is_uv][1][y][3] |= m_col; } } } else { int y, t = 1 << col_and_7, m_col = (t << w) - t; if (!skip_inter) { int mask_id = (tx == TX_8X8); int l2 = tx + is_uv - 1, step1d = 1 << l2; static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 }; int m_row = m_col & masks[l2]; // at odd UV col/row edges tx16/tx32 loopfilter edges, force // 8wd loopfilter to prevent going off the visible edge. if (is_uv && tx > TX_8X8 && (w ^ (w - 1)) == 1) { int m_row_16 = ((t << (w - 1)) - t) & masks[l2]; int m_row_8 = m_row - m_row_16; for (y = row_and_7; y < h + row_and_7; y++) { lflvl->mask[is_uv][0][y][0] |= m_row_16; lflvl->mask[is_uv][0][y][1] |= m_row_8; } } else { for (y = row_and_7; y < h + row_and_7; y++) lflvl->mask[is_uv][0][y][mask_id] |= m_row; } if (is_uv && tx > TX_8X8 && (h ^ (h - 1)) == 1) { for (y = row_and_7; y < h + row_and_7 - 1; y += step1d) lflvl->mask[is_uv][1][y][0] |= m_col; if (y - row_and_7 == h - 1) lflvl->mask[is_uv][1][y][1] |= m_col; } else { for (y = row_and_7; y < h + row_and_7; y += step1d) lflvl->mask[is_uv][1][y][mask_id] |= m_col; } } else if (tx != TX_4X4) { int mask_id; mask_id = (tx == TX_8X8) || (is_uv && h == 1); lflvl->mask[is_uv][1][row_and_7][mask_id] |= m_col; mask_id = (tx == TX_8X8) || (is_uv && w == 1); for (y = row_and_7; y < h + row_and_7; y++) lflvl->mask[is_uv][0][y][mask_id] |= t; } else if (is_uv) { int t8 = t & 0x01, t4 = t - t8; for (y = row_and_7; y < h + row_and_7; y++) { lflvl->mask[is_uv][0][y][2] |= t4; lflvl->mask[is_uv][0][y][1] |= t8; } lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 7)] |= m_col; } else { int t8 = t & 0x11, t4 = t - t8; for (y = row_and_7; y < h + row_and_7; y++) { lflvl->mask[is_uv][0][y][2] |= t4; lflvl->mask[is_uv][0][y][1] |= t8; } lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 3)] |= m_col; } } } int ff_vp9_decode_block(AVCodecContext *avctx, int row, int col, VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl, enum BlockPartition bp) { VP9Context *s = avctx->priv_data; VP9Block *const b = &s->b; enum BlockSize bs = bl * 3 + bp; int ret, y, w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl; int emu[2]; b->row = row; b->row7 = row & 7; b->col = col; b->col7 = col & 7; s->min_mv.x = -(128 + col * 64); s->min_mv.y = -(128 + row * 64); s->max_mv.x = 128 + (s->cols - col - w4) * 64; s->max_mv.y = 128 + (s->rows - row - h4) * 64; b->bs = bs; decode_mode(s, b); b->uvtx = b->tx - (w4 * 2 == (1 << b->tx) || h4 * 2 == (1 << b->tx)); if (!b->skip) { if ((ret = decode_coeffs(avctx)) < 0) return ret; } else { int pl; memset(&s->above_y_nnz_ctx[col * 2], 0, w4 * 2); memset(&s->left_y_nnz_ctx[(row & 7) << 1], 0, h4 * 2); for (pl = 0; pl < 2; pl++) { memset(&s->above_uv_nnz_ctx[pl][col], 0, w4); memset(&s->left_uv_nnz_ctx[pl][row & 7], 0, h4); } } /* Emulated overhangs if the stride of the target buffer can't hold. * This allows to support emu-edge and so on even if we have large * block overhangs. */ emu[0] = (col + w4) * 8 > s->cur_frame->linesize[0] || (row + h4) > s->rows; emu[1] = (col + w4) * 4 > s->cur_frame->linesize[1] || (row + h4) > s->rows; if (emu[0]) { b->dst[0] = s->tmp_y; b->y_stride = 64; } else { b->dst[0] = s->cur_frame->data[0] + yoff; b->y_stride = s->cur_frame->linesize[0]; } if (emu[1]) { b->dst[1] = s->tmp_uv[0]; b->dst[2] = s->tmp_uv[1]; b->uv_stride = 32; } else { b->dst[1] = s->cur_frame->data[1] + uvoff; b->dst[2] = s->cur_frame->data[2] + uvoff; b->uv_stride = s->cur_frame->linesize[1]; } if (b->intra) { intra_recon(avctx, yoff, uvoff); } else { if ((ret = inter_recon(avctx)) < 0) return ret; } if (emu[0]) { int w = FFMIN(s->cols - col, w4) * 8; int h = FFMIN(s->rows - row, h4) * 8; int n, o = 0; for (n = 0; o < w; n++) { int bw = 64 >> n; av_assert2(n <= 4); if (w & bw) { s->dsp.mc[n][0][0][0][0](s->cur_frame->data[0] + yoff + o, s->tmp_y + o, s->cur_frame->linesize[0], 64, h, 0, 0); o += bw; } } } if (emu[1]) { int w = FFMIN(s->cols - col, w4) * 4; int h = FFMIN(s->rows - row, h4) * 4; int n, o = 0; for (n = 1; o < w; n++) { int bw = 64 >> n; av_assert2(n <= 4); if (w & bw) { s->dsp.mc[n][0][0][0][0](s->cur_frame->data[1] + uvoff + o, s->tmp_uv[0] + o, s->cur_frame->linesize[1], 32, h, 0, 0); s->dsp.mc[n][0][0][0][0](s->cur_frame->data[2] + uvoff + o, s->tmp_uv[1] + o, s->cur_frame->linesize[2], 32, h, 0, 0); o += bw; } } } // pick filter level and find edges to apply filter to if (s->filter.level && (lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1] [b->mode[3] != ZEROMV]) > 0) { int x_end = FFMIN(s->cols - col, w4); int y_end = FFMIN(s->rows - row, h4); int skip_inter = !b->intra && b->skip; for (y = 0; y < h4; y++) memset(&lflvl->level[((row & 7) + y) * 8 + (col & 7)], lvl, w4); mask_edges(lflvl, 0, row & 7, col & 7, x_end, y_end, 0, 0, b->tx, skip_inter); mask_edges(lflvl, 1, row & 7, col & 7, x_end, y_end, s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0, s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0, b->uvtx, skip_inter); if (!s->filter.lim_lut[lvl]) { int sharp = s->filter.sharpness; int limit = lvl; if (sharp > 0) { limit >>= (sharp + 3) >> 2; limit = FFMIN(limit, 9 - sharp); } limit = FFMAX(limit, 1); s->filter.lim_lut[lvl] = limit; s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit; } } return 0; }