/** * VP8 compatible video decoder * * Copyright (C) 2010 David Conrad * Copyright (C) 2010 Ronald S. Bultje * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "vp56.h" #include "vp8data.h" #include "vp8dsp.h" #include "h264pred.h" #include "rectangle.h" typedef struct { uint8_t segment; uint8_t skip; // todo: make it possible to check for at least (i4x4 or split_mv) // in one op. are others needed? uint8_t mode; uint8_t ref_frame; uint8_t partitioning; VP56mv mv; VP56mv bmv[16]; } VP8Macroblock; typedef struct { AVCodecContext *avctx; DSPContext dsp; VP8DSPContext vp8dsp; H264PredContext hpc; AVFrame frames[4]; AVFrame *framep[4]; uint8_t *edge_emu_buffer; VP56RangeCoder c; ///< header context, includes mb modes and motion vectors int profile; int mb_width; /* number of horizontal MB */ int mb_height; /* number of vertical MB */ int linesize; int uvlinesize; int keyframe; int invisible; int update_last; ///< update VP56_FRAME_PREVIOUS with the current one int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so int update_altref; /** * If this flag is not set, all the probability updates * are discarded after this frame is decoded. */ int update_probabilities; /** * All coefficients are contained in separate arith coding contexts. * There can be 1, 2, 4, or 8 of these after the header context. */ int num_coeff_partitions; VP56RangeCoder coeff_partition[8]; VP8Macroblock *macroblocks; VP8Macroblock *macroblocks_base; int mb_stride; uint8_t *intra4x4_pred_mode; uint8_t *intra4x4_pred_mode_base; int b4_stride; /** * For coeff decode, we need to know whether the above block had non-zero * coefficients. This means for each macroblock, we need data for 4 luma * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9 * per macroblock. We keep the last row in top_nnz. */ uint8_t (*top_nnz)[9]; DECLARE_ALIGNED(8, uint8_t, left_nnz)[9]; /** * This is the index plus one of the last non-zero coeff * for each of the blocks in the current macroblock. * So, 0 -> no coeffs * 1 -> dc-only (special transform) * 2+-> full transform */ DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4]; DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16]; int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock int mbskip_enabled; int sign_bias[4]; ///< one state [0, 1] per ref frame type /** * Base parameters for segmentation, i.e. per-macroblock parameters. * These must be kept unchanged even if segmentation is not used for * a frame, since the values persist between interframes. */ struct { int enabled; int absolute_vals; int update_map; int8_t base_quant[4]; int8_t filter_level[4]; ///< base loop filter level } segmentation; /** * Macroblocks can have one of 4 different quants in a frame when * segmentation is enabled. * If segmentation is disabled, only the first segment's values are used. */ struct { // [0] - DC qmul [1] - AC qmul int16_t luma_qmul[2]; int16_t luma_dc_qmul[2]; ///< luma dc-only block quant int16_t chroma_qmul[2]; } qmat[4]; struct { int simple; int level; int sharpness; } filter; struct { int enabled; ///< whether each mb can have a different strength based on mode/ref /** * filter strength adjustment for the following macroblock modes: * [0] - i4x4 * [1] - zero mv * [2] - inter modes except for zero or split mv * [3] - split mv * i16x16 modes never have any adjustment */ int8_t mode[4]; /** * filter strength adjustment for macroblocks that reference: * [0] - intra / VP56_FRAME_CURRENT * [1] - VP56_FRAME_PREVIOUS * [2] - VP56_FRAME_GOLDEN * [3] - altref / VP56_FRAME_GOLDEN2 */ int8_t ref[4]; } lf_delta; /** * These are all of the updatable probabilities for binary decisions. * They are only implictly reset on keyframes, making it quite likely * for an interframe to desync if a prior frame's header was corrupt * or missing outright! */ struct { uint8_t segmentid[3]; uint8_t mbskip; uint8_t intra; uint8_t last; uint8_t golden; uint8_t pred16x16[4]; uint8_t pred8x8c[3]; uint8_t token[4][8][3][NUM_DCT_TOKENS-1]; uint8_t mvc[2][19]; } prob[2]; } VP8Context; #define RL24(p) (AV_RL16(p) + ((p)[2] << 16)) static void vp8_decode_flush(AVCodecContext *avctx) { VP8Context *s = avctx->priv_data; int i; for (i = 0; i < 4; i++) if (s->frames[i].data[0]) avctx->release_buffer(avctx, &s->frames[i]); memset(s->framep, 0, sizeof(s->framep)); av_freep(&s->macroblocks_base); av_freep(&s->intra4x4_pred_mode_base); av_freep(&s->top_nnz); av_freep(&s->edge_emu_buffer); s->macroblocks = NULL; s->intra4x4_pred_mode = NULL; } static int update_dimensions(VP8Context *s, int width, int height) { int i; if (avcodec_check_dimensions(s->avctx, width, height)) return AVERROR_INVALIDDATA; vp8_decode_flush(s->avctx); avcodec_set_dimensions(s->avctx, width, height); s->mb_width = (s->avctx->coded_width +15) / 16; s->mb_height = (s->avctx->coded_height+15) / 16; // we allocate a border around the top/left of intra4x4 modes // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle s->mb_stride = s->mb_width+1; s->b4_stride = 4*s->mb_stride; s->macroblocks_base = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks)); s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1)); s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz)); s->macroblocks = s->macroblocks_base + 1 + s->mb_stride; s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride; memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride); for (i = 0; i < 4*s->mb_height; i++) s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED; return 0; } static void parse_segment_info(VP8Context *s) { VP56RangeCoder *c = &s->c; int i; s->segmentation.update_map = vp8_rac_get(c); if (vp8_rac_get(c)) { // update segment feature data s->segmentation.absolute_vals = vp8_rac_get(c); for (i = 0; i < 4; i++) s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7); for (i = 0; i < 4; i++) s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6); } if (s->segmentation.update_map) for (i = 0; i < 3; i++) s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; } static void update_lf_deltas(VP8Context *s) { VP56RangeCoder *c = &s->c; int i; for (i = 0; i < 4; i++) s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6); for (i = 0; i < 4; i++) s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6); } static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) { const uint8_t *sizes = buf; int i; s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); buf += 3*(s->num_coeff_partitions-1); buf_size -= 3*(s->num_coeff_partitions-1); if (buf_size < 0) return -1; for (i = 0; i < s->num_coeff_partitions-1; i++) { int size = RL24(sizes + 3*i); if (buf_size - size < 0) return -1; vp56_init_range_decoder(&s->coeff_partition[i], buf, size); buf += size; buf_size -= size; } vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); return 0; } static void get_quants(VP8Context *s) { VP56RangeCoder *c = &s->c; int i, base_qi; int yac_qi = vp8_rac_get_uint(c, 7); int ydc_delta = vp8_rac_get_sint(c, 4); int y2dc_delta = vp8_rac_get_sint(c, 4); int y2ac_delta = vp8_rac_get_sint(c, 4); int uvdc_delta = vp8_rac_get_sint(c, 4); int uvac_delta = vp8_rac_get_sint(c, 4); for (i = 0; i < 4; i++) { if (s->segmentation.enabled) { base_qi = s->segmentation.base_quant[i]; if (!s->segmentation.absolute_vals) base_qi += yac_qi; } else base_qi = yac_qi; s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)]; s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)]; s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)]; s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100; s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)]; s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)]; s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); } } /** * Determine which buffers golden and altref should be updated with after this frame. * The spec isn't clear here, so I'm going by my understanding of what libvpx does * * Intra frames update all 3 references * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set * If the update (golden|altref) flag is set, it's updated with the current frame * if update_last is set, and VP56_FRAME_PREVIOUS otherwise. * If the flag is not set, the number read means: * 0: no update * 1: VP56_FRAME_PREVIOUS * 2: update golden with altref, or update altref with golden */ static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) { VP56RangeCoder *c = &s->c; if (update) return VP56_FRAME_CURRENT; switch (vp8_rac_get_uint(c, 2)) { case 1: return VP56_FRAME_PREVIOUS; case 2: return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN; } return VP56_FRAME_NONE; } static void update_refs(VP8Context *s) { VP56RangeCoder *c = &s->c; int update_golden = vp8_rac_get(c); int update_altref = vp8_rac_get(c); s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); } static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) { VP56RangeCoder *c = &s->c; int header_size, hscale, vscale, i, j, k, l, ret; int width = s->avctx->width; int height = s->avctx->height; s->keyframe = !(buf[0] & 1); s->profile = (buf[0]>>1) & 7; s->invisible = !(buf[0] & 0x10); header_size = RL24(buf) >> 5; buf += 3; buf_size -= 3; if (s->profile) av_log(s->avctx, AV_LOG_WARNING, "Profile %d not fully handled\n", s->profile); if (header_size > buf_size - 7*s->keyframe) { av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); return AVERROR_INVALIDDATA; } if (s->keyframe) { if (RL24(buf) != 0x2a019d) { av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf)); return AVERROR_INVALIDDATA; } width = AV_RL16(buf+3) & 0x3fff; height = AV_RL16(buf+5) & 0x3fff; hscale = buf[4] >> 6; vscale = buf[6] >> 6; buf += 7; buf_size -= 7; s->update_golden = s->update_altref = VP56_FRAME_CURRENT; memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token)); memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c)); memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc)); memset(&s->segmentation, 0, sizeof(s->segmentation)); } if (!s->macroblocks_base || /* first frame */ width != s->avctx->width || height != s->avctx->height) { if ((ret = update_dimensions(s, width, height) < 0)) return ret; } vp56_init_range_decoder(c, buf, header_size); buf += header_size; buf_size -= header_size; if (s->keyframe) { if (vp8_rac_get(c)) av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); vp8_rac_get(c); // whether we can skip clamping in dsp functions } if ((s->segmentation.enabled = vp8_rac_get(c))) parse_segment_info(s); else s->segmentation.update_map = 0; // FIXME: move this to some init function? s->filter.simple = vp8_rac_get(c); s->filter.level = vp8_rac_get_uint(c, 6); s->filter.sharpness = vp8_rac_get_uint(c, 3); if ((s->lf_delta.enabled = vp8_rac_get(c))) if (vp8_rac_get(c)) update_lf_deltas(s); if (setup_partitions(s, buf, buf_size)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); return AVERROR_INVALIDDATA; } get_quants(s); if (!s->keyframe) { update_refs(s); s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c); } // if we aren't saving this frame's probabilities for future frames, // make a copy of the current probabilities if (!(s->update_probabilities = vp8_rac_get(c))) s->prob[1] = s->prob[0]; s->update_last = s->keyframe || vp8_rac_get(c); for (i = 0; i < 4; i++) for (j = 0; j < 8; j++) for (k = 0; k < 3; k++) for (l = 0; l < NUM_DCT_TOKENS-1; l++) if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l])) s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8); if ((s->mbskip_enabled = vp8_rac_get(c))) s->prob->mbskip = vp8_rac_get_uint(c, 8); if (!s->keyframe) { s->prob->intra = vp8_rac_get_uint(c, 8); s->prob->last = vp8_rac_get_uint(c, 8); s->prob->golden = vp8_rac_get_uint(c, 8); if (vp8_rac_get(c)) for (i = 0; i < 4; i++) s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8); if (vp8_rac_get(c)) for (i = 0; i < 3; i++) s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8); // 17.2 MV probability update for (i = 0; i < 2; i++) for (j = 0; j < 19; j++) if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j])) s->prob->mvc[i][j] = vp8_rac_get_nn(c); } return 0; } static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, int mb_x, int mb_y) { #define MARGIN (16 << 2) dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN), ((s->mb_width - 1 - mb_x) << 6) + MARGIN); dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN), ((s->mb_height - 1 - mb_y) << 6) + MARGIN); } static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, VP56mv near[2], VP56mv *best, int cnt[4]) { VP8Macroblock *mb_edge[3] = { mb - s->mb_stride /* top */, mb - 1 /* left */, mb - s->mb_stride - 1 /* top-left */ }; enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT }; VP56mv near_mv[4] = {{ 0 }}; enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; int idx = CNT_ZERO, n; int best_idx = CNT_ZERO; /* Process MB on top, left and top-left */ for (n = 0; n < 3; n++) { VP8Macroblock *edge = mb_edge[n]; if (edge->ref_frame != VP56_FRAME_CURRENT) { if (edge->mv.x | edge->mv.y) { VP56mv tmp = edge->mv; if (s->sign_bias[mb->ref_frame] != s->sign_bias[edge->ref_frame]) { tmp.x *= -1; tmp.y *= -1; } if ((tmp.x ^ near_mv[idx].x) | (tmp.y ^ near_mv[idx].y)) near_mv[++idx] = tmp; cnt[idx] += 1 + (n != 2); } else cnt[CNT_ZERO] += 1 + (n != 2); } } /* If we have three distinct MV's, merge first and last if they're the same */ if (cnt[CNT_SPLITMV] && !((near_mv[1+EDGE_TOP].x ^ near_mv[1+EDGE_TOPLEFT].x) | (near_mv[1+EDGE_TOP].y ^ near_mv[1+EDGE_TOPLEFT].y))) cnt[CNT_NEAREST] += 1; cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); /* Swap near and nearest if necessary */ if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { FFSWAP(int, cnt[CNT_NEAREST], cnt[CNT_NEAR]); FFSWAP(VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); } /* Choose the best mv out of 0,0 and the nearest mv */ if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO]) best_idx = CNT_NEAREST; clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y); near[0] = near_mv[CNT_NEAREST]; near[1] = near_mv[CNT_NEAR]; } /** * Motion vector coding, 17.1. */ static int read_mv_component(VP56RangeCoder *c, const uint8_t *p) { int x = 0; if (vp56_rac_get_prob(c, p[0])) { int i; for (i = 0; i < 3; i++) x += vp56_rac_get_prob(c, p[9 + i]) << i; for (i = 9; i > 3; i--) x += vp56_rac_get_prob(c, p[9 + i]) << i; if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12])) x += 8; } else x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]); return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; } static const uint8_t *get_submv_prob(const VP56mv *left, const VP56mv *top) { int l_is_zero = !(left->x | left->y); int t_is_zero = !(top->x | top->y); int equal = !((left->x ^ top->x) | (left->y ^ top->y)); if (equal) return l_is_zero ? vp8_submv_prob[4] : vp8_submv_prob[3]; if (t_is_zero) return vp8_submv_prob[2]; return l_is_zero ? vp8_submv_prob[1] : vp8_submv_prob[0]; } /** * Split motion vector prediction, 16.4. */ static void decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, VP56mv *base_mv) { int part_idx = mb->partitioning = vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob); int n, num = vp8_mbsplit_count[part_idx]; VP56mv part_mv[16]; for (n = 0; n < num; n++) { int k = vp8_mbfirstidx[part_idx][n]; const VP56mv *left = (k & 3) ? &mb->bmv[k - 1] : &mb[-1].bmv[k + 3], *above = (k > 3) ? &mb->bmv[k - 4] : &mb[-s->mb_stride].bmv[k + 12]; const uint8_t *submv_prob = get_submv_prob(left, above); switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) { case VP8_SUBMVMODE_NEW4X4: part_mv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]); part_mv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]); break; case VP8_SUBMVMODE_ZERO4X4: part_mv[n].x = 0; part_mv[n].y = 0; break; case VP8_SUBMVMODE_LEFT4X4: part_mv[n] = *left; break; case VP8_SUBMVMODE_TOP4X4: part_mv[n] = *above; break; } /* fill out over the 4x4 blocks in MB */ for (k = 0; k < 16; k++) if (vp8_mbsplits[part_idx][k] == n) { mb->bmv[k] = part_mv[n]; } } } static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4, int stride, int keyframe) { int x, y, t, l; const uint8_t *ctx = vp8_pred4x4_prob_inter; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { if (keyframe) { t = intra4x4[x - stride]; l = intra4x4[x - 1]; ctx = vp8_pred4x4_prob_intra[t][l]; } intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); } intra4x4 += stride; } } static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *intra4x4) { VP56RangeCoder *c = &s->c; int n; if (s->segmentation.update_map) mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid); mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0; if (s->keyframe) { mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); if (mb->mode == MODE_I4x4) { decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1); } else fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); mb->ref_frame = VP56_FRAME_CURRENT; } else if (vp56_rac_get_prob(c, s->prob->intra)) { VP56mv near[2], best; int cnt[4] = { 0 }; uint8_t p[4]; // inter MB, 16.2 if (vp56_rac_get_prob(c, s->prob->last)) mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ? VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN; else mb->ref_frame = VP56_FRAME_PREVIOUS; // motion vectors, 16.3 find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt); for (n = 0; n < 4; n++) p[n] = vp8_mode_contexts[cnt[n]][n]; mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p); switch (mb->mode) { case VP8_MVMODE_SPLIT: decode_splitmvs(s, c, mb, &best); mb->mv = mb->bmv[15]; break; case VP8_MVMODE_ZERO: mb->mv.x = 0; mb->mv.y = 0; break; case VP8_MVMODE_NEAREST: clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y); break; case VP8_MVMODE_NEAR: clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y); break; case VP8_MVMODE_NEW: mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]); mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]); break; } if (mb->mode != VP8_MVMODE_SPLIT) { for (n = 0; n < 16; n++) mb->bmv[n] = mb->mv; } } else { // intra MB, 16.1 mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); if (mb->mode == MODE_I4x4) { decode_intra4x4_modes(c, intra4x4, s->b4_stride, 0); } else fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); mb->ref_frame = VP56_FRAME_CURRENT; } } /** * @param i initial coeff index, 0 unless a separate DC block is coded * @param zero_nhood the initial prediction context for number of surrounding * all-zero blocks (only left/top, so 0-2) * @param qmul[0] dc dequant factor * @param qmul[1] ac dequant factor * @return 0 if no coeffs were decoded * otherwise, the index of the last coeff decoded plus one */ static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16], uint8_t probs[8][3][NUM_DCT_TOKENS-1], int i, int zero_nhood, int16_t qmul[2]) { int token, nonzero = 0; int offset = 0; for (; i < 16; i++) { token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset); if (token == DCT_EOB) break; else if (token >= DCT_CAT1) { int cat = token-DCT_CAT1; token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]); token += vp8_dct_cat_offset[cat]; } // after the first token, the non-zero prediction context becomes // based on the last decoded coeff if (!token) { zero_nhood = 0; offset = 1; continue; } else if (token == 1) zero_nhood = 1; else zero_nhood = 2; // todo: full [16] qmat? load into register? block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i]; nonzero = i+1; offset = 0; } return nonzero; } static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9]) { LOCAL_ALIGNED_16(DCTELEM, dc,[16]); int i, x, y, luma_start = 0, luma_ctx = 3; int nnz_pred, nnz, nnz_total = 0; int segment = s->segmentation.enabled ? mb->segment : 0; s->dsp.clear_blocks((DCTELEM *)s->block); if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { AV_ZERO128(dc); AV_ZERO128(dc+8); nnz_pred = t_nnz[8] + l_nnz[8]; // decode DC values and do hadamard nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred, s->qmat[segment].luma_dc_qmul); l_nnz[8] = t_nnz[8] = !!nnz; nnz_total += nnz; s->vp8dsp.vp8_luma_dc_wht(s->block, dc); luma_start = 1; luma_ctx = 0; } // luma blocks for (y = 0; y < 4; y++) for (x = 0; x < 4; x++) { nnz_pred = l_nnz[y] + t_nnz[x]; nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start, nnz_pred, s->qmat[segment].luma_qmul); // nnz+luma_start may be one more than the actual last index, but we don't care s->non_zero_count_cache[y][x] = nnz + luma_start; t_nnz[x] = l_nnz[y] = !!nnz; nnz_total += nnz; } // chroma blocks // TODO: what to do about dimensions? 2nd dim for luma is x, // but for chroma it's (y<<1)|x for (i = 4; i < 6; i++) for (y = 0; y < 2; y++) for (x = 0; x < 2; x++) { nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x]; nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0, nnz_pred, s->qmat[segment].chroma_qmul); s->non_zero_count_cache[i][(y<<1)+x] = nnz; t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz; nnz_total += nnz; } // if there were no coded coeffs despite the macroblock not being marked skip, // we MUST not do the inner loop filter and should not do IDCT // Since skip isn't used for bitstream prediction, just manually set it. if (!nnz_total) mb->skip = 1; } static int check_intra_pred_mode(int mode, int mb_x, int mb_y) { if (mode == DC_PRED8x8) { if (!(mb_x|mb_y)) mode = DC_128_PRED8x8; else if (!mb_y) mode = LEFT_DC_PRED8x8; else if (!mb_x) mode = TOP_DC_PRED8x8; } return mode; } static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, uint8_t *bmode, int mb_x, int mb_y) { int x, y, mode, nnz, tr; if (mb->mode < MODE_I4x4) { mode = check_intra_pred_mode(mb->mode, mb_x, mb_y); s->hpc.pred16x16[mode](dst[0], s->linesize); } else { uint8_t *ptr = dst[0]; // all blocks on the right edge of the macroblock use bottom edge // the top macroblock for their topright edge uint8_t *tr_right = ptr - s->linesize + 16; // if we're on the right edge of the frame, said edge is extended // from the top macroblock if (mb_x == s->mb_width-1) { tr = tr_right[-1]*0x01010101; tr_right = (uint8_t *)&tr; } for (y = 0; y < 4; y++) { uint8_t *topright = ptr + 4 - s->linesize; for (x = 0; x < 4; x++) { if (x == 3) topright = tr_right; s->hpc.pred4x4[bmode[x]](ptr+4*x, topright, s->linesize); nnz = s->non_zero_count_cache[y][x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize); else s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize); } topright += 4; } ptr += 4*s->linesize; bmode += s->b4_stride; } } mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y); s->hpc.pred8x8[mode](dst[1], s->uvlinesize); s->hpc.pred8x8[mode](dst[2], s->uvlinesize); } /** * Generic MC function. * * @param s VP8 decoding context * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes * @param dst target buffer for block data at block position * @param src reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block (16, 8 or 4) * @param block_h height of block (always same as block_w) * @param width width of src/dst plane data * @param height height of src/dst plane data * @param linesize size of a single line of plane data, including padding */ static inline void vp8_mc(VP8Context *s, int luma, uint8_t *dst, uint8_t *src, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, int linesize, h264_chroma_mc_func mc_func[3][3]) { static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 }; int mx = (mv->x << luma)&7, mx_idx = idx[mx]; int my = (mv->y << luma)&7, my_idx = idx[my]; x_off += mv->x >> (3 - luma); y_off += mv->y >> (3 - luma); // edge emulation src += y_off * linesize + x_off; if (x_off < 2 || x_off >= width - block_w - 3 || y_off < 2 || y_off >= height - block_h - 3) { ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize, block_w + 5, block_h + 5, x_off - 2, y_off - 2, width, height); src = s->edge_emu_buffer + 2 + linesize * 2; } mc_func[my_idx][mx_idx](dst, src, linesize, block_h, mx, my); } /** * Apply motion vectors to prediction buffer, chapter 18. */ static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) { int x_off = mb_x << 4, y_off = mb_y << 4; int width = 16*s->mb_width, height = 16*s->mb_height; VP56mv uvmv; if (mb->mode < VP8_MVMODE_SPLIT) { /* Y */ vp8_mc(s, 1, dst[0], s->framep[mb->ref_frame]->data[0], &mb->mv, x_off, y_off, 16, 16, width, height, s->linesize, s->vp8dsp.put_vp8_epel_pixels_tab[0]); /* U/V */ uvmv = mb->mv; if (s->profile == 3) { uvmv.x &= ~7; uvmv.y &= ~7; } x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; vp8_mc(s, 0, dst[1], s->framep[mb->ref_frame]->data[1], &uvmv, x_off, y_off, 8, 8, width, height, s->uvlinesize, s->vp8dsp.put_vp8_epel_pixels_tab[1]); vp8_mc(s, 0, dst[2], s->framep[mb->ref_frame]->data[2], &uvmv, x_off, y_off, 8, 8, width, height, s->uvlinesize, s->vp8dsp.put_vp8_epel_pixels_tab[1]); } else { int x, y; /* Y */ for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4, s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x], 4*x + x_off, 4*y + y_off, 4, 4, width, height, s->linesize, s->vp8dsp.put_vp8_epel_pixels_tab[2]); } } /* U/V */ x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; for (y = 0; y < 2; y++) { for (x = 0; x < 2; x++) { uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x + mb->bmv[ 2*y * 4 + 2*x+1].x + mb->bmv[(2*y+1) * 4 + 2*x ].x + mb->bmv[(2*y+1) * 4 + 2*x+1].x; uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y + mb->bmv[ 2*y * 4 + 2*x+1].y + mb->bmv[(2*y+1) * 4 + 2*x ].y + mb->bmv[(2*y+1) * 4 + 2*x+1].y; uvmv.x = (uvmv.x + (uvmv.x < 0 ? -2 : 2)) / 4; uvmv.y = (uvmv.y + (uvmv.y < 0 ? -2 : 2)) / 4; if (s->profile == 3) { uvmv.x &= ~7; uvmv.y &= ~7; } vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4, s->framep[mb->ref_frame]->data[1], &uvmv, 4*x + x_off, 4*y + y_off, 4, 4, width, height, s->uvlinesize, s->vp8dsp.put_vp8_epel_pixels_tab[2]); vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4, s->framep[mb->ref_frame]->data[2], &uvmv, 4*x + x_off, 4*y + y_off, 4, 4, width, height, s->uvlinesize, s->vp8dsp.put_vp8_epel_pixels_tab[2]); } } } } static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst, VP8Macroblock *mb) { int x, y, nnz; if (mb->mode != MODE_I4x4) for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { nnz = s->non_zero_count_cache[y][x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize); else s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize); } } y_dst += 4*s->linesize; } for (y = 0; y < 2; y++) { for (x = 0; x < 2; x++) { nnz = s->non_zero_count_cache[4][(y<<1)+x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); else s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); } nnz = s->non_zero_count_cache[5][(y<<1)+x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); else s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); } } u_dst += 4*s->uvlinesize; v_dst += 4*s->uvlinesize; } } static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, int *level, int *inner, int *hev_thresh) { int interior_limit, filter_level; if (s->segmentation.enabled) { filter_level = s->segmentation.filter_level[mb->segment]; if (!s->segmentation.absolute_vals) filter_level += s->filter.level; } else filter_level = s->filter.level; if (s->lf_delta.enabled) { filter_level += s->lf_delta.ref[mb->ref_frame]; if (mb->ref_frame == VP56_FRAME_CURRENT) { if (mb->mode == MODE_I4x4) filter_level += s->lf_delta.mode[0]; } else { if (mb->mode == VP8_MVMODE_ZERO) filter_level += s->lf_delta.mode[1]; else if (mb->mode == VP8_MVMODE_SPLIT) filter_level += s->lf_delta.mode[3]; else filter_level += s->lf_delta.mode[2]; } } filter_level = av_clip(filter_level, 0, 63); interior_limit = filter_level; if (s->filter.sharpness) { interior_limit >>= s->filter.sharpness > 4 ? 2 : 1; interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness); } interior_limit = FFMAX(interior_limit, 1); *level = filter_level; *inner = interior_limit; if (hev_thresh) { *hev_thresh = filter_level >= 15; if (s->keyframe) { if (filter_level >= 40) *hev_thresh = 2; } else { if (filter_level >= 40) *hev_thresh = 3; else if (filter_level >= 20) *hev_thresh = 2; } } } // TODO: look at backup_mb_border / xchg_mb_border in h264.c static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) { int filter_level, inner_limit, hev_thresh; filter_level_for_mb(s, mb, &filter_level, &inner_limit, &hev_thresh); if (!filter_level) return; if (mb_x) { s->vp8dsp.vp8_h_loop_filter16(dst[0], s->linesize, filter_level+2, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8 (dst[1], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8 (dst[2], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); } if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+ 4, s->linesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+ 8, s->linesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+12, s->linesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8_inner (dst[1]+ 4, s->uvlinesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8_inner (dst[2]+ 4, s->uvlinesize, filter_level, inner_limit, hev_thresh); } if (mb_y) { s->vp8dsp.vp8_v_loop_filter16(dst[0], s->linesize, filter_level+2, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8 (dst[1], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8 (dst[2], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); } if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+ 4*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+ 8*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+12*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8_inner (dst[1]+ 4*s->uvlinesize, s->uvlinesize, filter_level, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8_inner (dst[2]+ 4*s->uvlinesize, s->uvlinesize, filter_level, inner_limit, hev_thresh); } } static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, int mb_x, int mb_y) { int filter_level, inner_limit, mbedge_lim, bedge_lim; filter_level_for_mb(s, mb, &filter_level, &inner_limit, NULL); if (!filter_level) return; mbedge_lim = 2*(filter_level+2) + inner_limit; bedge_lim = 2* filter_level + inner_limit; if (mb_x) s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim); if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim); s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim); s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim); } if (mb_y) s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim); if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim); s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim); s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim); } } static void filter_mb_row(VP8Context *s, int mb_y) { VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; uint8_t *dst[3] = { s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize, s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize, s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize }; int mb_x; for (mb_x = 0; mb_x < s->mb_width; mb_x++) { filter_mb(s, dst, mb++, mb_x, mb_y); dst[0] += 16; dst[1] += 8; dst[2] += 8; } } static void filter_mb_row_simple(VP8Context *s, int mb_y) { uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize; VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; int mb_x; for (mb_x = 0; mb_x < s->mb_width; mb_x++) { filter_mb_simple(s, dst, mb++, mb_x, mb_y); dst += 16; } } static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { VP8Context *s = avctx->priv_data; int ret, mb_x, mb_y, i, y, referenced; enum AVDiscard skip_thresh; AVFrame *curframe; if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0) return ret; referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT || s->update_altref == VP56_FRAME_CURRENT; skip_thresh = !referenced ? AVDISCARD_NONREF : !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; if (avctx->skip_frame >= skip_thresh) { s->invisible = 1; goto skip_decode; } for (i = 0; i < 4; i++) if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i]; break; } if (curframe->data[0]) avctx->release_buffer(avctx, curframe); curframe->key_frame = s->keyframe; curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE; curframe->reference = referenced ? 3 : 0; if ((ret = avctx->get_buffer(avctx, curframe))) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n"); return ret; } // Given that arithmetic probabilities are updated every frame, it's quite likely // that the values we have on a random interframe are complete junk if we didn't // start decode on a keyframe. So just don't display anything rather than junk. if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] || !s->framep[VP56_FRAME_GOLDEN] || !s->framep[VP56_FRAME_GOLDEN2])) { av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); return AVERROR_INVALIDDATA; } s->linesize = curframe->linesize[0]; s->uvlinesize = curframe->linesize[1]; if (!s->edge_emu_buffer) s->edge_emu_buffer = av_malloc(21*s->linesize); memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz)); // top edge of 127 for intra prediction if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) { memset(curframe->data[0] - s->linesize -1, 127, s->linesize +1); memset(curframe->data[1] - s->uvlinesize-1, 127, s->uvlinesize+1); memset(curframe->data[2] - s->uvlinesize-1, 127, s->uvlinesize+1); } for (mb_y = 0; mb_y < s->mb_height; mb_y++) { VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)]; VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride; uint8_t *dst[3] = { curframe->data[0] + 16*mb_y*s->linesize, curframe->data[1] + 8*mb_y*s->uvlinesize, curframe->data[2] + 8*mb_y*s->uvlinesize }; memset(s->left_nnz, 0, sizeof(s->left_nnz)); // left edge of 129 for intra prediction if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) for (i = 0; i < 3; i++) for (y = 0; y < 16>>!!i; y++) dst[i][y*curframe->linesize[i]-1] = 129; for (mb_x = 0; mb_x < s->mb_width; mb_x++) { decode_mb_mode(s, mb, mb_x, mb_y, intra4x4 + 4*mb_x); if (!mb->skip) decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz); else { AV_ZERO128(s->non_zero_count_cache); // luma AV_ZERO64(s->non_zero_count_cache[4]); // chroma } if (mb->mode <= MODE_I4x4) { intra_predict(s, dst, mb, intra4x4 + 4*mb_x, mb_x, mb_y); memset(mb->bmv, 0, sizeof(mb->bmv)); } else { inter_predict(s, dst, mb, mb_x, mb_y); } if (!mb->skip) { idct_mb(s, dst[0], dst[1], dst[2], mb); } else { AV_ZERO64(s->left_nnz); AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned // Reset DC block predictors if they would exist if the mb had coefficients if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { s->left_nnz[8] = 0; s->top_nnz[mb_x][8] = 0; } } dst[0] += 16; dst[1] += 8; dst[2] += 8; mb++; } if (mb_y && s->filter.level && avctx->skip_loop_filter < skip_thresh) { if (s->filter.simple) filter_mb_row_simple(s, mb_y-1); else filter_mb_row(s, mb_y-1); } } if (s->filter.level && avctx->skip_loop_filter < skip_thresh) { if (s->filter.simple) filter_mb_row_simple(s, mb_y-1); else filter_mb_row(s, mb_y-1); } skip_decode: // if future frames don't use the updated probabilities, // reset them to the values we saved if (!s->update_probabilities) s->prob[0] = s->prob[1]; // check if golden and altref are swapped if (s->update_altref == VP56_FRAME_GOLDEN && s->update_golden == VP56_FRAME_GOLDEN2) FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]); else { if (s->update_altref != VP56_FRAME_NONE) s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref]; if (s->update_golden != VP56_FRAME_NONE) s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden]; } if (s->update_last) // move cur->prev s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT]; // release no longer referenced frames for (i = 0; i < 4; i++) if (s->frames[i].data[0] && &s->frames[i] != s->framep[VP56_FRAME_CURRENT] && &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) avctx->release_buffer(avctx, &s->frames[i]); if (!s->invisible) { *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT]; *data_size = sizeof(AVFrame); } return avpkt->size; } static av_cold int vp8_decode_init(AVCodecContext *avctx) { VP8Context *s = avctx->priv_data; s->avctx = avctx; avctx->pix_fmt = PIX_FMT_YUV420P; dsputil_init(&s->dsp, avctx); ff_h264_pred_init(&s->hpc, CODEC_ID_VP8); ff_vp8dsp_init(&s->vp8dsp); // intra pred needs edge emulation among other things if (avctx->flags&CODEC_FLAG_EMU_EDGE) { av_log(avctx, AV_LOG_ERROR, "Edge emulation not supproted\n"); return AVERROR_PATCHWELCOME; } return 0; } static av_cold int vp8_decode_free(AVCodecContext *avctx) { vp8_decode_flush(avctx); return 0; } AVCodec vp8_decoder = { "vp8", AVMEDIA_TYPE_VIDEO, CODEC_ID_VP8, sizeof(VP8Context), vp8_decode_init, NULL, vp8_decode_free, vp8_decode_frame, CODEC_CAP_DR1, .flush = vp8_decode_flush, .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"), };