/* * VC-9 and WMV3 decoder * Copyright (c) 2005 Anonymous * Copyright (c) 2005 Alex Beregszaszi * Copyright (c) 2005 Michael Niedermayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /** * @file vc9.c * VC-9 and WMV3 decoder * * TODO: most AP stuff, optimize, most of MB layer, transform, filtering and motion compensation, etc * TODO: use MPV_ !! */ #include "common.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "vc9data.h" #undef NDEBUG #include extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2]; extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2]; extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2]; #define MB_INTRA_VLC_BITS 9 extern VLC ff_msmp4_mb_i_vlc; #define DC_VLC_BITS 9 static const uint16_t table_mb_intra[64][2]; /* Some inhibiting stuff */ #define HAS_ADVANCED_PROFILE 0 #define TRACE 1 #if TRACE # define INIT_VLC(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) \ if (init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) < 0) \ { \ av_log(v->s.avctx, AV_LOG_ERROR, "Error for " # vlc " (%i)\n", i); \ return -1; \ } #else # define INIT_VLC(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) \ init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) #endif /** Available Profiles */ //@{ #define PROFILE_SIMPLE 0 #define PROFILE_MAIN 1 #define PROFILE_COMPLEX 2 ///< TODO: WMV9 specific #define PROFILE_ADVANCED 3 //@} /** Sequence quantizer mode */ //@{ #define QUANT_FRAME_IMPLICIT 0 ///< Implicitly specified at frame level #define QUANT_FRAME_EXPLICIT 1 ///< Explicitly specified at frame level #define QUANT_NON_UNIFORM 2 ///< Non-uniform quant used for all frames #define QUANT_UNIFORM 3 ///< Uniform quant used for all frames //@} /** Where quant can be changed */ //@{ #define DQPROFILE_FOUR_EDGES 0 #define DQPROFILE_DOUBLE_EDGES 1 #define DQPROFILE_SINGLE_EDGE 2 #define DQPROFILE_ALL_MBS 3 //@} /** @name Where quant can be changed */ //@{ #define DQPROFILE_FOUR_EDGES 0 #define DQSINGLE_BEDGE_LEFT 0 #define DQSINGLE_BEDGE_TOP 1 #define DQSINGLE_BEDGE_RIGHT 2 #define DQSINGLE_BEDGE_BOTTOM 3 //@} /** Which pair of edges is quantized with ALTPQUANT */ //@{ #define DQDOUBLE_BEDGE_TOPLEFT 0 #define DQDOUBLE_BEDGE_TOPRIGHT 1 #define DQDOUBLE_BEDGE_BOTTOMRIGHT 2 #define DQDOUBLE_BEDGE_BOTTOMLEFT 3 //@} /** MV modes for P frames */ //@{ #define MV_PMODE_1MV_HPEL_BILIN 0 #define MV_PMODE_1MV 1 #define MV_PMODE_1MV_HPEL 2 #define MV_PMODE_MIXED_MV 3 #define MV_PMODE_INTENSITY_COMP 4 //@} /** @name MV types for B frames */ //@{ #define BMV_TYPE_BACKWARD 0 #define BMV_TYPE_BACKWARD 0 #define BMV_TYPE_FORWARD 1 #define BMV_TYPE_INTERPOLATED 3 //@} /** MV P mode - the 5th element is only used for mode 1 */ static const uint8_t mv_pmode_table[2][5] = { { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV, MV_PMODE_INTENSITY_COMP }, { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_INTENSITY_COMP } }; /** One more frame type */ #define BI_TYPE 7 static const int fps_nr[5] = { 24, 25, 30, 50, 60 }, fps_dr[2] = { 1000, 1001 }; static const uint8_t pquant_table[3][32] = { { /* Implicit quantizer */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31 }, { /* Explicit quantizer, pquantizer uniform */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }, { /* Explicit quantizer, pquantizer non-uniform */ 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31 } }; /** @name VC-9 VLC tables and defines * @todo TODO move this into the context */ //@{ #define VC9_BFRACTION_VLC_BITS 7 static VLC vc9_bfraction_vlc; #define VC9_IMODE_VLC_BITS 4 static VLC vc9_imode_vlc; #define VC9_NORM2_VLC_BITS 3 static VLC vc9_norm2_vlc; #define VC9_NORM6_VLC_BITS 9 static VLC vc9_norm6_vlc; /* Could be optimized, one table only needs 8 bits */ #define VC9_TTMB_VLC_BITS 9 //12 static VLC vc9_ttmb_vlc[3]; #define VC9_MV_DIFF_VLC_BITS 9 //15 static VLC vc9_mv_diff_vlc[4]; #define VC9_CBPCY_P_VLC_BITS 9 //14 static VLC vc9_cbpcy_p_vlc[4]; #define VC9_4MV_BLOCK_PATTERN_VLC_BITS 6 static VLC vc9_4mv_block_pattern_vlc[4]; #define VC9_TTBLK_VLC_BITS 5 static VLC vc9_ttblk_vlc[3]; #define VC9_SUBBLKPAT_VLC_BITS 6 static VLC vc9_subblkpat_vlc[3]; //@} /** Bitplane struct * We mainly need data and is_raw, so this struct could be avoided * to save a level of indirection; feel free to modify * @fixme For now, stride=width * @warning Data are bits, either 1 or 0 */ typedef struct BitPlane { uint8_t *data; ///< Data buffer int width; ///< Width of the buffer int stride; ///< Stride of the buffer int height; ///< Plane height uint8_t is_raw; ///< Bit values must be read at MB level } BitPlane; /** The VC9 Context * @fixme Change size wherever another size is more efficient * Many members are only used for Advanced Profile */ typedef struct VC9Context{ MpegEncContext s; /** Simple/Main Profile sequence header */ //@{ int res_sm; ///< reserved, 2b int res_x8; ///< reserved int multires; ///< frame-level RESPIC syntax element present int res_fasttx; ///< reserved, always 1 int res_transtab; ///< reserved, always 0 int rangered; ///< RANGEREDFRM (range reduction) syntax element present ///< at frame level int res_rtm_flag; ///< reserved, set to 1 int reserved; ///< reserved //@} #if HAS_ADVANCED_PROFILE /** Advanced Profile */ //@{ int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer int chromaformat; ///< 2bits, 2=4:2:0, only defined int postprocflag; ///< Per-frame processing suggestion flag present int broadcast; ///< TFF/RFF present int interlace; ///< Progressive/interlaced (RPTFTM syntax element) int tfcntrflag; ///< TFCNTR present int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present int extended_dmv; ///< Additional extended dmv range at P/B frame-level int color_prim; ///< 8bits, chroma coordinates of the color primaries int transfer_char; ///< 8bits, Opto-electronic transfer characteristics int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix int hrd_param_flag; ///< Presence of Hypothetical Reference ///< Decoder parameters //@} #endif /** Sequence header data for all Profiles * TODO: choose between ints, uint8_ts and monobit flags */ //@{ int profile; ///< 2bits, Profile int frmrtq_postproc; ///< 3bits, int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple) int extended_mv; ///< Ext MV in P/B (not in Simple) int dquant; ///< How qscale varies with MBs, 2bits (not in Simple) int vstransform; ///< variable-size [48]x[48] transform type + info int overlap; ///< overlapped transforms in use int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_* int finterpflag; ///< INTERPFRM present //@} /** Frame decoding info for all profiles */ //@{ uint8_t mv_mode; ///< MV coding monde uint8_t mv_mode2; ///< Secondary MV coding mode (B frames) int k_x; ///< Number of bits for MVs (depends on MV range) int k_y; ///< Number of bits for MVs (depends on MV range) uint8_t pq, altpq; ///< Current/alternate frame quantizer scale /** pquant parameters */ //@{ uint8_t dquantfrm; uint8_t dqprofile; uint8_t dqsbedge; uint8_t dqbilevel; //@} /** AC coding set indexes * @see 8.1.1.10, p(1)10 */ //@{ int c_ac_table_index; ///< Chroma index from ACFRM element int y_ac_table_index; ///< Luma index from AC2FRM element //@} int ttfrm; ///< Transform type info present at frame level uint8_t ttmbf; ///< Transform type flag int ttmb; ///< Transform type uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform /** Luma compensation parameters */ //@{ uint8_t lumscale; uint8_t lumshift; //@} int16_t bfraction; ///< Relative position % anchors=> how to scale MVs uint8_t halfpq; ///< Uniform quant over image and qp+.5 uint8_t respic; ///< Frame-level flag for resized images int buffer_fullness; ///< HRD info /** Ranges: * -# 0 -> [-64n 63.f] x [-32, 31.f] * -# 1 -> [-128, 127.f] x [-64, 63.f] * -# 2 -> [-512, 511.f] x [-128, 127.f] * -# 3 -> [-1024, 1023.f] x [-256, 255.f] */ uint8_t mvrange; uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use uint8_t *previous_line_cbpcy; ///< To use for predicted CBPCY VLC *cbpcy_vlc; ///< CBPCY VLC table int tt_index; ///< Index for Transform Type tables BitPlane mv_type_mb_plane; ///< bitplane for mv_type == (4MV) BitPlane skip_mb_plane; ///< bitplane for skipped MBs BitPlane direct_mb_plane; ///< bitplane for "direct" MBs /** Frame decoding info for S/M profiles only */ //@{ uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128) uint8_t interpfrm; //@} #if HAS_ADVANCED_PROFILE /** Frame decoding info for Advanced profile */ //@{ uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace uint8_t numpanscanwin; uint8_t tfcntr; uint8_t rptfrm, tff, rff; uint16_t topleftx; uint16_t toplefty; uint16_t bottomrightx; uint16_t bottomrighty; uint8_t uvsamp; uint8_t postproc; int hrd_num_leaky_buckets; uint8_t bit_rate_exponent; uint8_t buffer_size_exponent; BitPlane ac_pred_plane; ///< AC prediction flags bitplane BitPlane over_flags_plane; ///< Overflags bitplane uint8_t condover; uint16_t *hrd_rate, *hrd_buffer; uint8_t *hrd_fullness; uint8_t range_mapy_flag; uint8_t range_mapuv_flag; uint8_t range_mapy; uint8_t range_mapuv; //@} #endif } VC9Context; /** * Get unary code of limited length * @fixme FIXME Slow and ugly * @param gb GetBitContext * @param[in] stop The bitstop value (unary code of 1's or 0's) * @param[in] len Maximum length * @return Unary length/index */ static int get_prefix(GetBitContext *gb, int stop, int len) { #if 1 int i = 0, tmp = !stop; while (i != len && tmp != stop) { tmp = get_bits(gb, 1); i++; } if (i == len && tmp != stop) return len+1; return i; #else unsigned int buf; int log; OPEN_READER(re, gb); UPDATE_CACHE(re, gb); buf=GET_CACHE(re, gb); //Still not sure if (stop) buf = ~buf; log= av_log2(-buf); //FIXME: -? if (log < limit){ LAST_SKIP_BITS(re, gb, log+1); CLOSE_READER(re, gb); return log; } LAST_SKIP_BITS(re, gb, limit); CLOSE_READER(re, gb); return limit; #endif } /** * Init VC-9 specific tables and VC9Context members * @param v The VC9Context to initialize * @return Status */ static int vc9_init_common(VC9Context *v) { static int done = 0; int i = 0; /* Set the bit planes */ v->mv_type_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 }; v->direct_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 }; v->skip_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 }; #if HAS_ADVANCED_PROFILE v->ac_pred_plane = v->over_flags_plane = (struct BitPlane) { NULL, 0, 0, 0 }; v->hrd_rate = v->hrd_buffer = NULL; #endif /* VLC tables */ #if 0 // spec -> actual tables converter for(i=0; i<64; i++){ int code= (vc9_norm6_spec[i][1] << vc9_norm6_spec[i][4]) + vc9_norm6_spec[i][3]; av_log(NULL, AV_LOG_DEBUG, "0x%03X, ", code); if(i%16==15) av_log(NULL, AV_LOG_DEBUG, "\n"); } for(i=0; i<64; i++){ int code= vc9_norm6_spec[i][2] + vc9_norm6_spec[i][4]; av_log(NULL, AV_LOG_DEBUG, "%2d, ", code); if(i%16==15) av_log(NULL, AV_LOG_DEBUG, "\n"); } #endif if(!done) { done = 1; INIT_VLC(&vc9_bfraction_vlc, VC9_BFRACTION_VLC_BITS, 23, vc9_bfraction_bits, 1, 1, vc9_bfraction_codes, 1, 1, 1); INIT_VLC(&vc9_norm2_vlc, VC9_NORM2_VLC_BITS, 4, vc9_norm2_bits, 1, 1, vc9_norm2_codes, 1, 1, 1); INIT_VLC(&vc9_norm6_vlc, VC9_NORM6_VLC_BITS, 64, vc9_norm6_bits, 1, 1, vc9_norm6_codes, 2, 2, 1); INIT_VLC(&vc9_imode_vlc, VC9_IMODE_VLC_BITS, 7, vc9_imode_bits, 1, 1, vc9_imode_codes, 1, 1, 1); for (i=0; i<3; i++) { INIT_VLC(&vc9_ttmb_vlc[i], VC9_TTMB_VLC_BITS, 16, vc9_ttmb_bits[i], 1, 1, vc9_ttmb_codes[i], 2, 2, 1); INIT_VLC(&vc9_ttblk_vlc[i], VC9_TTBLK_VLC_BITS, 8, vc9_ttblk_bits[i], 1, 1, vc9_ttblk_codes[i], 1, 1, 1); INIT_VLC(&vc9_subblkpat_vlc[i], VC9_SUBBLKPAT_VLC_BITS, 15, vc9_subblkpat_bits[i], 1, 1, vc9_subblkpat_codes[i], 1, 1, 1); } for(i=0; i<4; i++) { INIT_VLC(&vc9_4mv_block_pattern_vlc[i], VC9_4MV_BLOCK_PATTERN_VLC_BITS, 16, vc9_4mv_block_pattern_bits[i], 1, 1, vc9_4mv_block_pattern_codes[i], 1, 1, 1); INIT_VLC(&vc9_cbpcy_p_vlc[i], VC9_CBPCY_P_VLC_BITS, 64, vc9_cbpcy_p_bits[i], 1, 1, vc9_cbpcy_p_codes[i], 2, 2, 1); INIT_VLC(&vc9_mv_diff_vlc[i], VC9_MV_DIFF_VLC_BITS, 73, vc9_mv_diff_bits[i], 1, 1, vc9_mv_diff_codes[i], 2, 2, 1); } } /* Other defaults */ v->pq = -1; v->mvrange = 0; /* 7.1.1.18, p80 */ return 0; } #if HAS_ADVANCED_PROFILE /** * Decode sequence header's Hypothetic Reference Decoder data * @see 6.2.1, p32 * @param v The VC9Context to initialize * @param gb A GetBitContext initialized from AVCodecContext extra_data * @return Status */ static int decode_hrd(VC9Context *v, GetBitContext *gb) { int i, num; num = 1 + get_bits(gb, 5); /*hrd rate*/ if (v->hrd_rate || num != v->hrd_num_leaky_buckets) { av_freep(&v->hrd_rate); } if (!v->hrd_rate) v->hrd_rate = av_malloc(num*sizeof(uint16_t)); if (!v->hrd_rate) return -1; /*hrd buffer*/ if (v->hrd_buffer || num != v->hrd_num_leaky_buckets) { av_freep(&v->hrd_buffer); } if (!v->hrd_buffer) v->hrd_buffer = av_malloc(num*sizeof(uint16_t)); if (!v->hrd_buffer) { av_freep(&v->hrd_rate); return -1; } /*hrd fullness*/ if (v->hrd_fullness || num != v->hrd_num_leaky_buckets) { av_freep(&v->hrd_buffer); } if (!v->hrd_fullness) v->hrd_fullness = av_malloc(num*sizeof(uint8_t)); if (!v->hrd_fullness) { av_freep(&v->hrd_rate); av_freep(&v->hrd_buffer); return -1; } v->hrd_num_leaky_buckets = num; //exponent in base-2 for rate v->bit_rate_exponent = 6 + get_bits(gb, 4); //exponent in base-2 for buffer_size v->buffer_size_exponent = 4 + get_bits(gb, 4); for (i=0; ihrd_rate[i] = 1 + get_bits(gb, 16); if (i && v->hrd_rate[i-1]>=v->hrd_rate[i]) { av_log(v->s.avctx, AV_LOG_ERROR, "HDR Rates aren't strictly increasing:" "%i vs %i\n", v->hrd_rate[i-1], v->hrd_rate[i]); return -1; } v->hrd_buffer[i] = 1 + get_bits(gb, 16); if (i && v->hrd_buffer[i-1]hrd_buffer[i]) { av_log(v->s.avctx, AV_LOG_ERROR, "HDR Buffers aren't decreasing:" "%i vs %i\n", v->hrd_buffer[i-1], v->hrd_buffer[i]); return -1; } } return 0; } /** * Decode sequence header for Advanced Profile * @see Table 2, p18 * @see 6.1.7, pp21-27 * @param v The VC9Context to initialize * @param gb A GetBitContext initialized from AVCodecContext extra_data * @return Status */ static int decode_advanced_sequence_header(AVCodecContext *avctx, GetBitContext *gb) { VC9Context *v = avctx->priv_data; int nr, dr, aspect_ratio; v->postprocflag = get_bits(gb, 1); v->broadcast = get_bits(gb, 1); v->interlace = get_bits(gb, 1); v->tfcntrflag = get_bits(gb, 1); v->finterpflag = get_bits(gb, 1); //common v->panscanflag = get_bits(gb, 1); v->reserved = get_bits(gb, 1); if (v->reserved) { av_log(avctx, AV_LOG_ERROR, "RESERVED should be 0 (is %i)\n", v->reserved); return -1; } if (v->extended_mv) v->extended_dmv = get_bits(gb, 1); /* 6.1.7, p21 */ if (get_bits(gb, 1) /* pic_size_flag */) { avctx->coded_width = get_bits(gb, 12) << 1; avctx->coded_height = get_bits(gb, 12) << 1; if ( get_bits(gb, 1) /* disp_size_flag */) { avctx->width = get_bits(gb, 14); avctx->height = get_bits(gb, 14); } /* 6.1.7.4, p23 */ if ( get_bits(gb, 1) /* aspect_ratio_flag */) { aspect_ratio = get_bits(gb, 4); //SAR if (aspect_ratio == 0x0F) //FF_ASPECT_EXTENDED { avctx->sample_aspect_ratio.num = 1 + get_bits(gb, 8); avctx->sample_aspect_ratio.den = 1 + get_bits(gb, 8); } else if (aspect_ratio == 0x0E) { av_log(avctx, AV_LOG_DEBUG, "Reserved AR found\n"); } else { avctx->sample_aspect_ratio = vc9_pixel_aspect[aspect_ratio]; } } } else { avctx->coded_width = avctx->width; avctx->coded_height = avctx->height; } /* 6.1.8, p23 */ if ( get_bits(gb, 1) /* framerateflag */) { if ( !get_bits(gb, 1) /* framerateind */) { nr = get_bits(gb, 8); dr = get_bits(gb, 4); if (nr<1) { av_log(avctx, AV_LOG_ERROR, "0 is forbidden for FRAMERATENR\n"); return -1; } if (nr>5) { av_log(avctx, AV_LOG_ERROR, "Reserved FRAMERATENR %i not handled\n", nr); nr = 5; /* overflow protection */ } if (dr<1) { av_log(avctx, AV_LOG_ERROR, "0 is forbidden for FRAMERATEDR\n"); return -1; } if (dr>2) { av_log(avctx, AV_LOG_ERROR, "Reserved FRAMERATEDR %i not handled\n", dr); dr = 2; /* overflow protection */ } avctx->time_base.num = fps_nr[dr - 1]; avctx->time_base.den = fps_nr[nr - 1]; } else { nr = get_bits(gb, 16); // 0.03125->2048Hz / 0.03125Hz avctx->time_base.den = 1000000; avctx->time_base.num = 31250*(1+nr); } } /* 6.1.9, p25 */ if ( get_bits(gb, 1) /* color_format_flag */) { //Chromacity coordinates of color primaries //like ITU-R BT.709-2, BT.470-2, ... v->color_prim = get_bits(gb, 8); if (v->color_prim<1) { av_log(avctx, AV_LOG_ERROR, "0 for COLOR_PRIM is forbidden\n"); return -1; } if (v->color_prim == 3 || v->color_prim>6) { av_log(avctx, AV_LOG_DEBUG, "Reserved COLOR_PRIM %i found\n", v->color_prim); return -1; } //Opto-electronic transfer characteristics v->transfer_char = get_bits(gb, 8); if (v->transfer_char < 1) { av_log(avctx, AV_LOG_ERROR, "0 for TRAMSFER_CHAR is forbidden\n"); return -1; } if (v->transfer_char == 3 || v->transfer_char>8) { av_log(avctx, AV_LOG_DEBUG, "Reserved TRANSFERT_CHAR %i found\n", v->color_prim); return -1; } //Matrix coefficient for primariev->YCbCr v->matrix_coef = get_bits(gb, 8); if (v->matrix_coef < 1) { av_log(avctx, AV_LOG_ERROR, "0 for MATRIX_COEF is forbidden\n"); return -1; } if ((v->matrix_coef > 2 && v->matrix_coef < 6) || v->matrix_coef > 7) { av_log(avctx, AV_LOG_DEBUG, "Reserved MATRIX_COEF %i found\n", v->color_prim); return -1; } } //Hypothetical reference decoder indicator flag v->hrd_param_flag = get_bits(gb, 1); if (v->hrd_param_flag) { if (decode_hrd(v, gb) < 0) return -1; } /*reset scaling ranges, 6.2.2 & 6.2.3, p33*/ v->range_mapy_flag = 0; v->range_mapuv_flag = 0; av_log(avctx, AV_LOG_DEBUG, "Advanced profile not supported yet\n"); return -1; } #endif /** * Decode Simple/Main Profiles sequence header * @see Figure 7-8, p16-17 * @param avctx Codec context * @param gb GetBit context initialized from Codec context extra_data * @return Status */ static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb) { VC9Context *v = avctx->priv_data; av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32)); v->profile = get_bits(gb, 2); if (v->profile == 2) { av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden\n"); return -1; } #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) { v->level = get_bits(gb, 3); if(v->level >= 5) { av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level); } v->chromaformat = get_bits(gb, 2); if (v->chromaformat != 1) { av_log(avctx, AV_LOG_ERROR, "Only 4:2:0 chroma format supported\n"); return -1; } } else #endif { v->res_sm = get_bits(gb, 2); //reserved if (v->res_sm) { av_log(avctx, AV_LOG_ERROR, "Reserved RES_SM=%i is forbidden\n", v->res_sm); return -1; } } // (fps-2)/4 (->30) v->frmrtq_postproc = get_bits(gb, 3); //common // (bitrate-32kbps)/64kbps v->bitrtq_postproc = get_bits(gb, 5); //common v->s.loop_filter = get_bits(gb, 1); //common if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE) { av_log(avctx, AV_LOG_ERROR, "LOOPFILTER shell not be enabled in simple profile\n"); } #if HAS_ADVANCED_PROFILE if (v->profile < PROFILE_ADVANCED) #endif { v->res_x8 = get_bits(gb, 1); //reserved if (v->res_x8) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_X8 is forbidden\n"); //return -1; } v->multires = get_bits(gb, 1); v->res_fasttx = get_bits(gb, 1); if (!v->res_fasttx) { av_log(avctx, AV_LOG_ERROR, "0 for reserved RES_FASTTX is forbidden\n"); //return -1; } } v->fastuvmc = get_bits(gb, 1); //common if (!v->profile && !v->fastuvmc) { av_log(avctx, AV_LOG_ERROR, "FASTUVMC unavailable in Simple Profile\n"); return -1; } v->extended_mv = get_bits(gb, 1); //common if (!v->profile && v->extended_mv) { av_log(avctx, AV_LOG_ERROR, "Extended MVs unavailable in Simple Profile\n"); return -1; } v->dquant = get_bits(gb, 2); //common v->vstransform = get_bits(gb, 1); //common #if HAS_ADVANCED_PROFILE if (v->profile < PROFILE_ADVANCED) #endif { v->res_transtab = get_bits(gb, 1); if (v->res_transtab) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_TRANSTAB is forbidden\n"); return -1; } } v->overlap = get_bits(gb, 1); //common #if HAS_ADVANCED_PROFILE if (v->profile < PROFILE_ADVANCED) #endif { v->s.resync_marker = get_bits(gb, 1); v->rangered = get_bits(gb, 1); if (v->rangered && v->profile == PROFILE_SIMPLE) { av_log(avctx, AV_LOG_DEBUG, "RANGERED should be set to 0 in simple profile\n"); } } v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common v->quantizer_mode = get_bits(gb, 2); //common #if HAS_ADVANCED_PROFILE if (v->profile < PROFILE_ADVANCED) #endif { v->finterpflag = get_bits(gb, 1); //common v->res_rtm_flag = get_bits(gb, 1); //reserved if (!v->res_rtm_flag) { av_log(avctx, AV_LOG_ERROR, "0 for reserved RES_RTM_FLAG is forbidden\n"); //return -1; } #if TRACE av_log(avctx, AV_LOG_INFO, "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" "LoopFilter=%i, MultiRes=%i, FastUVMV=%i, Extended MV=%i\n" "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n" "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n", v->profile, v->frmrtq_postproc, v->bitrtq_postproc, v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv, v->rangered, v->vstransform, v->overlap, v->s.resync_marker, v->dquant, v->quantizer_mode, avctx->max_b_frames ); return 0; #endif } #if HAS_ADVANCED_PROFILE else return decode_advanced_sequence_header(avctx, gb); #endif } #if HAS_ADVANCED_PROFILE /** Entry point decoding (Advanced Profile) * @param avctx Codec context * @param gb GetBit context initialized from avctx->extra_data * @return Status */ static int advanced_entry_point_process(AVCodecContext *avctx, GetBitContext *gb) { VC9Context *v = avctx->priv_data; int i; if (v->profile != PROFILE_ADVANCED) { av_log(avctx, AV_LOG_ERROR, "Entry point are only defined in Advanced Profile!\n"); return -1; //Only for advanced profile! } if (v->hrd_param_flag) { //Update buffer fullness av_log(avctx, AV_LOG_DEBUG, "Buffer fullness update\n"); assert(v->hrd_num_leaky_buckets > 0); for (i=0; ihrd_num_leaky_buckets; i++) v->hrd_fullness[i] = get_bits(gb, 8); } if ((v->range_mapy_flag = get_bits(gb, 1))) { //RANGE_MAPY av_log(avctx, AV_LOG_DEBUG, "RANGE_MAPY\n"); v->range_mapy = get_bits(gb, 3); } if ((v->range_mapuv_flag = get_bits(gb, 1))) { //RANGE_MAPUV av_log(avctx, AV_LOG_DEBUG, "RANGE_MAPUV\n"); v->range_mapuv = get_bits(gb, 3); } if (v->panscanflag) { //NUMPANSCANWIN v->numpanscanwin = get_bits(gb, 3); av_log(avctx, AV_LOG_DEBUG, "NUMPANSCANWIN: %u\n", v->numpanscanwin); } return 0; } #endif /***********************************************************************/ /** * @defgroup bitplane VC9 Bitplane decoding * @see 8.7, p56 * @{ */ /** @addtogroup bitplane * Imode types * @{ */ #define IMODE_RAW 0 #define IMODE_NORM2 1 #define IMODE_DIFF2 2 #define IMODE_NORM6 3 #define IMODE_DIFF6 4 #define IMODE_ROWSKIP 5 #define IMODE_COLSKIP 6 /** @} */ //imode defines /** Allocate the buffer from a bitplane, given its dimensions * @param bp Bitplane which buffer is to allocate * @param[in] width Width of the buffer * @param[in] height Height of the buffer * @return Status * @todo TODO: Take into account stride * @todo TODO: Allow use of external buffers ? */ int alloc_bitplane(BitPlane *bp, int width, int height) { if (!bp || bp->width<0 || bp->height<0) return -1; bp->data = (uint8_t*)av_malloc(width*height); if (!bp->data) return -1; bp->width = bp->stride = width; bp->height = height; return 0; } /** Free the bitplane's buffer * @param bp Bitplane which buffer is to free */ void free_bitplane(BitPlane *bp) { bp->width = bp->stride = bp->height = 0; if (bp->data) av_freep(&bp->data); } /** Decode rows by checking if they are skipped * @param plane Buffer to store decoded bits * @param[in] width Width of this buffer * @param[in] height Height of this buffer * @param[in] stride of this buffer */ static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){ int x, y; for (y=0; ys.gb; int imode, x, y, code, use_vertical_tile, tile_w, tile_h, offset; uint8_t invert, *planep = bp->data; invert = get_bits(gb, 1); imode = get_vlc2(gb, vc9_imode_vlc.table, VC9_IMODE_VLC_BITS, 2); bp->is_raw = 0; switch (imode) { case IMODE_RAW: //Data is actually read in the MB layer (same for all tests == "raw") bp->is_raw = 1; //invert ignored return invert; case IMODE_DIFF2: case IMODE_NORM2: if ((bp->height*bp->width) & 1) { *(++planep) = get_bits(gb, 1); offset = x = 1; } else offset = x = 0; for (y=0; yheight; y++) { for(; xwidth; x+=2) { code = get_vlc2(gb, vc9_norm2_vlc.table, VC9_NORM2_VLC_BITS, 2); *(++planep) = code&1; //lsb => left *(++planep) = (code>>1)&1; //msb => right } planep += bp->stride-bp->width; if ((bp->width-offset)&1) //Odd number previously processed { code = get_vlc2(gb, vc9_norm2_vlc.table, VC9_NORM2_VLC_BITS, 2); *planep = code&1; planep += bp->stride-bp->width; *planep = (code>>1)&1; //msb => right offset = x = 1; } else { offset = x = 0; planep += bp->stride-bp->width; } } break; case IMODE_DIFF6: case IMODE_NORM6: use_vertical_tile= bp->height%3==0 && bp->width%3!=0; tile_w= use_vertical_tile ? 2 : 3; tile_h= use_vertical_tile ? 3 : 2; for(y= bp->height%tile_h; y< bp->height; y+=tile_h){ for(x= bp->width%tile_w; x< bp->width; x+=tile_w){ code = get_vlc2(gb, vc9_norm6_vlc.table, VC9_NORM6_VLC_BITS, 2); if(code<0){ av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); return -1; } //FIXME following is a pure guess and probably wrong //FIXME A bitplane (0 | !0), so could the shifts be avoided ? planep[x + 0*bp->stride]= (code>>0)&1; planep[x + 1 + 0*bp->stride]= (code>>1)&1; //FIXME Does branch prediction help here? if(use_vertical_tile){ planep[x + 0 + 1*bp->stride]= (code>>2)&1; planep[x + 1 + 1*bp->stride]= (code>>3)&1; planep[x + 0 + 2*bp->stride]= (code>>4)&1; planep[x + 1 + 2*bp->stride]= (code>>5)&1; }else{ planep[x + 2 + 0*bp->stride]= (code>>2)&1; planep[x + 0 + 1*bp->stride]= (code>>3)&1; planep[x + 1 + 1*bp->stride]= (code>>4)&1; planep[x + 2 + 1*bp->stride]= (code>>5)&1; } } } x= bp->width % tile_w; decode_colskip(bp->data , x, bp->height , bp->stride, &v->s.gb); decode_rowskip(bp->data+x, bp->width - x, bp->height % tile_h, bp->stride, &v->s.gb); break; case IMODE_ROWSKIP: decode_rowskip(bp->data, bp->width, bp->height, bp->stride, &v->s.gb); break; case IMODE_COLSKIP: decode_colskip(bp->data, bp->width, bp->height, bp->stride, &v->s.gb); break; default: break; } /* Applying diff operator */ if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6) { planep = bp->data; planep[0] ^= invert; for (x=1; xwidth; x++) planep[x] ^= planep[x-1]; for (y=1; yheight; y++) { planep += bp->stride; planep[0] ^= planep[-bp->stride]; for (x=1; xwidth; x++) { if (planep[x-1] != planep[x-bp->stride]) planep[x] ^= invert; else planep[x] ^= planep[x-1]; } } } else if (invert) { planep = bp->data; for (x=0; xwidth*bp->height; x++) planep[x] = !planep[x]; //FIXME stride } return (imode<<1) + invert; } /** @} */ //Bitplane group /***********************************************************************/ /** VOP Dquant decoding * @param v VC9 Context */ static int vop_dquant_decoding(VC9Context *v) { GetBitContext *gb = &v->s.gb; int pqdiff; //variable size if (v->dquant == 2) { pqdiff = get_bits(gb, 3); if (pqdiff == 7) v->altpq = get_bits(gb, 5); else v->altpq = v->pq + pqdiff + 1; } else { v->dquantfrm = get_bits(gb, 1); if ( v->dquantfrm ) { v->dqprofile = get_bits(gb, 2); switch (v->dqprofile) { case DQPROFILE_SINGLE_EDGE: case DQPROFILE_DOUBLE_EDGES: v->dqsbedge = get_bits(gb, 2); break; case DQPROFILE_ALL_MBS: v->dqbilevel = get_bits(gb, 1); default: break; //Forbidden ? } if (!v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS) { pqdiff = get_bits(gb, 3); if (pqdiff == 7) v->altpq = get_bits(gb, 5); else v->altpq = v->pq + pqdiff + 1; } } } return 0; } /***********************************************************************/ /** * @defgroup all_frame_hdr All VC9 profiles frame header * @brief Part of the frame header decoding from all profiles * @warning Only pro/epilog differs between Simple/Main and Advanced => check caller * @{ */ /** B and BI frame header decoding, primary part * @see Tables 11+12, p62-65 * @param v VC9 context * @return Status * @warning Also handles BI frames */ static int decode_b_picture_primary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int pqindex; /* Prolog common to all frametypes should be done in caller */ if (v->profile == PROFILE_SIMPLE) { av_log(v->s.avctx, AV_LOG_ERROR, "Found a B frame while in Simple Profile!\n"); return FRAME_SKIPPED; } v->bfraction = vc9_bfraction_lut[get_vlc2(gb, vc9_bfraction_vlc.table, VC9_BFRACTION_VLC_BITS, 2)]; if (v->bfraction < -1) { av_log(v->s.avctx, AV_LOG_ERROR, "Invalid BFRaction\n"); return FRAME_SKIPPED; } else if (!v->bfraction) { /* We actually have a BI frame */ v->s.pict_type = BI_TYPE; v->buffer_fullness = get_bits(gb, 7); } /* Read the quantization stuff */ pqindex = get_bits(gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(gb, 1); #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) { if (v->postprocflag) v->postproc = get_bits(gb, 2); if (v->extended_mv == 1 && v->s.pict_type != BI_TYPE) v->mvrange = get_prefix(gb, 0, 3); } #endif else { if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3); } /* Read the MV mode */ if (v->s.pict_type != BI_TYPE) { v->mv_mode = get_bits(gb, 1); if (v->pq < 13) { if (!v->mv_mode) { v->mv_mode = get_bits(gb, 2); if (v->mv_mode) av_log(v->s.avctx, AV_LOG_ERROR, "mv_mode for lowquant B frame was %i\n", v->mv_mode); } } else { if (!v->mv_mode) { if (get_bits(gb, 1)) av_log(v->s.avctx, AV_LOG_ERROR, "mv_mode for highquant B frame was %i\n", v->mv_mode); } v->mv_mode = 1-v->mv_mode; //To match (pq < 13) mapping } } return 0; } /** B and BI frame header decoding, secondary part * @see Tables 11+12, p62-65 * @param v VC9 context * @return Status * @warning Also handles BI frames * @warning To call once all MB arrays are allocated * @todo Support Advanced Profile headers */ static int decode_b_picture_secondary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int status; status = bitplane_decoding(&v->skip_mb_plane, v); if (status < 0) return -1; #if TRACE if (v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(&v->mv_type_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif } //bitplane status = bitplane_decoding(&v->direct_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif av_log(v->s.avctx, AV_LOG_DEBUG, "Skip MB plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif /* FIXME: what is actually chosen for B frames ? */ v->s.mv_table_index = get_bits(gb, 2); //but using vc9_ tables v->cbpcy_vlc = &vc9_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { vop_dquant_decoding(v); } if (v->vstransform) { v->ttmbf = get_bits(gb, 1); if (v->ttmbf) { v->ttfrm = get_bits(gb, 2); av_log(v->s.avctx, AV_LOG_INFO, "Transform used: %ix%i\n", (v->ttfrm & 2) ? 4 : 8, (v->ttfrm & 1) ? 4 : 8); } } /* Epilog (AC/DC syntax) should be done in caller */ return 0; } /** I frame header decoding, primary part * @see Tables 5+7, p53-54 and 55-57 * @param v VC9 context * @return Status * @todo Support Advanced Profile headers */ static int decode_i_picture_primary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int pqindex; /* Prolog common to all frametypes should be done in caller */ //BF = Buffer Fullness if (v->profile < PROFILE_ADVANCED && get_bits(gb, 7)) { av_log(v->s.avctx, AV_LOG_DEBUG, "I BufferFullness not 0\n"); } /* Quantizer stuff */ pqindex = get_bits(gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(gb, 1); av_log(v->s.avctx, AV_LOG_DEBUG, "I frame: QP=%i (+%i/2)\n", v->pq, v->halfpq); return 0; } /** I frame header decoding, secondary part * @param v VC9 context * @return Status * @warning Not called in A/S/C profiles, it seems * @todo Support Advanced Profile headers */ static int decode_i_picture_secondary_header(VC9Context *v) { #if HAS_ADVANCED_PROFILE int status; if (v->profile == PROFILE_ADVANCED) { v->s.ac_pred = get_bits(&v->s.gb, 1); if (v->postprocflag) v->postproc = get_bits(&v->s.gb, 1); /* 7.1.1.34 + 8.5.2 */ if (v->overlap && v->pq<9) { v->condover = get_bits(&v->s.gb, 1); if (v->condover) { v->condover = 2+get_bits(&v->s.gb, 1); if (v->condover == 3) { status = bitplane_decoding(&v->over_flags_plane, v); if (status < 0) return -1; # if TRACE av_log(v->s.avctx, AV_LOG_DEBUG, "Overflags plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); # endif } } } } #endif /* Epilog (AC/DC syntax) should be done in caller */ return 0; } /** P frame header decoding, primary part * @see Tables 5+7, p53-54 and 55-57 * @param v VC9 context * @todo Support Advanced Profile headers * @return Status */ static int decode_p_picture_primary_header(VC9Context *v) { /* INTERFRM, FRMCNT, RANGEREDFRM read in caller */ GetBitContext *gb = &v->s.gb; int lowquant, pqindex; pqindex = get_bits(gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(gb, 1); av_log(v->s.avctx, AV_LOG_DEBUG, "P Frame: QP=%i (+%i/2)\n", v->pq, v->halfpq); if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3); #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) { if (v->postprocflag) v->postproc = get_bits(gb, 1); } else #endif if (v->multires) v->respic = get_bits(gb, 2); lowquant = (v->pquantizer>12) ? 0 : 1; v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)]; if (v->mv_mode == MV_PMODE_INTENSITY_COMP) { v->mv_mode2 = mv_pmode_table[lowquant][get_prefix(gb, 1, 3)]; v->lumscale = get_bits(gb, 6); v->lumshift = get_bits(gb, 6); } return 0; } /** P frame header decoding, secondary part * @see Tables 5+7, p53-54 and 55-57 * @param v VC9 context * @warning To call once all MB arrays are allocated * @return Status */ static int decode_p_picture_secondary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int status = 0; if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(&v->mv_type_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif } status = bitplane_decoding(&v->skip_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif /* Hopefully this is correct for P frames */ v->s.mv_table_index =get_bits(gb, 2); //but using vc9_ tables v->cbpcy_vlc = &vc9_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_INFO, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; //FIXME Is that so ? if (v->vstransform) { v->ttmbf = get_bits(gb, 1); if (v->ttmbf) { v->ttfrm = get_bits(gb, 2); av_log(v->s.avctx, AV_LOG_INFO, "Transform used: %ix%i\n", (v->ttfrm & 2) ? 4 : 8, (v->ttfrm & 1) ? 4 : 8); } } /* Epilog (AC/DC syntax) should be done in caller */ return 0; } /** @} */ //End of group all_frm_hdr /***********************************************************************/ /** * @defgroup std_frame_hdr VC9 Simple/Main Profiles header decoding * @brief Part of the frame header decoding belonging to Simple/Main Profiles * @warning Only pro/epilog differs between Simple/Main and Advanced => * check caller * @{ */ /** Frame header decoding, first part, in Simple and Main profiles * @see Tables 5+7, p53-54 and 55-57 * @param v VC9 context * @todo FIXME: RANGEREDFRM element not read if BI frame from Table6, P54 * However, 7.1.1.8 says "all frame types, for main profiles" * @return Status */ static int standard_decode_picture_primary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int status = 0; if (v->finterpflag) v->interpfrm = get_bits(gb, 1); skip_bits(gb, 2); //framecnt unused if (v->rangered) v->rangeredfrm = get_bits(gb, 1); v->s.pict_type = get_bits(gb, 1); if (v->s.avctx->max_b_frames) { if (!v->s.pict_type) { if (get_bits(gb, 1)) v->s.pict_type = I_TYPE; else v->s.pict_type = B_TYPE; } else v->s.pict_type = P_TYPE; } else v->s.pict_type++; switch (v->s.pict_type) { case I_TYPE: status = decode_i_picture_primary_header(v); break; case P_TYPE: status = decode_p_picture_primary_header(v); break; case BI_TYPE: //Same as B case B_TYPE: status = decode_b_picture_primary_header(v); break; } if (status == FRAME_SKIPPED) { av_log(v->s.avctx, AV_LOG_INFO, "Skipping frame...\n"); return status; } return 0; } /** Frame header decoding, secondary part * @param v VC9 context * @warning To call once all MB arrays are allocated * @return Status */ static int standard_decode_picture_secondary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int status = 0; switch (v->s.pict_type) { case P_TYPE: status = decode_p_picture_secondary_header(v); break; case B_TYPE: status = decode_b_picture_secondary_header(v); break; case BI_TYPE: case I_TYPE: break; //Nothing needed as it's done in the epilog } if (status < 0) return FRAME_SKIPPED; /* AC Syntax */ v->c_ac_table_index = decode012(gb); if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) { v->y_ac_table_index = decode012(gb); } /* DC Syntax */ v->s.dc_table_index = decode012(gb); return 0; } /** @} */ //End for group std_frame_hdr #if HAS_ADVANCED_PROFILE /***********************************************************************/ /** * @defgroup adv_frame_hdr VC9 Advanced Profile header decoding * @brief Part of the frame header decoding belonging to Advanced Profiles * @warning Only pro/epilog differs between Simple/Main and Advanced => * check caller * @{ */ /** Frame header decoding, primary part * @param v VC9 context * @return Status */ static int advanced_decode_picture_primary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; static const int type_table[4] = { P_TYPE, B_TYPE, I_TYPE, BI_TYPE }; int type; if (v->interlace) { v->fcm = get_bits(gb, 1); if (v->fcm) v->fcm = 2+get_bits(gb, 1); } type = get_prefix(gb, 0, 4); if (type > 4 || type < 0) return FRAME_SKIPPED; v->s.pict_type = type_table[type]; av_log(v->s.avctx, AV_LOG_INFO, "AP Frame Type: %i\n", v->s.pict_type); if (v->tfcntrflag) v->tfcntr = get_bits(gb, 8); if (v->broadcast) { if (!v->interlace) v->rptfrm = get_bits(gb, 2); else { v->tff = get_bits(gb, 1); v->rff = get_bits(gb, 1); } } if (v->panscanflag) { #if 0 for (i=0; inumpanscanwin; i++) { v->topleftx[i] = get_bits(gb, 16); v->toplefty[i] = get_bits(gb, 16); v->bottomrightx[i] = get_bits(gb, 16); v->bottomrighty[i] = get_bits(gb, 16); } #else skip_bits(gb, 16*4*v->numpanscanwin); #endif } v->s.no_rounding = !get_bits(gb, 1); v->uvsamp = get_bits(gb, 1); if (v->finterpflag == 1) v->interpfrm = get_bits(gb, 1); switch(v->s.pict_type) { case I_TYPE: if (decode_i_picture_primary_header(v) < 0) return -1; case P_TYPE: if (decode_p_picture_primary_header(v) < 0) return -1; case BI_TYPE: case B_TYPE: if (decode_b_picture_primary_header(v) < 0) return FRAME_SKIPPED; default: return -1; } } /** Frame header decoding, secondary part * @param v VC9 context * @return Status */ static int advanced_decode_picture_secondary_header(VC9Context *v) { GetBitContext *gb = &v->s.gb; int status = 0; switch(v->s.pict_type) { case P_TYPE: status = decode_p_picture_secondary_header(v); break; case B_TYPE: status = decode_b_picture_secondary_header(v); break; case BI_TYPE: case I_TYPE: status = decode_i_picture_secondary_header(v); break; } if (status<0) return FRAME_SKIPPED; /* AC Syntax */ v->c_ac_table_index = decode012(gb); if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) { v->y_ac_table_index = decode012(gb); } /* DC Syntax */ v->s.dc_table_index = decode012(gb); return 0; } #endif /** @} */ //End for adv_frame_hdr /***********************************************************************/ /** * @defgroup block VC9 Block-level functions * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @todo TODO: Integrate to MpegEncContext facilities * @{ */ /** * @def GET_MQUANT * @brief Get macroblock-level quantizer scale * @warning XXX: qdiff to the frame quant, not previous quant ? * @fixme XXX: Don't know how to initialize mquant otherwise in last case */ #define GET_MQUANT() \ if (v->dquantfrm) \ { \ if (v->dqprofile == DQPROFILE_ALL_MBS) \ { \ if (v->dqbilevel) \ { \ mquant = (get_bits(gb, 1)) ? v->pq : v->altpq; \ } \ else \ { \ mqdiff = get_bits(gb, 3); \ if (mqdiff != 7) mquant = v->pq + mqdiff; \ else mquant = get_bits(gb, 5); \ } \ } \ else mquant = v->pq; \ } /** * @def GET_MVDATA(_dmv_x, _dmv_y) * @brief Get MV differentials * @see MVDATA decoding from 8.3.5.2, p(1)20 * @param _dmv_x Horizontal differential for decoded MV * @param _dmv_y Vertical differential for decoded MV * @todo TODO: Use MpegEncContext arrays to store them */ #define GET_MVDATA(_dmv_x, _dmv_y) \ index = 1 + get_vlc2(gb, vc9_mv_diff_vlc[s->mv_table_index].table,\ VC9_MV_DIFF_VLC_BITS, 2); \ if (index > 36) \ { \ mb_has_coeffs = 1; \ index -= 37; \ } \ else mb_has_coeffs = 0; \ s->mb_intra = 0; \ if (!index) { _dmv_x = _dmv_y = 0; } \ else if (index == 35) \ { \ _dmv_x = get_bits(gb, v->k_x); \ _dmv_y = get_bits(gb, v->k_y); \ s->mb_intra = 1; \ } \ else \ { \ index1 = index%6; \ if (s->mspel && index1 == 5) val = 1; \ else val = 0; \ val = get_bits(gb, size_table[index1] - val); \ sign = 0 - (val&1); \ _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ \ index1 = index/6; \ if (s->mspel && index1 == 5) val = 1; \ else val = 0; \ val = get_bits(gb, size_table[index1] - val); \ sign = 0 - (val&1); \ _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ } /** Get predicted DC value * prediction dir: left=0, top=1 * @param s MpegEncContext * @param[in] n block index in the current MB * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction * @todo TODO: Actually do it the VC9 way * @todo TODO: Handle properly edges */ static inline int vc9_pred_dc(MpegEncContext *s, int n, uint16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred, scale; int16_t *dc_val; static const uint16_t dcpred[31] = { 1024, 512, 341, 256, 205, 171, 146, 128, 114, 102, 93, 85, 79, 73, 68, 64, 60, 57, 54, 51, 49, 47, 45, 43, 41, 39, 38, 37, 35, 34, 33 }; /* find prediction - wmv3_dc_scale always used here in fact */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; wrap = s->block_wrap[n]; dc_val= s->dc_val[0] + s->block_index[n]; /* B C * A X */ a = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; c = dc_val[ - wrap]; /* XXX: Rule B is used only for I and BI frames in S/M/C profile * with overlap filtering off */ if ((s->pict_type == I_TYPE || s->pict_type == BI_TYPE) && 1 /* XXX: overlap filtering off */) { /* Set outer values */ if (s->first_slice_line && n!=2) b=c=dcpred[scale]; if (s->mb_x == 0) b=a=dcpred[scale]; } else { /* Set outer values */ if (s->first_slice_line && n!=2) b=c=0; if (s->mb_x == 0) b=a=0; /* XXX: Rule A needs to know if blocks are inter or intra :/ */ if (0) { /* update predictor */ *dc_val_ptr = &dc_val[0]; dir_ptr = 0; return a; } } if (abs(a - b) <= abs(b - c)) { pred = c; *dir_ptr = 1; } else { pred = a; *dir_ptr = 0; } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** Decode one block, inter or intra * @param v The VC9 context * @param block 8x8 DCT block * @param n Block index in the current MB (<4=>luma) * @param coded If the block is coded * @param mquant Quantizer step for the current block * @see Inter TT: Table 21, p73 + p91-85 * @see Intra TT: Table 20, p72 + p(1)05-(1)07 * @todo TODO: Process the blocks * @todo TODO: Use M$ MPEG-4 cbp prediction */ int vc9_decode_block(VC9Context *v, DCTELEM block[64], int n, int coded, int mquant) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int ttblk; /* Transform Type per Block */ int subblkpat; /* Sub-block Transform Type Pattern */ int dc_pred_dir; /* Direction of the DC prediction used */ int run_diff, i; /* XXX: Guard against dumb values of mquant */ mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant ); /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[mquant]; s->c_dc_scale = s->c_dc_scale_table[mquant]; if (s->mb_intra) { int dcdiff; uint16_t *dc_val; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(gb, 10); else if (mquant == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; } if (get_bits(gb, 1)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc9_pred_dc(s, n, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } if (block[0] < 0) { #if TRACE //av_log(s->avctx, AV_LOG_ERROR, "DC=%i<0\n", dcdiff); #endif //return -1; } /* Skip ? */ run_diff = 0; i = 0; if (!coded) { goto not_coded; } } else { mquant = v->pq; /* Get TTBLK */ if (v->ttmb < 8) /* per block */ ttblk = get_vlc2(gb, vc9_ttblk_vlc[v->tt_index].table, VC9_TTBLK_VLC_BITS, 2); else /* Per frame */ ttblk = 0; //FIXME, depends on ttfrm /* Get SUBBLKPAT */ if (ttblk == v->ttblk4x4) /* 4x4 transform for that qp value */ subblkpat = 1+get_vlc2(gb, vc9_subblkpat_vlc[v->tt_index].table, VC9_SUBBLKPAT_VLC_BITS, 2); else /* All others: 8x8, 4x8, 8x4 */ subblkpat = decode012(gb); } //TODO AC Decoding i = 63; //XXX: nothing done yet not_coded: if (s->mb_intra) { mpeg4_pred_ac(s, block, n, dc_pred_dir); if (s->ac_pred) { i = 63; /* XXX: not optimal */ } } if(i>0) i=63; //FIXME/XXX optimize s->block_last_index[n] = i; return 0; } /** @} */ //End for group block /***********************************************************************/ /** * @defgroup std_mb VC9 Macroblock-level functions in Simple/Main Profiles * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @todo TODO: Integrate to MpegEncContext facilities * @{ */ static inline int vc9_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr) { int xy, wrap, pred, a, b, c; xy = s->block_index[n]; wrap = s->b8_stride; /* B C * A X */ a = s->coded_block[xy - 1 ]; b = s->coded_block[xy - 1 - wrap]; c = s->coded_block[xy - wrap]; if (b == c) { pred = a; } else { pred = c; } /* store value */ *coded_block_ptr = &s->coded_block[xy]; return pred; } /** Decode one I-frame MB (in Simple/Main profile) * @todo TODO: Extend to AP */ int vc9_decode_i_mb(VC9Context *v, DCTELEM block[6][64]) { int i, cbp, val; uint8_t *coded_val; uint32_t * const mb_type_ptr= &v->s.current_picture.mb_type[ v->s.mb_x + v->s.mb_y*v->s.mb_stride ]; v->s.mb_intra = 1; cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); if (cbp < 0) return -1; v->s.ac_pred = get_bits(&v->s.gb, 1); for (i=0; i<6; i++) { val = ((cbp >> (5 - i)) & 1); if (i < 4) { int pred = vc9_coded_block_pred(&v->s, i, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - i); if (vc9_decode_block(v, block[i], i, val, v->pq) < 0) //FIXME Should be mquant { av_log(v->s.avctx, AV_LOG_ERROR, "\nerror while decoding block: %d x %d (%d)\n", v->s.mb_x, v->s.mb_y, i); return -1; } } return 0; } /** Decode one P-frame MB (in Simple/Main profile) * @todo TODO: Extend to AP * @fixme FIXME: DC value for inter blocks not set */ int vc9_decode_p_mb(VC9Context *v, DCTELEM block[6][64]) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, mb_offset = s->mb_x + s->mb_y*s->mb_width; /* XXX: mb_stride */ int cbp; /* cbp decoding stuff */ int hybrid_pred; /* Prediction types */ int mv_mode_bit = 0; int mqdiff, mquant; /* MB quantization */ int ttmb; /* MB Transform type */ int status; uint8_t *coded_val; static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, offset_table[6] = { 0, 1, 3, 7, 15, 31 }; int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int index, index1; /* LUT indices */ int val, sign; /* temp values */ mquant = v->pq; /* Loosy initialization */ if (v->mv_type_mb_plane.is_raw) v->mv_type_mb_plane.data[mb_offset] = get_bits(gb, 1); if (v->skip_mb_plane.is_raw) v->skip_mb_plane.data[mb_offset] = get_bits(gb, 1); if (!mv_mode_bit) /* 1MV mode */ { if (!v->skip_mb_plane.data[mb_offset]) { GET_MVDATA(dmv_x, dmv_y); /* hybrid mv pred, 8.3.5.3.4 */ if (v->mv_mode == MV_PMODE_1MV || v->mv_mode == MV_PMODE_MIXED_MV) hybrid_pred = get_bits(gb, 1); /* FIXME Set DC val for inter block ? */ if (s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->ac_pred = get_bits(gb, 1); /* XXX: how to handle cbp ? */ cbp = 0; for (i=0; i<6; i++) { s->coded_block[s->block_index[i]] = 0; vc9_decode_block(v, block[i], i, 0, mquant); } return 0; } else if (mb_has_coeffs) { if (s->mb_intra) s->ac_pred = get_bits(gb, 1); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC9_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); } else { mquant = v->pq; /* XXX: how to handle cbp ? */ /* XXX: how to set values for following predictions ? */ cbp = 0; } if (!v->ttmbf) ttmb = get_vlc2(gb, vc9_ttmb_vlc[v->tt_index].table, VC9_TTMB_VLC_BITS, 12); for (i=0; i<6; i++) { val = ((cbp >> (5 - i)) & 1); if (i < 4) { int pred = vc9_coded_block_pred(&v->s, i, &coded_val); val = val ^ pred; *coded_val = val; } vc9_decode_block(v, block[i], i, val, mquant); //FIXME } } else //Skipped { /* hybrid mv pred, 8.3.5.3.4 */ if (v->mv_mode == MV_PMODE_1MV || v->mv_mode == MV_PMODE_MIXED_MV) hybrid_pred = get_bits(gb, 1); /* TODO: blah */ return 0; } } //1MV mode else //4MV mode { if (!v->skip_mb_plane.data[mb_offset] /* unskipped MB */) { /* Get CBPCY */ cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC9_CBPCY_P_VLC_BITS, 2); for (i=0; i<6; i++) { val = ((cbp >> (5 - i)) & 1); if (i < 4) { int pred = vc9_coded_block_pred(&v->s, i, &coded_val); val = val ^ pred; *coded_val = val; } if (i<4 && val) { GET_MVDATA(dmv_x, dmv_y); } if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */) hybrid_pred = get_bits(gb, 1); GET_MQUANT(); if (s->mb_intra /* One of the 4 blocks is intra */ && index /* non-zero pred for that block */) s->ac_pred = get_bits(gb, 1); if (!v->ttmbf) ttmb = get_vlc2(gb, vc9_ttmb_vlc[v->tt_index].table, VC9_TTMB_VLC_BITS, 12); status = vc9_decode_block(v, block[i], i, val, mquant); } return status; } else //Skipped MB { /* XXX: Skipped => cbp=0 and mquant doesn't matter ? */ for (i=0; i<4; i++) { if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */) hybrid_pred = get_bits(gb, 1); vc9_decode_block(v, block[i], i, 0, v->pq); //FIXME } vc9_decode_block(v, block[4], 4, 0, v->pq); //FIXME vc9_decode_block(v, block[5], 5, 0, v->pq); //FIXME /* TODO: blah */ return 0; } } /* Should never happen */ return -1; } /** Decode one B-frame MB (in Simple/Main profile) * @todo TODO: Extend to AP * @warning XXX: Used for decoding BI MBs * @fixme FIXME: DC value for inter blocks not set */ int vc9_decode_b_mb(VC9Context *v, DCTELEM block[6][64]) { MpegEncContext *s = &v->s; GetBitContext *gb = &v->s.gb; int mb_offset, i /* MB / B postion information */; int b_mv_type = BMV_TYPE_BACKWARD; int mquant, mqdiff; /* MB quant stuff */ int ttmb; /* MacroBlock transform type */ static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, offset_table[6] = { 0, 1, 3, 7, 15, 31 }; int mb_has_coeffs = 1; /* last_flag */ int dmv1_x, dmv1_y, dmv2_x, dmv2_y; /* Differential MV components */ int index, index1; /* LUT indices */ int val, sign; /* MVDATA temp values */ mb_offset = s->mb_width*s->mb_y + s->mb_x; //FIXME: arrays aren't using stride if (v->direct_mb_plane.is_raw) v->direct_mb_plane.data[mb_offset] = get_bits(gb, 1); if (v->skip_mb_plane.is_raw) v->skip_mb_plane.data[mb_offset] = get_bits(gb, 1); if (!v->direct_mb_plane.data[mb_offset]) { if (v->skip_mb_plane.data[mb_offset]) { b_mv_type = decode012(gb); if (v->bfraction > 420 /*1/2*/ && b_mv_type < 3) b_mv_type = 1-b_mv_type; } else { GET_MVDATA(dmv1_x, dmv1_y); if (!s->mb_intra /* b_mv1 tells not intra */) { b_mv_type = decode012(gb); if (v->bfraction > 420 /*1/2*/ && b_mv_type < 3) b_mv_type = 1-b_mv_type; } } } if (!v->skip_mb_plane.data[mb_offset]) { if (mb_has_coeffs /* BMV1 == "last" */) { GET_MQUANT(); if (s->mb_intra /* intra mb */) s->ac_pred = get_bits(gb, 1); } else { /* if bmv1 tells MVs are interpolated */ if (b_mv_type == BMV_TYPE_INTERPOLATED) { GET_MVDATA(dmv2_x, dmv2_y); mquant = v->pq; //FIXME: initialization not necessary ? } /* GET_MVDATA has reset some stuff */ if (mb_has_coeffs /* b_mv2 == "last" */) { if (s->mb_intra /* intra_mb */) s->ac_pred = get_bits(gb, 1); GET_MQUANT(); } } } //End1 if (v->ttmbf) ttmb = get_vlc2(gb, vc9_ttmb_vlc[v->tt_index].table, VC9_TTMB_VLC_BITS, 12); //End2 for (i=0; i<6; i++) { vc9_decode_block(v, block[i], i, 0 /*cbp[i]*/, mquant); //FIXME } return 0; } /** Decode all MBs for an I frame in Simple/Main profile * @todo TODO: Move out of the loop the picture type case? (branch prediction should help there though) */ static int standard_decode_mbs(VC9Context *v) { MpegEncContext *s = &v->s; /* Set transform type info depending on pq */ if (v->pq < 5) { v->tt_index = 0; v->ttblk4x4 = 3; } else if (v->pq < 13) { v->tt_index = 1; v->ttblk4x4 = 3; } else { v->tt_index = 2; v->ttblk4x4 = 2; } if (s->pict_type != I_TYPE) { /* Select proper long MV range */ switch (v->mvrange) { case 1: v->k_x = 10; v->k_y = 9; break; case 2: v->k_x = 12; v->k_y = 10; break; case 3: v->k_x = 13; v->k_y = 11; break; default: /*case 0 too */ v->k_x = 9; v->k_y = 8; break; } s->mspel = v->mv_mode & 1; //MV_PMODE is HPEL v->k_x -= s->mspel; v->k_y -= s->mspel; } for (s->mb_y=0; s->mb_ymb_height; s->mb_y++) { for (s->mb_x=0; s->mb_xmb_width; s->mb_x++) { //FIXME Get proper MB DCTELEM //TODO Move out of the loop switch (s->pict_type) { case I_TYPE: vc9_decode_i_mb(v, s->block); break; case P_TYPE: vc9_decode_p_mb(v, s->block); break; case BI_TYPE: case B_TYPE: vc9_decode_b_mb(v, s->block); break; } } //Add a check for overconsumption ? } return 0; } /** @} */ //End for group std_mb #if HAS_ADVANCED_PROFILE /***********************************************************************/ /** * @defgroup adv_mb VC9 Macroblock-level functions in Advanced Profile * @todo TODO: Integrate to MpegEncContext facilities * @todo TODO: Code P, B and BI * @{ */ static int advanced_decode_i_mbs(VC9Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &v->s.gb; int mqdiff, mquant, mb_offset = 0, over_flags_mb = 0; for (s->mb_y=0; s->mb_ymb_height; s->mb_y++) { for (s->mb_x=0; s->mb_xmb_width; s->mb_x++) { if (v->ac_pred_plane.is_raw) s->ac_pred = get_bits(gb, 1); else s->ac_pred = v->ac_pred_plane.data[mb_offset]; if (v->condover == 3 && v->over_flags_plane.is_raw) over_flags_mb = get_bits(gb, 1); GET_MQUANT(); /* TODO: lots */ } mb_offset++; } return 0; } /** @} */ //End for group adv_mb #endif /** Initialize a VC9/WMV3 decoder * @todo TODO: Handle VC-9 IDUs (Transport level?) * @todo TODO: Decypher remaining bits in extra_data */ static int vc9_decode_init(AVCodecContext *avctx) { VC9Context *v = avctx->priv_data; MpegEncContext *s = &v->s; GetBitContext gb; if (!avctx->extradata_size || !avctx->extradata) return -1; avctx->pix_fmt = PIX_FMT_YUV420P; v->s.avctx = avctx; if(ff_h263_decode_init(avctx) < 0) return -1; if (vc9_init_common(v) < 0) return -1; av_log(avctx, AV_LOG_INFO, "This decoder is not supposed to produce picture. Dont report this as a bug!\n"); avctx->coded_width = avctx->width; avctx->coded_height = avctx->height; if (avctx->codec_id == CODEC_ID_WMV3) { int count = 0; // looks like WMV3 has a sequence header stored in the extradata // advanced sequence header may be before the first frame // the last byte of the extradata is a version number, 1 for the // samples we can decode init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8); if (decode_sequence_header(avctx, &gb) < 0) return -1; count = avctx->extradata_size*8 - get_bits_count(&gb); if (count>0) { av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n", count, get_bits(&gb, count)); } else if (count < 0) { av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count); } } avctx->has_b_frames= !!(avctx->max_b_frames); s->mb_width = (avctx->coded_width+15)>>4; s->mb_height = (avctx->coded_height+15)>>4; /* Allocate mb bitplanes */ if (alloc_bitplane(&v->mv_type_mb_plane, s->mb_width, s->mb_height) < 0) return -1; if (alloc_bitplane(&v->mv_type_mb_plane, s->mb_width, s->mb_height) < 0) return -1; if (alloc_bitplane(&v->skip_mb_plane, s->mb_width, s->mb_height) < 0) return -1; if (alloc_bitplane(&v->direct_mb_plane, s->mb_width, s->mb_height) < 0) return -1; /* For predictors */ v->previous_line_cbpcy = (uint8_t *)av_malloc(s->mb_stride*4); if (!v->previous_line_cbpcy) return -1; #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) { if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0) return -1; if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0) return -1; } #endif return 0; } /** Decode a VC9/WMV3 frame * @todo TODO: Handle VC-9 IDUs (Transport level?) * @warning Initial try at using MpegEncContext stuff */ static int vc9_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { VC9Context *v = avctx->priv_data; MpegEncContext *s = &v->s; int ret = FRAME_SKIPPED, len; AVFrame *pict = data; uint8_t *tmp_buf; v->s.avctx = avctx; //buf_size = 0 -> last frame if (!buf_size) return 0; len = avpicture_get_size(avctx->pix_fmt, avctx->width, avctx->height); tmp_buf = (uint8_t *)av_mallocz(len); avpicture_fill((AVPicture *)pict, tmp_buf, avctx->pix_fmt, avctx->width, avctx->height); if (avctx->codec_id == CODEC_ID_VC9) { #if 0 // search for IDU's // FIXME uint32_t scp = 0; int scs = 0, i = 0; while (i < buf_size) { for (; i < buf_size && scp != 0x000001; i++) scp = ((scp<<8)|buf[i])&0xffffff; if (scp != 0x000001) break; // eof ? scs = buf[i++]; init_get_bits(gb, buf+i, (buf_size-i)*8); switch(scs) { case 0x0A: //Sequence End Code return 0; case 0x0B: //Slice Start Code av_log(avctx, AV_LOG_ERROR, "Slice coding not supported\n"); return -1; case 0x0C: //Field start code av_log(avctx, AV_LOG_ERROR, "Interlaced coding not supported\n"); return -1; case 0x0D: //Frame start code break; case 0x0E: //Entry point Start Code if (v->profile < PROFILE_ADVANCED) av_log(avctx, AV_LOG_ERROR, "Found an entry point in profile %i\n", v->profile); advanced_entry_point_process(avctx, gb); break; case 0x0F: //Sequence header Start Code decode_sequence_header(avctx, gb); break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported IDU suffix %lX\n", scs); } i += get_bits_count(gb)*8; } #else av_abort(); #endif } else init_get_bits(&v->s.gb, buf, buf_size*8); s->flags= avctx->flags; s->flags2= avctx->flags2; /* no supplementary picture */ if (buf_size == 0) { /* special case for last picture */ if (s->low_delay==0 && s->next_picture_ptr) { *pict= *(AVFrame*)s->next_picture_ptr; s->next_picture_ptr= NULL; *data_size = sizeof(AVFrame); } return 0; } //No IDU - we mimic ff_h263_decode_frame s->bitstream_buffer_size=0; if (!s->context_initialized) { if (MPV_common_init(s) < 0) //we need the idct permutaton for reading a custom matrix return -1; } //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){ s->current_picture_ptr= &s->picture[ff_find_unused_picture(s, 0)]; } #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) ret= advanced_decode_picture_primary_header(v); else #endif ret= standard_decode_picture_primary_header(v); if (ret == FRAME_SKIPPED) return buf_size; /* skip if the header was thrashed */ if (ret < 0){ av_log(s->avctx, AV_LOG_ERROR, "header damaged\n"); return -1; } //No bug workaround yet, no DCT conformance //WMV9 does have resized images if (v->profile < PROFILE_ADVANCED && v->multires){ //Parse context stuff in here, don't know how appliable it is } //Not sure about context initialization // for hurry_up==5 s->current_picture.pict_type= s->pict_type; s->current_picture.key_frame= s->pict_type == I_TYPE; /* skip b frames if we dont have reference frames */ if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return buf_size; //FIXME simulating all buffer consumed /* skip b frames if we are in a hurry */ if(avctx->hurry_up && s->pict_type==B_TYPE) return buf_size; //FIXME simulating all buffer consumed /* skip everything if we are in a hurry>=5 */ if(avctx->hurry_up>=5) return buf_size; //FIXME simulating all buffer consumed if(s->next_p_frame_damaged){ if(s->pict_type==B_TYPE) return buf_size; //FIXME simulating all buffer consumed else s->next_p_frame_damaged=0; } if(MPV_frame_start(s, avctx) < 0) return -1; ff_er_frame_start(s); //wmv9 may or may not have skip bits #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) ret= advanced_decode_picture_secondary_header(v); else #endif ret = standard_decode_picture_secondary_header(v); if (ret<0) return FRAME_SKIPPED; //FIXME Non fatal for now //We consider the image coded in only one slice #if HAS_ADVANCED_PROFILE if (v->profile == PROFILE_ADVANCED) { switch(s->pict_type) { case I_TYPE: ret = advanced_decode_i_mbs(v); break; case P_TYPE: ret = decode_p_mbs(v); break; case B_TYPE: case BI_TYPE: ret = decode_b_mbs(v); break; default: ret = FRAME_SKIPPED; } if (ret == FRAME_SKIPPED) return buf_size; //We ignore for now failures } else #endif { ret = standard_decode_mbs(v); if (ret == FRAME_SKIPPED) return buf_size; } ff_er_frame_end(s); MPV_frame_end(s); assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type); assert(s->current_picture.pict_type == s->pict_type); if(s->pict_type==B_TYPE || s->low_delay){ *pict= *(AVFrame*)&s->current_picture; ff_print_debug_info(s, pict); } else { *pict= *(AVFrame*)&s->last_picture; if(pict) ff_print_debug_info(s, pict); } /* Return the Picture timestamp as the frame number */ /* we substract 1 because it is added on utils.c */ avctx->frame_number = s->picture_number - 1; /* dont output the last pic after seeking */ if(s->last_picture_ptr || s->low_delay) *data_size = sizeof(AVFrame); av_log(avctx, AV_LOG_DEBUG, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8); /* Fake consumption of all data */ *data_size = len; return buf_size; //Number of bytes consumed } /** Close a VC9/WMV3 decoder * @warning Initial try at using MpegEncContext stuff */ static int vc9_decode_end(AVCodecContext *avctx) { VC9Context *v = avctx->priv_data; #if HAS_ADVANCED_PROFILE av_freep(&v->hrd_rate); av_freep(&v->hrd_buffer); #endif MPV_common_end(&v->s); free_bitplane(&v->mv_type_mb_plane); free_bitplane(&v->skip_mb_plane); free_bitplane(&v->direct_mb_plane); return 0; } AVCodec vc9_decoder = { "vc9", CODEC_TYPE_VIDEO, CODEC_ID_VC9, sizeof(VC9Context), vc9_decode_init, NULL, vc9_decode_end, vc9_decode_frame, CODEC_CAP_DELAY, NULL }; AVCodec wmv3_decoder = { "wmv3", CODEC_TYPE_VIDEO, CODEC_ID_WMV3, sizeof(VC9Context), vc9_decode_init, NULL, vc9_decode_end, vc9_decode_frame, CODEC_CAP_DELAY, NULL };