/* * VC-1 and WMV3 decoder * Copyright (c) 2006-2007 Konstantin Shishkov * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * VC-1 and WMV3 decoder * */ #include "internal.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h263.h" #include "vc1.h" #include "vc1data.h" #include "vc1acdata.h" #include "msmpeg4data.h" #include "unary.h" #include "simple_idct.h" #include "mathops.h" #include "vdpau_internal.h" #undef NDEBUG #include #define MB_INTRA_VLC_BITS 9 #define DC_VLC_BITS 9 #define AC_VLC_BITS 9 static const uint16_t table_mb_intra[64][2]; static const uint16_t vlc_offs[] = { 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436, 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620, 9262, 10202, 10756, 11310, 12228, 15078 }; /** * Init VC-1 specific tables and VC1Context members * @param v The VC1Context to initialize * @return Status */ static int vc1_init_common(VC1Context *v) { static int done = 0; int i = 0; static VLC_TYPE vlc_table[15078][2]; v->hrd_rate = v->hrd_buffer = NULL; /* VLC tables */ if(!done) { INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23, ff_vc1_bfraction_bits, 1, 1, ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS); INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4, ff_vc1_norm2_bits, 1, 1, ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS); INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64, ff_vc1_norm6_bits, 1, 1, ff_vc1_norm6_codes, 2, 2, 556); INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7, ff_vc1_imode_bits, 1, 1, ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS); for (i=0; i<3; i++) { ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]]; ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0]; init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16, ff_vc1_ttmb_bits[i], 1, 1, ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]]; ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1]; init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8, ff_vc1_ttblk_bits[i], 1, 1, ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]]; ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2]; init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15, ff_vc1_subblkpat_bits[i], 1, 1, ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<4; i++) { ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]]; ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9]; init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16, ff_vc1_4mv_block_pattern_bits[i], 1, 1, ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]]; ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10]; init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64, ff_vc1_cbpcy_p_bits[i], 1, 1, ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]]; ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11]; init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73, ff_vc1_mv_diff_bits[i], 1, 1, ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<8; i++){ ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]]; ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21]; init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i], &vc1_ac_tables[i][0][1], 8, 4, &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC); } done = 1; } /* Other defaults */ v->pq = -1; v->mvrange = 0; /* 7.1.1.18, p80 */ return 0; } /***********************************************************************/ /** * @defgroup vc1bitplane VC-1 Bitplane decoding * @see 8.7, p56 * @{ */ /** * Imode types * @{ */ enum Imode { IMODE_RAW, IMODE_NORM2, IMODE_DIFF2, IMODE_NORM6, IMODE_DIFF6, IMODE_ROWSKIP, IMODE_COLSKIP }; /** @} */ //imode defines /** @} */ //Bitplane group static void vc1_loop_filter_iblk(MpegEncContext *s, int pq) { int i, j; if(!s->first_slice_line) s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq); s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq); for(i = !s->mb_x*8; i < 16; i += 8) s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq); for(j = 0; j < 2; j++){ if(!s->first_slice_line) s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq); if(s->mb_x) s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq); } } /** Put block onto picture */ static void vc1_put_block(VC1Context *v, DCTELEM block[6][64]) { uint8_t *Y; int ys, us, vs; DSPContext *dsp = &v->s.dsp; if(v->rangeredfrm) { int i, j, k; for(k = 0; k < 6; k++) for(j = 0; j < 8; j++) for(i = 0; i < 8; i++) block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128; } ys = v->s.current_picture.linesize[0]; us = v->s.current_picture.linesize[1]; vs = v->s.current_picture.linesize[2]; Y = v->s.dest[0]; dsp->put_pixels_clamped(block[0], Y, ys); dsp->put_pixels_clamped(block[1], Y + 8, ys); Y += ys * 8; dsp->put_pixels_clamped(block[2], Y, ys); dsp->put_pixels_clamped(block[3], Y + 8, ys); if(!(v->s.flags & CODEC_FLAG_GRAY)) { dsp->put_pixels_clamped(block[4], v->s.dest[1], us); dsp->put_pixels_clamped(block[5], v->s.dest[2], vs); } } /** Do motion compensation over 1 macroblock * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c */ static void vc1_mc_1mv(VC1Context *v, int dir) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcY, *srcU, *srcV; int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; if(!v->s.last_picture.data[0])return; mx = s->mv[dir][0][0]; my = s->mv[dir][0][1]; // store motion vectors for further use in B frames if(s->pict_type == FF_P_TYPE) { s->current_picture.motion_val[1][s->block_index[0]][0] = mx; s->current_picture.motion_val[1][s->block_index[0]][1] = my; } uvmx = (mx + ((mx & 3) == 3)) >> 1; uvmy = (my + ((my & 3) == 3)) >> 1; if(v->fastuvmc) { uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1)); uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1)); } if(!dir) { srcY = s->last_picture.data[0]; srcU = s->last_picture.data[1]; srcV = s->last_picture.data[2]; } else { srcY = s->next_picture.data[0]; srcU = s->next_picture.data[1]; srcV = s->next_picture.data[2]; } src_x = s->mb_x * 16 + (mx >> 2); src_y = s->mb_y * 16 + (my >> 2); uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if(v->profile != PROFILE_ADVANCED){ src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); }else{ src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; /* for grayscale we should not try to read from unknown area */ if(s->flags & CODEC_FLAG_GRAY) { srcU = s->edge_emu_buffer + 18 * s->linesize; srcV = s->edge_emu_buffer + 18 * s->linesize; } if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){ uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize; srcY -= s->mspel * (1 + s->linesize); ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); srcY = s->edge_emu_buffer; ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = uvbuf; srcV = uvbuf + 16; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src, *src2; src = srcY; for(j = 0; j < 17 + s->mspel*2; j++) { for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; src += s->linesize; } src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = ((src[i] - 128) >> 1) + 128; src2[i] = ((src2[i] - 128) >> 1) + 128; } src += s->uvlinesize; src2 += s->uvlinesize; } } /* if we deal with intensity compensation we need to scale source blocks */ if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { int i, j; uint8_t *src, *src2; src = srcY; for(j = 0; j < 17 + s->mspel*2; j++) { for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]]; src += s->linesize; } src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = v->lutuv[src[i]]; src2[i] = v->lutuv[src2[i]]; } src += s->uvlinesize; src2 += s->uvlinesize; } } srcY += s->mspel * (1 + s->linesize); } if(s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd); srcY += s->linesize * 8; dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd); } else { // hpel mc - always used for luma dxy = (my & 2) | ((mx & 2) >> 1); if(!v->rnd) dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); else dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); } if(s->flags & CODEC_FLAG_GRAY) return; /* Chroma MC always uses qpel bilinear */ uvmx = (uvmx&3)<<1; uvmy = (uvmy&3)<<1; if(!v->rnd){ dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); }else{ dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } /** Do motion compensation for 4-MV macroblock - luminance block */ static void vc1_mc_4mv_luma(VC1Context *v, int n) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcY; int dxy, mx, my, src_x, src_y; int off; if(!v->s.last_picture.data[0])return; mx = s->mv[0][n][0]; my = s->mv[0][n][1]; srcY = s->last_picture.data[0]; off = s->linesize * 4 * (n&2) + (n&1) * 8; src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2); src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2); if(v->profile != PROFILE_ADVANCED){ src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); }else{ src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); } srcY += src_y * s->linesize + src_x; if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){ srcY -= s->mspel * (1 + s->linesize); ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); srcY = s->edge_emu_buffer; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src; src = srcY; for(j = 0; j < 9 + s->mspel*2; j++) { for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; src += s->linesize; } } /* if we deal with intensity compensation we need to scale source blocks */ if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { int i, j; uint8_t *src; src = srcY; for(j = 0; j < 9 + s->mspel*2; j++) { for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]]; src += s->linesize; } } srcY += s->mspel * (1 + s->linesize); } if(s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd); } else { // hpel mc - always used for luma dxy = (my & 2) | ((mx & 2) >> 1); if(!v->rnd) dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); else dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); } } static inline int median4(int a, int b, int c, int d) { if(a < b) { if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2; else return (FFMIN(b, c) + FFMAX(a, d)) / 2; } else { if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2; else return (FFMIN(a, c) + FFMAX(b, d)) / 2; } } /** Do motion compensation for 4-MV macroblock - both chroma blocks */ static void vc1_mc_4mv_chroma(VC1Context *v) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcU, *srcV; int uvmx, uvmy, uvsrc_x, uvsrc_y; int i, idx, tx = 0, ty = 0; int mvx[4], mvy[4], intra[4]; static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; if(!v->s.last_picture.data[0])return; if(s->flags & CODEC_FLAG_GRAY) return; for(i = 0; i < 4; i++) { mvx[i] = s->mv[0][i][0]; mvy[i] = s->mv[0][i][1]; intra[i] = v->mb_type[0][s->block_index[i]]; } /* calculate chroma MV vector from four luma MVs */ idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0]; if(!idx) { // all blocks are inter tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]); ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]); } else if(count[idx] == 1) { // 3 inter blocks switch(idx) { case 0x1: tx = mid_pred(mvx[1], mvx[2], mvx[3]); ty = mid_pred(mvy[1], mvy[2], mvy[3]); break; case 0x2: tx = mid_pred(mvx[0], mvx[2], mvx[3]); ty = mid_pred(mvy[0], mvy[2], mvy[3]); break; case 0x4: tx = mid_pred(mvx[0], mvx[1], mvx[3]); ty = mid_pred(mvy[0], mvy[1], mvy[3]); break; case 0x8: tx = mid_pred(mvx[0], mvx[1], mvx[2]); ty = mid_pred(mvy[0], mvy[1], mvy[2]); break; } } else if(count[idx] == 2) { int t1 = 0, t2 = 0; for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;} for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;} tx = (mvx[t1] + mvx[t2]) / 2; ty = (mvy[t1] + mvy[t2]) / 2; } else { s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; return; //no need to do MC for inter blocks } s->current_picture.motion_val[1][s->block_index[0]][0] = tx; s->current_picture.motion_val[1][s->block_index[0]][1] = ty; uvmx = (tx + ((tx&3) == 3)) >> 1; uvmy = (ty + ((ty&3) == 3)) >> 1; if(v->fastuvmc) { uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1)); uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1)); } uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if(v->profile != PROFILE_ADVANCED){ uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); }else{ uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x; srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x; if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9 || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){ ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = s->edge_emu_buffer; srcV = s->edge_emu_buffer + 16; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src, *src2; src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = ((src[i] - 128) >> 1) + 128; src2[i] = ((src2[i] - 128) >> 1) + 128; } src += s->uvlinesize; src2 += s->uvlinesize; } } /* if we deal with intensity compensation we need to scale source blocks */ if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { int i, j; uint8_t *src, *src2; src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = v->lutuv[src[i]]; src2[i] = v->lutuv[src2[i]]; } src += s->uvlinesize; src2 += s->uvlinesize; } } } /* Chroma MC always uses qpel bilinear */ uvmx = (uvmx&3)<<1; uvmy = (uvmy&3)<<1; if(!v->rnd){ dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); }else{ dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } /***********************************************************************/ /** * @defgroup vc1block VC-1 Block-level functions * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @{ */ /** * @def GET_MQUANT * @brief Get macroblock-level quantizer scale */ #define GET_MQUANT() \ if (v->dquantfrm) \ { \ int edges = 0; \ if (v->dqprofile == DQPROFILE_ALL_MBS) \ { \ if (v->dqbilevel) \ { \ mquant = (get_bits1(gb)) ? v->altpq : v->pq; \ } \ else \ { \ mqdiff = get_bits(gb, 3); \ if (mqdiff != 7) mquant = v->pq + mqdiff; \ else mquant = get_bits(gb, 5); \ } \ } \ if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \ edges = 1 << v->dqsbedge; \ else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \ edges = (3 << v->dqsbedge) % 15; \ else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \ edges = 15; \ if((edges&1) && !s->mb_x) \ mquant = v->altpq; \ if((edges&2) && s->first_slice_line) \ mquant = v->altpq; \ if((edges&4) && s->mb_x == (s->mb_width - 1)) \ mquant = v->altpq; \ if((edges&8) && s->mb_y == (s->mb_height - 1)) \ mquant = v->altpq; \ } /** * @def GET_MVDATA(_dmv_x, _dmv_y) * @brief Get MV differentials * @see MVDATA decoding from 8.3.5.2, p(1)20 * @param _dmv_x Horizontal differential for decoded MV * @param _dmv_y Vertical differential for decoded MV */ #define GET_MVDATA(_dmv_x, _dmv_y) \ index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\ VC1_MV_DIFF_VLC_BITS, 2); \ if (index > 36) \ { \ mb_has_coeffs = 1; \ index -= 37; \ } \ else mb_has_coeffs = 0; \ s->mb_intra = 0; \ if (!index) { _dmv_x = _dmv_y = 0; } \ else if (index == 35) \ { \ _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \ _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \ } \ else if (index == 36) \ { \ _dmv_x = 0; \ _dmv_y = 0; \ s->mb_intra = 1; \ } \ else \ { \ index1 = index%6; \ if (!s->quarter_sample && index1 == 5) val = 1; \ else val = 0; \ if(size_table[index1] - val > 0) \ val = get_bits(gb, size_table[index1] - val); \ else val = 0; \ sign = 0 - (val&1); \ _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ \ index1 = index/6; \ if (!s->quarter_sample && index1 == 5) val = 1; \ else val = 0; \ if(size_table[index1] - val > 0) \ val = get_bits(gb, size_table[index1] - val); \ else val = 0; \ sign = 0 - (val&1); \ _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ } /** Predict and set motion vector */ static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra) { int xy, wrap, off = 0; int16_t *A, *B, *C; int px, py; int sum; /* scale MV difference to be quad-pel */ dmv_x <<= 1 - s->quarter_sample; dmv_y <<= 1 - s->quarter_sample; wrap = s->b8_stride; xy = s->block_index[n]; if(s->mb_intra){ s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0; s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0; s->current_picture.motion_val[1][xy][0] = 0; s->current_picture.motion_val[1][xy][1] = 0; if(mv1) { /* duplicate motion data for 1-MV block */ s->current_picture.motion_val[0][xy + 1][0] = 0; s->current_picture.motion_val[0][xy + 1][1] = 0; s->current_picture.motion_val[0][xy + wrap][0] = 0; s->current_picture.motion_val[0][xy + wrap][1] = 0; s->current_picture.motion_val[0][xy + wrap + 1][0] = 0; s->current_picture.motion_val[0][xy + wrap + 1][1] = 0; s->current_picture.motion_val[1][xy + 1][0] = 0; s->current_picture.motion_val[1][xy + 1][1] = 0; s->current_picture.motion_val[1][xy + wrap][0] = 0; s->current_picture.motion_val[1][xy + wrap][1] = 0; s->current_picture.motion_val[1][xy + wrap + 1][0] = 0; s->current_picture.motion_val[1][xy + wrap + 1][1] = 0; } return; } C = s->current_picture.motion_val[0][xy - 1]; A = s->current_picture.motion_val[0][xy - wrap]; if(mv1) off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2; else { //in 4-MV mode different blocks have different B predictor position switch(n){ case 0: off = (s->mb_x > 0) ? -1 : 1; break; case 1: off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1; break; case 2: off = 1; break; case 3: off = -1; } } B = s->current_picture.motion_val[0][xy - wrap + off]; if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds if(s->mb_width == 1) { px = A[0]; py = A[1]; } else { px = mid_pred(A[0], B[0], C[0]); py = mid_pred(A[1], B[1], C[1]); } } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds px = C[0]; py = C[1]; } else { px = py = 0; } /* Pullback MV as specified in 8.3.5.3.4 */ { int qx, qy, X, Y; qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0); qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0); X = (s->mb_width << 6) - 4; Y = (s->mb_height << 6) - 4; if(mv1) { if(qx + px < -60) px = -60 - qx; if(qy + py < -60) py = -60 - qy; } else { if(qx + px < -28) px = -28 - qx; if(qy + py < -28) py = -28 - qy; } if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) { if(is_intra[xy - wrap]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - A[0]) + FFABS(py - A[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } else { if(is_intra[xy - 1]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - C[0]) + FFABS(py - C[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } } } /* store MV using signed modulus of MV range defined in 4.11 */ s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x; s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y; if(mv1) { /* duplicate motion data for 1-MV block */ s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0]; s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1]; s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0]; s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1]; s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0]; s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1]; } } /** Motion compensation for direct or interpolated blocks in B-frames */ static void vc1_interp_mc(VC1Context *v) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcY, *srcU, *srcV; int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; if(!v->s.next_picture.data[0])return; mx = s->mv[1][0][0]; my = s->mv[1][0][1]; uvmx = (mx + ((mx & 3) == 3)) >> 1; uvmy = (my + ((my & 3) == 3)) >> 1; if(v->fastuvmc) { uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1)); uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1)); } srcY = s->next_picture.data[0]; srcU = s->next_picture.data[1]; srcV = s->next_picture.data[2]; src_x = s->mb_x * 16 + (mx >> 2); src_y = s->mb_y * 16 + (my >> 2); uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if(v->profile != PROFILE_ADVANCED){ src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); }else{ src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; /* for grayscale we should not try to read from unknown area */ if(s->flags & CODEC_FLAG_GRAY) { srcU = s->edge_emu_buffer + 18 * s->linesize; srcV = s->edge_emu_buffer + 18 * s->linesize; } if(v->rangeredfrm || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){ uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize; srcY -= s->mspel * (1 + s->linesize); ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); srcY = s->edge_emu_buffer; ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = uvbuf; srcV = uvbuf + 16; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src, *src2; src = srcY; for(j = 0; j < 17 + s->mspel*2; j++) { for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; src += s->linesize; } src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = ((src[i] - 128) >> 1) + 128; src2[i] = ((src2[i] - 128) >> 1) + 128; } src += s->uvlinesize; src2 += s->uvlinesize; } } srcY += s->mspel * (1 + s->linesize); } if(s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd); dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd); srcY += s->linesize * 8; dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd); dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd); } else { // hpel mc dxy = (my & 2) | ((mx & 2) >> 1); if(!v->rnd) dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); else dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); } if(s->flags & CODEC_FLAG_GRAY) return; /* Chroma MC always uses qpel blilinear */ uvmx = (uvmx&3)<<1; uvmy = (uvmy&3)<<1; if(!v->rnd){ dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); }else{ dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs) { int n = bfrac; #if B_FRACTION_DEN==256 if(inv) n -= 256; if(!qs) return 2 * ((value * n + 255) >> 9); return (value * n + 128) >> 8; #else if(inv) n -= B_FRACTION_DEN; if(!qs) return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN)); return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN; #endif } /** Reconstruct motion vector for B-frame and do motion compensation */ static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode) { if(v->use_ic) { v->mv_mode2 = v->mv_mode; v->mv_mode = MV_PMODE_INTENSITY_COMP; } if(direct) { vc1_mc_1mv(v, 0); vc1_interp_mc(v); if(v->use_ic) v->mv_mode = v->mv_mode2; return; } if(mode == BMV_TYPE_INTERPOLATED) { vc1_mc_1mv(v, 0); vc1_interp_mc(v); if(v->use_ic) v->mv_mode = v->mv_mode2; return; } if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2; vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD)); if(v->use_ic) v->mv_mode = v->mv_mode2; } static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype) { MpegEncContext *s = &v->s; int xy, wrap, off = 0; int16_t *A, *B, *C; int px, py; int sum; int r_x, r_y; const uint8_t *is_intra = v->mb_type[0]; r_x = v->range_x; r_y = v->range_y; /* scale MV difference to be quad-pel */ dmv_x[0] <<= 1 - s->quarter_sample; dmv_y[0] <<= 1 - s->quarter_sample; dmv_x[1] <<= 1 - s->quarter_sample; dmv_y[1] <<= 1 - s->quarter_sample; wrap = s->b8_stride; xy = s->block_index[0]; if(s->mb_intra) { s->current_picture.motion_val[0][xy][0] = s->current_picture.motion_val[0][xy][1] = s->current_picture.motion_val[1][xy][0] = s->current_picture.motion_val[1][xy][1] = 0; return; } s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample); s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample); s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample); s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample); /* Pullback predicted motion vectors as specified in 8.4.5.4 */ s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6)); s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6)); s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6)); s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6)); if(direct) { s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0]; s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1]; s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0]; s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1]; return; } if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) { C = s->current_picture.motion_val[0][xy - 2]; A = s->current_picture.motion_val[0][xy - wrap*2]; off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2; B = s->current_picture.motion_val[0][xy - wrap*2 + off]; if(!s->mb_x) C[0] = C[1] = 0; if(!s->first_slice_line) { // predictor A is not out of bounds if(s->mb_width == 1) { px = A[0]; py = A[1]; } else { px = mid_pred(A[0], B[0], C[0]); py = mid_pred(A[1], B[1], C[1]); } } else if(s->mb_x) { // predictor C is not out of bounds px = C[0]; py = C[1]; } else { px = py = 0; } /* Pullback MV as specified in 8.3.5.3.4 */ { int qx, qy, X, Y; if(v->profile < PROFILE_ADVANCED) { qx = (s->mb_x << 5); qy = (s->mb_y << 5); X = (s->mb_width << 5) - 4; Y = (s->mb_height << 5) - 4; if(qx + px < -28) px = -28 - qx; if(qy + py < -28) py = -28 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } else { qx = (s->mb_x << 6); qy = (s->mb_y << 6); X = (s->mb_width << 6) - 4; Y = (s->mb_height << 6) - 4; if(qx + px < -60) px = -60 - qx; if(qy + py < -60) py = -60 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } } /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ if(0 && !s->first_slice_line && s->mb_x) { if(is_intra[xy - wrap]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - A[0]) + FFABS(py - A[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } else { if(is_intra[xy - 2]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - C[0]) + FFABS(py - C[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } } } /* store MV using signed modulus of MV range defined in 4.11 */ s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x; s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y; } if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) { C = s->current_picture.motion_val[1][xy - 2]; A = s->current_picture.motion_val[1][xy - wrap*2]; off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2; B = s->current_picture.motion_val[1][xy - wrap*2 + off]; if(!s->mb_x) C[0] = C[1] = 0; if(!s->first_slice_line) { // predictor A is not out of bounds if(s->mb_width == 1) { px = A[0]; py = A[1]; } else { px = mid_pred(A[0], B[0], C[0]); py = mid_pred(A[1], B[1], C[1]); } } else if(s->mb_x) { // predictor C is not out of bounds px = C[0]; py = C[1]; } else { px = py = 0; } /* Pullback MV as specified in 8.3.5.3.4 */ { int qx, qy, X, Y; if(v->profile < PROFILE_ADVANCED) { qx = (s->mb_x << 5); qy = (s->mb_y << 5); X = (s->mb_width << 5) - 4; Y = (s->mb_height << 5) - 4; if(qx + px < -28) px = -28 - qx; if(qy + py < -28) py = -28 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } else { qx = (s->mb_x << 6); qy = (s->mb_y << 6); X = (s->mb_width << 6) - 4; Y = (s->mb_height << 6) - 4; if(qx + px < -60) px = -60 - qx; if(qy + py < -60) py = -60 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } } /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ if(0 && !s->first_slice_line && s->mb_x) { if(is_intra[xy - wrap]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - A[0]) + FFABS(py - A[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } else { if(is_intra[xy - 2]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - C[0]) + FFABS(py - C[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } } } /* store MV using signed modulus of MV range defined in 4.11 */ s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x; s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y; } s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0]; s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1]; s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0]; s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1]; } /** Get predicted DC value for I-frames only * prediction dir: left=0, top=1 * @param s MpegEncContext * @param overlap flag indicating that overlap filtering is used * @param pq integer part of picture quantizer * @param[in] n block index in the current MB * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction */ static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred, scale; int16_t *dc_val; static const uint16_t dcpred[32] = { -1, 1024, 512, 341, 256, 205, 171, 146, 128, 114, 102, 93, 85, 79, 73, 68, 64, 60, 57, 54, 51, 49, 47, 45, 43, 41, 39, 38, 37, 35, 34, 33 }; /* find prediction - wmv3_dc_scale always used here in fact */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; wrap = s->block_wrap[n]; dc_val= s->dc_val[0] + s->block_index[n]; /* B A * C X */ c = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; a = dc_val[ - wrap]; if (pq < 9 || !overlap) { /* Set outer values */ if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale]; if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale]; } else { /* Set outer values */ if (s->first_slice_line && (n!=2 && n!=3)) b=a=0; if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0; } if (abs(a - b) <= abs(b - c)) { pred = c; *dir_ptr = 1;//left } else { pred = a; *dir_ptr = 0;//top } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** Get predicted DC value * prediction dir: left=0, top=1 * @param s MpegEncContext * @param overlap flag indicating that overlap filtering is used * @param pq integer part of picture quantizer * @param[in] n block index in the current MB * @param a_avail flag indicating top block availability * @param c_avail flag indicating left block availability * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction */ static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int a_avail, int c_avail, int16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred; int16_t *dc_val; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int q1, q2 = 0; wrap = s->block_wrap[n]; dc_val= s->dc_val[0] + s->block_index[n]; /* B A * C X */ c = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; a = dc_val[ - wrap]; /* scale predictors if needed */ q1 = s->current_picture.qscale_table[mb_pos]; if(c_avail && (n!= 1 && n!=3)) { q2 = s->current_picture.qscale_table[mb_pos - 1]; if(q2 && q2 != q1) c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; } if(a_avail && (n!= 2 && n!=3)) { q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if(q2 && q2 != q1) a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; } if(a_avail && c_avail && (n!=3)) { int off = mb_pos; if(n != 1) off--; if(n != 2) off -= s->mb_stride; q2 = s->current_picture.qscale_table[off]; if(q2 && q2 != q1) b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; } if(a_avail && c_avail) { if(abs(a - b) <= abs(b - c)) { pred = c; *dir_ptr = 1;//left } else { pred = a; *dir_ptr = 0;//top } } else if(a_avail) { pred = a; *dir_ptr = 0;//top } else if(c_avail) { pred = c; *dir_ptr = 1;//left } else { pred = 0; *dir_ptr = 1;//left } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** @} */ // Block group /** * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @{ */ static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr) { int xy, wrap, pred, a, b, c; xy = s->block_index[n]; wrap = s->b8_stride; /* B C * A X */ a = s->coded_block[xy - 1 ]; b = s->coded_block[xy - 1 - wrap]; c = s->coded_block[xy - wrap]; if (b == c) { pred = a; } else { pred = c; } /* store value */ *coded_block_ptr = &s->coded_block[xy]; return pred; } /** * Decode one AC coefficient * @param v The VC1 context * @param last Last coefficient * @param skip How much zero coefficients to skip * @param value Decoded AC coefficient value * @param codingset set of VLC to decode data * @see 8.1.3.4 */ static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset) { GetBitContext *gb = &v->s.gb; int index, escape, run = 0, level = 0, lst = 0; index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); if (index != vc1_ac_sizes[codingset] - 1) { run = vc1_index_decode_table[codingset][index][0]; level = vc1_index_decode_table[codingset][index][1]; lst = index >= vc1_last_decode_table[codingset]; if(get_bits1(gb)) level = -level; } else { escape = decode210(gb); if (escape != 2) { index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); run = vc1_index_decode_table[codingset][index][0]; level = vc1_index_decode_table[codingset][index][1]; lst = index >= vc1_last_decode_table[codingset]; if(escape == 0) { if(lst) level += vc1_last_delta_level_table[codingset][run]; else level += vc1_delta_level_table[codingset][run]; } else { if(lst) run += vc1_last_delta_run_table[codingset][level] + 1; else run += vc1_delta_run_table[codingset][level] + 1; } if(get_bits1(gb)) level = -level; } else { int sign; lst = get_bits1(gb); if(v->s.esc3_level_length == 0) { if(v->pq < 8 || v->dquantfrm) { // table 59 v->s.esc3_level_length = get_bits(gb, 3); if(!v->s.esc3_level_length) v->s.esc3_level_length = get_bits(gb, 2) + 8; } else { //table 60 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2; } v->s.esc3_run_length = 3 + get_bits(gb, 2); } run = get_bits(gb, v->s.esc3_run_length); sign = get_bits1(gb); level = get_bits(gb, v->s.esc3_level_length); if(sign) level = -level; } } *last = lst; *skip = run; *value = level; } /** Decode intra block in intra frames - should be faster than decode_intra_block * @param v VC1Context * @param block block to decode * @param[in] n subblock index * @param coded are AC coeffs present or not * @param codingset set of VLC to decode data */ static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (v->pq == 1) dcdiff = get_bits(gb, 10); else if (v->pq == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (v->pq == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (v->pq == 2) dcdiff = (dcdiff<<1) + get_bits1(gb) - 1; } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } /* Skip ? */ if (!coded) { goto not_coded; } //AC Decoding i = 1; { int last = 0, skip, value; const int8_t *zz_table; int scale; int k; scale = v->pq * 2 + v->halfpq; if(v->s.ac_pred) { if(!dc_pred_dir) zz_table = wmv1_scantable[2]; else zz_table = wmv1_scantable[3]; } else zz_table = wmv1_scantable[1]; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; if(dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if(i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if(s->ac_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += ac_val[k]; } else { //top for(k = 1; k < 8; k++) block[k] += ac_val[k + 8]; } } /* save AC coeffs for further prediction */ for(k = 1; k < 8; k++) { ac_val2[k] = block[k << 3]; ac_val2[k + 8] = block[k]; } /* scale AC coeffs */ for(k = 1; k < 64; k++) if(block[k]) { block[k] *= scale; if(!v->pquantizer) block[k] += (block[k] < 0) ? -v->pq : v->pq; } if(s->ac_pred) i = 63; } not_coded: if(!coded) { int k, scale; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; i = 0; scale = v->pq * 2 + v->halfpq; memset(ac_val2, 0, 16 * 2); if(dc_pred_dir) {//left ac_val -= 16; if(s->ac_pred) memcpy(ac_val2, ac_val, 8 * 2); } else {//top ac_val -= 16 * s->block_wrap[n]; if(s->ac_pred) memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); } /* apply AC prediction if needed */ if(s->ac_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) { block[k << 3] = ac_val[k] * scale; if(!v->pquantizer && block[k << 3]) block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq; } } else { //top for(k = 1; k < 8; k++) { block[k] = ac_val[k + 8] * scale; if(!v->pquantizer && block[k]) block[k] += (block[k] < 0) ? -v->pq : v->pq; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode intra block in intra frames - should be faster than decode_intra_block * @param v VC1Context * @param block block to decode * @param[in] n subblock number * @param coded are AC coeffs present or not * @param codingset set of VLC to decode data * @param mquant quantizer value for this macroblock */ static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(gb, 10); else if (mquant == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff<<1) + get_bits1(gb) - 1; } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } //AC Decoding i = 1; /* check if AC is needed at all */ if(!a_avail && !c_avail) use_pred = 0; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0); if(dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.qscale_table[mb_pos]; if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if(dc_pred_dir && n==1) q2 = q1; if(!dc_pred_dir && n==2) q2 = q1; if(n==3) q2 = q1; if(coded) { int last = 0, skip, value; const int8_t *zz_table; int k; if(v->s.ac_pred) { if(!dc_pred_dir) zz_table = wmv1_scantable[2]; else zz_table = wmv1_scantable[3]; } else zz_table = wmv1_scantable[1]; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if(i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if(use_pred) { /* scale predictors if needed*/ if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { //top for(k = 1; k < 8; k++) block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } else { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += ac_val[k]; } else { //top for(k = 1; k < 8; k++) block[k] += ac_val[k + 8]; } } } /* save AC coeffs for further prediction */ for(k = 1; k < 8; k++) { ac_val2[k] = block[k << 3]; ac_val2[k + 8] = block[k]; } /* scale AC coeffs */ for(k = 1; k < 64; k++) if(block[k]) { block[k] *= scale; if(!v->pquantizer) block[k] += (block[k] < 0) ? -mquant : mquant; } if(use_pred) i = 63; } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); if(dc_pred_dir) {//left if(use_pred) { memcpy(ac_val2, ac_val, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } else {//top if(use_pred) { memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } /* apply AC prediction if needed */ if(use_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) { block[k << 3] = ac_val2[k] * scale; if(!v->pquantizer && block[k << 3]) block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant; } } else { //top for(k = 1; k < 8; k++) { block[k] = ac_val2[k + 8] * scale; if(!v->pquantizer && block[k]) block[k] += (block[k] < 0) ? -mquant : mquant; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode intra block in inter frames - more generic version than vc1_decode_i_block * @param v VC1Context * @param block block to decode * @param[in] n subblock index * @param coded are AC coeffs present or not * @param mquant block quantizer * @param codingset set of VLC to decode data */ static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; s->dsp.clear_block(block); /* XXX: Guard against dumb values of mquant */ mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant ); /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[mquant]; s->c_dc_scale = s->c_dc_scale_table[mquant]; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(gb, 10); else if (mquant == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff<<1) + get_bits1(gb) - 1; } if (get_bits1(gb)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } //AC Decoding i = 1; /* check if AC is needed at all and adjust direction if needed */ if(!a_avail) dc_pred_dir = 1; if(!c_avail) dc_pred_dir = 0; if(!a_avail && !c_avail) use_pred = 0; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; scale = mquant * 2 + v->halfpq; if(dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.qscale_table[mb_pos]; if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if(dc_pred_dir && n==1) q2 = q1; if(!dc_pred_dir && n==2) q2 = q1; if(n==3) q2 = q1; if(coded) { int last = 0, skip, value; const int8_t *zz_table; int k; zz_table = wmv1_scantable[0]; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if(i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if(use_pred) { /* scale predictors if needed*/ if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { //top for(k = 1; k < 8; k++) block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } else { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += ac_val[k]; } else { //top for(k = 1; k < 8; k++) block[k] += ac_val[k + 8]; } } } /* save AC coeffs for further prediction */ for(k = 1; k < 8; k++) { ac_val2[k] = block[k << 3]; ac_val2[k + 8] = block[k]; } /* scale AC coeffs */ for(k = 1; k < 64; k++) if(block[k]) { block[k] *= scale; if(!v->pquantizer) block[k] += (block[k] < 0) ? -mquant : mquant; } if(use_pred) i = 63; } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); if(dc_pred_dir) {//left if(use_pred) { memcpy(ac_val2, ac_val, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } else {//top if(use_pred) { memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } /* apply AC prediction if needed */ if(use_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) { block[k << 3] = ac_val2[k] * scale; if(!v->pquantizer && block[k << 3]) block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant; } } else { //top for(k = 1; k < 8; k++) { block[k] = ac_val2[k + 8] * scale; if(!v->pquantizer && block[k]) block[k] += (block[k] < 0) ? -mquant : mquant; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode P block */ static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block, uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int subblkpat = 0; int scale, off, idx, last, skip, value; int ttblk = ttmb & 7; int pat = 0; s->dsp.clear_block(block); if(ttmb == -1) { ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)]; } if(ttblk == TT_4X4) { subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1); } if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) { subblkpat = decode012(gb); if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4; if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8; } scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0); // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) { subblkpat = 2 - (ttblk == TT_8X4_TOP); ttblk = TT_8X4; } if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) { subblkpat = 2 - (ttblk == TT_4X8_LEFT); ttblk = TT_4X8; } switch(ttblk) { case TT_8X8: pat = 0xF; i = 0; last = 0; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 63) break; idx = wmv1_scantable[0][i++]; block[idx] = value * scale; if(!v->pquantizer) block[idx] += (block[idx] < 0) ? -mquant : mquant; } if(!skip_block){ if(i==1) s->dsp.vc1_inv_trans_8x8_dc(dst, linesize, block); else{ s->dsp.vc1_inv_trans_8x8(block); s->dsp.add_pixels_clamped(block, dst, linesize); } if(apply_filter && cbp_top & 0xC) s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq); if(apply_filter && cbp_left & 0xA) s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq); } break; case TT_4X4: pat = ~subblkpat & 0xF; for(j = 0; j < 4; j++) { last = subblkpat & (1 << (3 - j)); i = 0; off = (j & 1) * 4 + (j & 2) * 16; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 15) break; idx = ff_vc1_simple_progressive_4x4_zz[i++]; block[idx + off] = value * scale; if(!v->pquantizer) block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; } if(!(subblkpat & (1 << (3 - j))) && !skip_block){ if(i==1) s->dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off); else s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off); if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2))))) s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq); if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1))))) s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq); } } break; case TT_8X4: pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF; for(j = 0; j < 2; j++) { last = subblkpat & (1 << (1 - j)); i = 0; off = j * 32; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 31) break; idx = v->zz_8x4[i++]+off; block[idx] = value * scale; if(!v->pquantizer) block[idx] += (block[idx] < 0) ? -mquant : mquant; } if(!(subblkpat & (1 << (1 - j))) && !skip_block){ if(i==1) s->dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off); else s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off); if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC)) s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq); if(apply_filter && cbp_left & (2 << j)) s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq); } } break; case TT_4X8: pat = ~(subblkpat*5) & 0xF; for(j = 0; j < 2; j++) { last = subblkpat & (1 << (1 - j)); i = 0; off = j * 4; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 31) break; idx = v->zz_4x8[i++]+off; block[idx] = value * scale; if(!v->pquantizer) block[idx] += (block[idx] < 0) ? -mquant : mquant; } if(!(subblkpat & (1 << (1 - j))) && !skip_block){ if(i==1) s->dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off); else s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off); if(apply_filter && cbp_top & (2 << j)) s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq); if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA)) s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq); } } break; } return pat; } /** @} */ // Macroblock group static const int size_table [6] = { 0, 2, 3, 4, 5, 8 }; static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 }; /** Decode one P-frame MB (in Simple/Main profile) */ static int vc1_decode_p_mb(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int index, index1; /* LUT indexes */ int val, sign; /* temp values */ int first_block = 1; int dst_idx, off; int skipped, fourmv; int block_cbp = 0, pat; int apply_loop_filter; mquant = v->pq; /* Loosy initialization */ if (v->mv_type_is_raw) fourmv = get_bits1(gb); else fourmv = v->mv_type_mb_plane[mb_pos]; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY); if (!fourmv) /* 1MV mode */ { if (!skipped) { GET_MVDATA(dmv_x, dmv_y); if (s->mb_intra) { s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; } s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16; vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]); /* FIXME Set DC val for inter block ? */ if (s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->ac_pred = get_bits1(gb); cbp = 0; } else if (mb_has_coeffs) { if (s->mb_intra) s->ac_pred = get_bits1(gb); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); } else { mquant = v->pq; cbp = 0; } s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && !s->mb_intra && mb_has_coeffs) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); if(!s->mb_intra) vc1_mc_1mv(v, 0); dst_idx = 0; for (i=0; i<6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); v->mb_type[0][s->block_index[i]] = s->mb_intra; if(s->mb_intra) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if(i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if(i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset); if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; s->dsp.vc1_inv_trans_8x8(s->block[i]); if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); if(v->pq >= 9 && v->overlap) { if(v->c_avail) s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); if(v->a_avail) s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); } if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){ int left_cbp, top_cbp; if(i & 4){ left_cbp = v->cbp[s->mb_x - 1] >> (i * 4); top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4); }else{ left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4)); top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4)); } if(left_cbp & 0xC) s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); if(top_cbp & 0xA) s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); } block_cbp |= 0xF << (i << 2); } else if(val) { int left_cbp = 0, top_cbp = 0, filter = 0; if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){ filter = 1; if(i & 4){ left_cbp = v->cbp[s->mb_x - 1] >> (i * 4); top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4); }else{ left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4)); top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4)); } if(left_cbp & 0xC) s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); if(top_cbp & 0xA) s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); } pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp); block_cbp |= pat << (i << 2); if(!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } else //Skipped { s->mb_intra = 0; for(i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP; s->current_picture.qscale_table[mb_pos] = 0; vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_1mv(v, 0); return 0; } } //1MV mode else //4MV mode { if (!skipped /* unskipped MB */) { int intra_count = 0, coded_inter = 0; int is_intra[6], is_coded[6]; /* Get CBPCY */ cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); for (i=0; i<6; i++) { val = ((cbp >> (5 - i)) & 1); s->dc_val[0][s->block_index[i]] = 0; s->mb_intra = 0; if(i < 4) { dmv_x = dmv_y = 0; s->mb_intra = 0; mb_has_coeffs = 0; if(val) { GET_MVDATA(dmv_x, dmv_y); } vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]); if(!s->mb_intra) vc1_mc_4mv_luma(v, i); intra_count += s->mb_intra; is_intra[i] = s->mb_intra; is_coded[i] = mb_has_coeffs; } if(i&4){ is_intra[i] = (intra_count >= 3); is_coded[i] = val; } if(i == 4) vc1_mc_4mv_chroma(v); v->mb_type[0][s->block_index[i]] = is_intra[i]; if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i]; } // if there are no coded blocks then don't do anything more if(!intra_count && !coded_inter) return 0; dst_idx = 0; GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* test if block is intra and has pred */ { int intrapred = 0; for(i=0; i<6; i++) if(is_intra[i]) { if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]]) || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) { intrapred = 1; break; } } if(intrapred)s->ac_pred = get_bits1(gb); else s->ac_pred = 0; } if (!v->ttmbf && coded_inter) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); for (i=0; i<6; i++) { dst_idx += i >> 2; off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); s->mb_intra = is_intra[i]; if (is_intra[i]) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if(i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if(i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset); if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; s->dsp.vc1_inv_trans_8x8(s->block[i]); if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); if(v->pq >= 9 && v->overlap) { if(v->c_avail) s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); if(v->a_avail) s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); } if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){ int left_cbp, top_cbp; if(i & 4){ left_cbp = v->cbp[s->mb_x - 1] >> (i * 4); top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4); }else{ left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4)); top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4)); } if(left_cbp & 0xC) s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); if(top_cbp & 0xA) s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); } block_cbp |= 0xF << (i << 2); } else if(is_coded[i]) { int left_cbp = 0, top_cbp = 0, filter = 0; if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){ filter = 1; if(i & 4){ left_cbp = v->cbp[s->mb_x - 1] >> (i * 4); top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4); }else{ left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4)); top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4)); } if(left_cbp & 0xC) s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); if(top_cbp & 0xA) s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq); } pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp); block_cbp |= pat << (i << 2); if(!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } return 0; } else //Skipped MB { s->mb_intra = 0; s->current_picture.qscale_table[mb_pos] = 0; for (i=0; i<6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } for (i=0; i<4; i++) { vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_4mv_luma(v, i); } vc1_mc_4mv_chroma(v); s->current_picture.qscale_table[mb_pos] = 0; return 0; } } v->cbp[s->mb_x] = block_cbp; /* Should never happen */ return -1; } /** Decode one B-frame MB (in Main profile) */ static void vc1_decode_b_mb(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 0; /* last_flag */ int index, index1; /* LUT indexes */ int val, sign; /* temp values */ int first_block = 1; int dst_idx, off; int skipped, direct; int dmv_x[2], dmv_y[2]; int bmvtype = BMV_TYPE_BACKWARD; mquant = v->pq; /* Loosy initialization */ s->mb_intra = 0; if (v->dmb_is_raw) direct = get_bits1(gb); else direct = v->direct_mb_plane[mb_pos]; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0; for(i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.qscale_table[mb_pos] = 0; if (!direct) { if (!skipped) { GET_MVDATA(dmv_x[0], dmv_y[0]); dmv_x[1] = dmv_x[0]; dmv_y[1] = dmv_y[0]; } if(skipped || !s->mb_intra) { bmvtype = decode012(gb); switch(bmvtype) { case 0: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD; break; case 1: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD; break; case 2: bmvtype = BMV_TYPE_INTERPOLATED; dmv_x[0] = dmv_y[0] = 0; } } } for(i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = s->mb_intra; if (skipped) { if(direct) bmvtype = BMV_TYPE_INTERPOLATED; vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } if (direct) { cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); s->mb_intra = 0; s->current_picture.qscale_table[mb_pos] = mquant; if(!v->ttmbf) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0; vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); } else { if(!mb_has_coeffs && !s->mb_intra) { /* no coded blocks - effectively skipped */ vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } if(s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; s->ac_pred = get_bits1(gb); cbp = 0; vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); } else { if(bmvtype == BMV_TYPE_INTERPOLATED) { GET_MVDATA(dmv_x[0], dmv_y[0]); if(!mb_has_coeffs) { /* interpolated skipped block */ vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } } vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); if(!s->mb_intra) { vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); } if(s->mb_intra) s->ac_pred = get_bits1(gb); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; if(!v->ttmbf && !s->mb_intra && mb_has_coeffs) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); } } dst_idx = 0; for (i=0; i<6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); v->mb_type[0][s->block_index[i]] = s->mb_intra; if(s->mb_intra) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if(i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if(i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset); if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; s->dsp.vc1_inv_trans_8x8(s->block[i]); if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); } else if(val) { vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0); if(!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } /** Decode blocks of I-frame */ static void vc1_decode_i_blocks(VC1Context *v) { int k, j; MpegEncContext *s = &v->s; int cbp, val; uint8_t *coded_val; int mb_pos; /* select codingmode used for VLC tables selection */ switch(v->y_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[v->pq]; s->c_dc_scale = s->c_dc_scale_table[v->pq]; //do frame decode s->mb_x = s->mb_y = 0; s->mb_intra = 1; s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { s->mb_x = 0; ff_init_block_index(s); for(; s->mb_x < s->mb_width; s->mb_x++) { ff_update_block_index(s); s->dsp.clear_blocks(s->block[0]); mb_pos = s->mb_x + s->mb_y * s->mb_width; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; s->current_picture.qscale_table[mb_pos] = v->pq; s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; // do actual MB decoding and displaying cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); v->s.ac_pred = get_bits1(&v->s.gb); for(k = 0; k < 6; k++) { val = ((cbp >> (5 - k)) & 1); if (k < 4) { int pred = vc1_coded_block_pred(&v->s, k, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - k); vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2); s->dsp.vc1_inv_trans_8x8(s->block[k]); if(v->pq >= 9 && v->overlap) { for(j = 0; j < 64; j++) s->block[k][j] += 128; } } vc1_put_block(v, s->block); if(v->pq >= 9 && v->overlap) { if(s->mb_x) { s->dsp.vc1_h_overlap(s->dest[0], s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); if(!s->first_slice_line) { s->dsp.vc1_v_overlap(s->dest[0], s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); } if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq); if(get_bits_count(&s->gb) > v->bits) { ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); return; } } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); } /** Decode blocks of I-frame for advanced profile */ static void vc1_decode_i_blocks_adv(VC1Context *v) { int k, j; MpegEncContext *s = &v->s; int cbp, val; uint8_t *coded_val; int mb_pos; int mquant = v->pq; int mqdiff; int overlap; GetBitContext *gb = &s->gb; /* select codingmode used for VLC tables selection */ switch(v->y_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } //do frame decode s->mb_x = s->mb_y = 0; s->mb_intra = 1; s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { s->mb_x = 0; ff_init_block_index(s); for(;s->mb_x < s->mb_width; s->mb_x++) { ff_update_block_index(s); s->dsp.clear_blocks(s->block[0]); mb_pos = s->mb_x + s->mb_y * s->mb_stride; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; // do actual MB decoding and displaying cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); if(v->acpred_is_raw) v->s.ac_pred = get_bits1(&v->s.gb); else v->s.ac_pred = v->acpred_plane[mb_pos]; if(v->condover == CONDOVER_SELECT) { if(v->overflg_is_raw) overlap = get_bits1(&v->s.gb); else overlap = v->over_flags_plane[mb_pos]; } else overlap = (v->condover == CONDOVER_ALL); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[mquant]; s->c_dc_scale = s->c_dc_scale_table[mquant]; for(k = 0; k < 6; k++) { val = ((cbp >> (5 - k)) & 1); if (k < 4) { int pred = vc1_coded_block_pred(&v->s, k, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - k); v->a_avail = !s->first_slice_line || (k==2 || k==3); v->c_avail = !!s->mb_x || (k==1 || k==3); vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant); s->dsp.vc1_inv_trans_8x8(s->block[k]); for(j = 0; j < 64; j++) s->block[k][j] += 128; } vc1_put_block(v, s->block); if(overlap) { if(s->mb_x) { s->dsp.vc1_h_overlap(s->dest[0], s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); if(!s->first_slice_line) { s->dsp.vc1_v_overlap(s->dest[0], s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); } if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq); if(get_bits_count(&s->gb) > v->bits) { ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); return; } } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); } static void vc1_decode_p_blocks(VC1Context *v) { MpegEncContext *s = &v->s; /* select codingmode used for VLC tables selection */ switch(v->c_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } s->first_slice_line = 1; memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride); for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { s->mb_x = 0; ff_init_block_index(s); for(; s->mb_x < s->mb_width; s->mb_x++) { ff_update_block_index(s); vc1_decode_p_mb(v); if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y); return; } } memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride); ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); } static void vc1_decode_b_blocks(VC1Context *v) { MpegEncContext *s = &v->s; /* select codingmode used for VLC tables selection */ switch(v->c_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { s->mb_x = 0; ff_init_block_index(s); for(; s->mb_x < s->mb_width; s->mb_x++) { ff_update_block_index(s); vc1_decode_b_mb(v); if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)); av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y); return; } if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq); } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); } static void vc1_decode_skip_blocks(VC1Context *v) { MpegEncContext *s = &v->s; ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { s->mb_x = 0; ff_init_block_index(s); ff_update_block_index(s); memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16); memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } s->pict_type = FF_P_TYPE; } static void vc1_decode_blocks(VC1Context *v) { v->s.esc3_level_length = 0; if(v->x8_type){ ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) ); }else{ switch(v->s.pict_type) { case FF_I_TYPE: if(v->profile == PROFILE_ADVANCED) vc1_decode_i_blocks_adv(v); else vc1_decode_i_blocks(v); break; case FF_P_TYPE: if(v->p_frame_skipped) vc1_decode_skip_blocks(v); else vc1_decode_p_blocks(v); break; case FF_B_TYPE: if(v->bi_type){ if(v->profile == PROFILE_ADVANCED) vc1_decode_i_blocks_adv(v); else vc1_decode_i_blocks(v); }else vc1_decode_b_blocks(v); break; } } } /** Initialize a VC1/WMV3 decoder * @todo TODO: Handle VC-1 IDUs (Transport level?) * @todo TODO: Decypher remaining bits in extra_data */ static av_cold int vc1_decode_init(AVCodecContext *avctx) { VC1Context *v = avctx->priv_data; MpegEncContext *s = &v->s; GetBitContext gb; if (!avctx->extradata_size || !avctx->extradata) return -1; if (!(avctx->flags & CODEC_FLAG_GRAY)) avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts); else avctx->pix_fmt = PIX_FMT_GRAY8; avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt); v->s.avctx = avctx; avctx->flags |= CODEC_FLAG_EMU_EDGE; v->s.flags |= CODEC_FLAG_EMU_EDGE; if(avctx->idct_algo==FF_IDCT_AUTO){ avctx->idct_algo=FF_IDCT_WMV2; } if(ff_msmpeg4_decode_init(avctx) < 0) return -1; if (vc1_init_common(v) < 0) return -1; avctx->coded_width = avctx->width; avctx->coded_height = avctx->height; if (avctx->codec_id == CODEC_ID_WMV3) { int count = 0; // looks like WMV3 has a sequence header stored in the extradata // advanced sequence header may be before the first frame // the last byte of the extradata is a version number, 1 for the // samples we can decode init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8); if (vc1_decode_sequence_header(avctx, v, &gb) < 0) return -1; count = avctx->extradata_size*8 - get_bits_count(&gb); if (count>0) { av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n", count, get_bits(&gb, count)); } else if (count < 0) { av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count); } } else { // VC1/WVC1 const uint8_t *start = avctx->extradata; uint8_t *end = avctx->extradata + avctx->extradata_size; const uint8_t *next; int size, buf2_size; uint8_t *buf2 = NULL; int seq_initialized = 0, ep_initialized = 0; if(avctx->extradata_size < 16) { av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size); return -1; } buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv next = start; for(; next < end; start = next){ next = find_next_marker(start + 4, end); size = next - start - 4; if(size <= 0) continue; buf2_size = vc1_unescape_buffer(start + 4, size, buf2); init_get_bits(&gb, buf2, buf2_size * 8); switch(AV_RB32(start)){ case VC1_CODE_SEQHDR: if(vc1_decode_sequence_header(avctx, v, &gb) < 0){ av_free(buf2); return -1; } seq_initialized = 1; break; case VC1_CODE_ENTRYPOINT: if(vc1_decode_entry_point(avctx, v, &gb) < 0){ av_free(buf2); return -1; } ep_initialized = 1; break; } } av_free(buf2); if(!seq_initialized || !ep_initialized){ av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n"); return -1; } } avctx->has_b_frames= !!(avctx->max_b_frames); s->low_delay = !avctx->has_b_frames; s->mb_width = (avctx->coded_width+15)>>4; s->mb_height = (avctx->coded_height+15)>>4; /* Allocate mb bitplanes */ v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height); v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height); v->acpred_plane = av_malloc(s->mb_stride * s->mb_height); v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height); v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride); v->cbp = v->cbp_base + s->mb_stride; /* allocate block type info in that way so it could be used with s->block_index[] */ v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2); v->mb_type[0] = v->mb_type_base + s->b8_stride + 1; v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1; v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1); /* Init coded blocks info */ if (v->profile == PROFILE_ADVANCED) { // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0) // return -1; // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0) // return -1; } ff_intrax8_common_init(&v->x8,s); return 0; } /** Decode a VC1/WMV3 frame * @todo TODO: Handle VC-1 IDUs (Transport level?) */ static int vc1_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; VC1Context *v = avctx->priv_data; MpegEncContext *s = &v->s; AVFrame *pict = data; uint8_t *buf2 = NULL; const uint8_t *buf_start = buf; /* no supplementary picture */ if (buf_size == 0) { /* special case for last picture */ if (s->low_delay==0 && s->next_picture_ptr) { *pict= *(AVFrame*)s->next_picture_ptr; s->next_picture_ptr= NULL; *data_size = sizeof(AVFrame); } return 0; } /* We need to set current_picture_ptr before reading the header, * otherwise we cannot store anything in there. */ if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){ int i= ff_find_unused_picture(s, 0); s->current_picture_ptr= &s->picture[i]; } if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){ if (v->profile < PROFILE_ADVANCED) avctx->pix_fmt = PIX_FMT_VDPAU_WMV3; else avctx->pix_fmt = PIX_FMT_VDPAU_VC1; } //for advanced profile we may need to parse and unescape data if (avctx->codec_id == CODEC_ID_VC1) { int buf_size2 = 0; buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE); if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */ const uint8_t *start, *end, *next; int size; next = buf; for(start = buf, end = buf + buf_size; next < end; start = next){ next = find_next_marker(start + 4, end); size = next - start - 4; if(size <= 0) continue; switch(AV_RB32(start)){ case VC1_CODE_FRAME: if (avctx->hwaccel || s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) buf_start = start; buf_size2 = vc1_unescape_buffer(start + 4, size, buf2); break; case VC1_CODE_ENTRYPOINT: /* it should be before frame data */ buf_size2 = vc1_unescape_buffer(start + 4, size, buf2); init_get_bits(&s->gb, buf2, buf_size2*8); vc1_decode_entry_point(avctx, v, &s->gb); break; case VC1_CODE_SLICE: av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n"); av_free(buf2); return -1; } } }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */ const uint8_t *divider; divider = find_next_marker(buf, buf + buf_size); if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){ av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n"); av_free(buf2); return -1; } buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2); // TODO if(!v->warn_interlaced++) av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n"); av_free(buf2);return -1; }else{ buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2); } init_get_bits(&s->gb, buf2, buf_size2*8); } else init_get_bits(&s->gb, buf, buf_size*8); // do parse frame header if(v->profile < PROFILE_ADVANCED) { if(vc1_parse_frame_header(v, &s->gb) == -1) { av_free(buf2); return -1; } } else { if(vc1_parse_frame_header_adv(v, &s->gb) == -1) { av_free(buf2); return -1; } } if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){ av_free(buf2); return -1; } // for hurry_up==5 s->current_picture.pict_type= s->pict_type; s->current_picture.key_frame= s->pict_type == FF_I_TYPE; /* skip B-frames if we don't have reference frames */ if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){ av_free(buf2); return -1;//buf_size; } /* skip b frames if we are in a hurry */ if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size; if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE) || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE) || avctx->skip_frame >= AVDISCARD_ALL) { av_free(buf2); return buf_size; } /* skip everything if we are in a hurry>=5 */ if(avctx->hurry_up>=5) { av_free(buf2); return -1;//buf_size; } if(s->next_p_frame_damaged){ if(s->pict_type==FF_B_TYPE) return buf_size; else s->next_p_frame_damaged=0; } if(MPV_frame_start(s, avctx) < 0) { av_free(buf2); return -1; } s->me.qpel_put= s->dsp.put_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab; if ((CONFIG_VC1_VDPAU_DECODER) &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start); else if (avctx->hwaccel) { if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0) return -1; if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0) return -1; if (avctx->hwaccel->end_frame(avctx) < 0) return -1; } else { ff_er_frame_start(s); v->bits = buf_size * 8; vc1_decode_blocks(v); //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8); // if(get_bits_count(&s->gb) > buf_size * 8) // return -1; ff_er_frame_end(s); } MPV_frame_end(s); assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type); assert(s->current_picture.pict_type == s->pict_type); if (s->pict_type == FF_B_TYPE || s->low_delay) { *pict= *(AVFrame*)s->current_picture_ptr; } else if (s->last_picture_ptr != NULL) { *pict= *(AVFrame*)s->last_picture_ptr; } if(s->last_picture_ptr || s->low_delay){ *data_size = sizeof(AVFrame); ff_print_debug_info(s, pict); } av_free(buf2); return buf_size; } /** Close a VC1/WMV3 decoder * @warning Initial try at using MpegEncContext stuff */ static av_cold int vc1_decode_end(AVCodecContext *avctx) { VC1Context *v = avctx->priv_data; av_freep(&v->hrd_rate); av_freep(&v->hrd_buffer); MPV_common_end(&v->s); av_freep(&v->mv_type_mb_plane); av_freep(&v->direct_mb_plane); av_freep(&v->acpred_plane); av_freep(&v->over_flags_plane); av_freep(&v->mb_type_base); av_freep(&v->cbp_base); ff_intrax8_common_end(&v->x8); return 0; } AVCodec vc1_decoder = { "vc1", AVMEDIA_TYPE_VIDEO, CODEC_ID_VC1, sizeof(VC1Context), vc1_decode_init, NULL, vc1_decode_end, vc1_decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY, NULL, .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"), .pix_fmts = ff_hwaccel_pixfmt_list_420 }; #if CONFIG_WMV3_DECODER AVCodec wmv3_decoder = { "wmv3", AVMEDIA_TYPE_VIDEO, CODEC_ID_WMV3, sizeof(VC1Context), vc1_decode_init, NULL, vc1_decode_end, vc1_decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY, NULL, .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"), .pix_fmts = ff_hwaccel_pixfmt_list_420 }; #endif #if CONFIG_WMV3_VDPAU_DECODER AVCodec wmv3_vdpau_decoder = { "wmv3_vdpau", AVMEDIA_TYPE_VIDEO, CODEC_ID_WMV3, sizeof(VC1Context), vc1_decode_init, NULL, vc1_decode_end, vc1_decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, NULL, .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"), .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE} }; #endif #if CONFIG_VC1_VDPAU_DECODER AVCodec vc1_vdpau_decoder = { "vc1_vdpau", AVMEDIA_TYPE_VIDEO, CODEC_ID_VC1, sizeof(VC1Context), vc1_decode_init, NULL, vc1_decode_end, vc1_decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, NULL, .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"), .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE} }; #endif