/* * SVQ1 decoder * ported to MPlayer by Arpi * ported to libavcodec by Nick Kurshev * * Copyright (C) 2002 the xine project * Copyright (C) 2002 The FFmpeg project * * SVQ1 Encoder (c) 2004 Mike Melanson * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Sorenson Vector Quantizer #1 (SVQ1) video codec. * For more information of the SVQ1 algorithm, visit: * http://www.pcisys.net/~melanson/codecs/ */ #include "avcodec.h" #include "get_bits.h" #include "h263.h" #include "hpeldsp.h" #include "internal.h" #include "mathops.h" #include "svq1.h" static VLC svq1_block_type; static VLC svq1_motion_component; static VLC svq1_intra_multistage[6]; static VLC svq1_inter_multistage[6]; static VLC svq1_intra_mean; static VLC svq1_inter_mean; /* motion vector (prediction) */ typedef struct svq1_pmv_s { int x; int y; } svq1_pmv; typedef struct SVQ1Context { HpelDSPContext hdsp; GetBitContext gb; AVFrame *prev; uint8_t *pkt_swapped; int pkt_swapped_allocated; int width; int height; int frame_code; int nonref; // 1 if the current frame won't be referenced } SVQ1Context; static const uint8_t string_table[256] = { 0x00, 0xD5, 0x7F, 0xAA, 0xFE, 0x2B, 0x81, 0x54, 0x29, 0xFC, 0x56, 0x83, 0xD7, 0x02, 0xA8, 0x7D, 0x52, 0x87, 0x2D, 0xF8, 0xAC, 0x79, 0xD3, 0x06, 0x7B, 0xAE, 0x04, 0xD1, 0x85, 0x50, 0xFA, 0x2F, 0xA4, 0x71, 0xDB, 0x0E, 0x5A, 0x8F, 0x25, 0xF0, 0x8D, 0x58, 0xF2, 0x27, 0x73, 0xA6, 0x0C, 0xD9, 0xF6, 0x23, 0x89, 0x5C, 0x08, 0xDD, 0x77, 0xA2, 0xDF, 0x0A, 0xA0, 0x75, 0x21, 0xF4, 0x5E, 0x8B, 0x9D, 0x48, 0xE2, 0x37, 0x63, 0xB6, 0x1C, 0xC9, 0xB4, 0x61, 0xCB, 0x1E, 0x4A, 0x9F, 0x35, 0xE0, 0xCF, 0x1A, 0xB0, 0x65, 0x31, 0xE4, 0x4E, 0x9B, 0xE6, 0x33, 0x99, 0x4C, 0x18, 0xCD, 0x67, 0xB2, 0x39, 0xEC, 0x46, 0x93, 0xC7, 0x12, 0xB8, 0x6D, 0x10, 0xC5, 0x6F, 0xBA, 0xEE, 0x3B, 0x91, 0x44, 0x6B, 0xBE, 0x14, 0xC1, 0x95, 0x40, 0xEA, 0x3F, 0x42, 0x97, 0x3D, 0xE8, 0xBC, 0x69, 0xC3, 0x16, 0xEF, 0x3A, 0x90, 0x45, 0x11, 0xC4, 0x6E, 0xBB, 0xC6, 0x13, 0xB9, 0x6C, 0x38, 0xED, 0x47, 0x92, 0xBD, 0x68, 0xC2, 0x17, 0x43, 0x96, 0x3C, 0xE9, 0x94, 0x41, 0xEB, 0x3E, 0x6A, 0xBF, 0x15, 0xC0, 0x4B, 0x9E, 0x34, 0xE1, 0xB5, 0x60, 0xCA, 0x1F, 0x62, 0xB7, 0x1D, 0xC8, 0x9C, 0x49, 0xE3, 0x36, 0x19, 0xCC, 0x66, 0xB3, 0xE7, 0x32, 0x98, 0x4D, 0x30, 0xE5, 0x4F, 0x9A, 0xCE, 0x1B, 0xB1, 0x64, 0x72, 0xA7, 0x0D, 0xD8, 0x8C, 0x59, 0xF3, 0x26, 0x5B, 0x8E, 0x24, 0xF1, 0xA5, 0x70, 0xDA, 0x0F, 0x20, 0xF5, 0x5F, 0x8A, 0xDE, 0x0B, 0xA1, 0x74, 0x09, 0xDC, 0x76, 0xA3, 0xF7, 0x22, 0x88, 0x5D, 0xD6, 0x03, 0xA9, 0x7C, 0x28, 0xFD, 0x57, 0x82, 0xFF, 0x2A, 0x80, 0x55, 0x01, 0xD4, 0x7E, 0xAB, 0x84, 0x51, 0xFB, 0x2E, 0x7A, 0xAF, 0x05, 0xD0, 0xAD, 0x78, 0xD2, 0x07, 0x53, 0x86, 0x2C, 0xF9 }; #define SVQ1_PROCESS_VECTOR() \ for (; level > 0; i++) { \ /* process next depth */ \ if (i == m) { \ m = n; \ if (--level == 0) \ break; \ } \ /* divide block if next bit set */ \ if (get_bits1(bitbuf) == 0) \ break; \ /* add child nodes */ \ list[n++] = list[i]; \ list[n++] = list[i] + \ (((level & 1) ? pitch : 1) << (level / 2 + 1)); \ } #define SVQ1_ADD_CODEBOOK() \ /* add codebook entries to vector */ \ for (j = 0; j < stages; j++) { \ n3 = codebook[entries[j]] ^ 0x80808080; \ n1 += (n3 & 0xFF00FF00) >> 8; \ n2 += n3 & 0x00FF00FF; \ } \ \ /* clip to [0..255] */ \ if (n1 & 0xFF00FF00) { \ n3 = (n1 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \ n1 += 0x7F007F00; \ n1 |= (~n1 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \ n1 &= n3 & 0x00FF00FF; \ } \ \ if (n2 & 0xFF00FF00) { \ n3 = (n2 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \ n2 += 0x7F007F00; \ n2 |= (~n2 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \ n2 &= n3 & 0x00FF00FF; \ } #define SVQ1_CALC_CODEBOOK_ENTRIES(cbook) \ codebook = (const uint32_t *)cbook[level]; \ if (stages > 0) \ bit_cache = get_bits(bitbuf, 4 * stages); \ /* calculate codebook entries for this vector */ \ for (j = 0; j < stages; j++) { \ entries[j] = (((bit_cache >> (4 * (stages - j - 1))) & 0xF) + \ 16 * j) << (level + 1); \ } \ mean -= stages * 128; \ n4 = mean + (mean >> 31) << 16 | (mean & 0xFFFF); static int svq1_decode_block_intra(GetBitContext *bitbuf, uint8_t *pixels, int pitch) { uint32_t bit_cache; uint8_t *list[63]; uint32_t *dst; const uint32_t *codebook; int entries[6]; int i, j, m, n; int mean, stages; unsigned x, y, width, height, level; uint32_t n1, n2, n3, n4; /* initialize list for breadth first processing of vectors */ list[0] = pixels; /* recursively process vector */ for (i = 0, m = 1, n = 1, level = 5; i < n; i++) { SVQ1_PROCESS_VECTOR(); /* destination address and vector size */ dst = (uint32_t *)list[i]; width = 1 << ((4 + level) / 2); height = 1 << ((3 + level) / 2); /* get number of stages (-1 skips vector, 0 for mean only) */ stages = get_vlc2(bitbuf, svq1_intra_multistage[level].table, 3, 3) - 1; if (stages == -1) { for (y = 0; y < height; y++) memset(&dst[y * (pitch / 4)], 0, width); continue; /* skip vector */ } if ((stages > 0 && level >= 4) || stages < 0) { ff_dlog(NULL, "Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i\n", stages, level); return AVERROR_INVALIDDATA; /* invalid vector */ } mean = get_vlc2(bitbuf, svq1_intra_mean.table, 8, 3); if (stages == 0) { for (y = 0; y < height; y++) memset(&dst[y * (pitch / 4)], mean, width); } else { SVQ1_CALC_CODEBOOK_ENTRIES(ff_svq1_intra_codebooks); for (y = 0; y < height; y++) { for (x = 0; x < width / 4; x++, codebook++) { n1 = n4; n2 = n4; SVQ1_ADD_CODEBOOK() /* store result */ dst[x] = n1 << 8 | n2; } dst += pitch / 4; } } } return 0; } static int svq1_decode_block_non_intra(GetBitContext *bitbuf, uint8_t *pixels, int pitch) { uint32_t bit_cache; uint8_t *list[63]; uint32_t *dst; const uint32_t *codebook; int entries[6]; int i, j, m, n; int mean, stages; int x, y, width, height, level; uint32_t n1, n2, n3, n4; /* initialize list for breadth first processing of vectors */ list[0] = pixels; /* recursively process vector */ for (i = 0, m = 1, n = 1, level = 5; i < n; i++) { SVQ1_PROCESS_VECTOR(); /* destination address and vector size */ dst = (uint32_t *)list[i]; width = 1 << ((4 + level) / 2); height = 1 << ((3 + level) / 2); /* get number of stages (-1 skips vector, 0 for mean only) */ stages = get_vlc2(bitbuf, svq1_inter_multistage[level].table, 3, 2) - 1; if (stages == -1) continue; /* skip vector */ if ((stages > 0 && level >= 4) || stages < 0) { ff_dlog(NULL, "Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i\n", stages, level); return AVERROR_INVALIDDATA; /* invalid vector */ } mean = get_vlc2(bitbuf, svq1_inter_mean.table, 9, 3) - 256; SVQ1_CALC_CODEBOOK_ENTRIES(ff_svq1_inter_codebooks); for (y = 0; y < height; y++) { for (x = 0; x < width / 4; x++, codebook++) { n3 = dst[x]; /* add mean value to vector */ n1 = n4 + ((n3 & 0xFF00FF00) >> 8); n2 = n4 + (n3 & 0x00FF00FF); SVQ1_ADD_CODEBOOK() /* store result */ dst[x] = n1 << 8 | n2; } dst += pitch / 4; } } return 0; } static int svq1_decode_motion_vector(GetBitContext *bitbuf, svq1_pmv *mv, svq1_pmv **pmv) { int diff; int i; for (i = 0; i < 2; i++) { /* get motion code */ diff = get_vlc2(bitbuf, svq1_motion_component.table, 7, 2); if (diff < 0) return AVERROR_INVALIDDATA; else if (diff) { if (get_bits1(bitbuf)) diff = -diff; } /* add median of motion vector predictors and clip result */ if (i == 1) mv->y = sign_extend(diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y), 6); else mv->x = sign_extend(diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x), 6); } return 0; } static void svq1_skip_block(uint8_t *current, uint8_t *previous, int pitch, int x, int y) { uint8_t *src; uint8_t *dst; int i; src = &previous[x + y * pitch]; dst = current; for (i = 0; i < 16; i++) { memcpy(dst, src, 16); src += pitch; dst += pitch; } } static int svq1_motion_inter_block(HpelDSPContext *hdsp, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv *motion, int x, int y, int width, int height) { uint8_t *src; uint8_t *dst; svq1_pmv mv; svq1_pmv *pmv[3]; int result; /* predict and decode motion vector */ pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[x / 8 + 2]; pmv[2] = &motion[x / 8 + 4]; } result = svq1_decode_motion_vector(bitbuf, &mv, pmv); if (result != 0) return result; motion[0].x = motion[x / 8 + 2].x = motion[x / 8 + 3].x = mv.x; motion[0].y = motion[x / 8 + 2].y = motion[x / 8 + 3].y = mv.y; mv.x = av_clip(mv.x, -2 * x, 2 * (width - x - 16)); mv.y = av_clip(mv.y, -2 * y, 2 * (height - y - 16)); src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1)) * pitch]; dst = current; hdsp->put_pixels_tab[0][(mv.y & 1) << 1 | (mv.x & 1)](dst, src, pitch, 16); return 0; } static int svq1_motion_inter_4v_block(HpelDSPContext *hdsp, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv *motion, int x, int y, int width, int height) { uint8_t *src; uint8_t *dst; svq1_pmv mv; svq1_pmv *pmv[4]; int i, result; /* predict and decode motion vector (0) */ pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } result = svq1_decode_motion_vector(bitbuf, &mv, pmv); if (result != 0) return result; /* predict and decode motion vector (1) */ pmv[0] = &mv; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 3]; } result = svq1_decode_motion_vector(bitbuf, &motion[0], pmv); if (result != 0) return result; /* predict and decode motion vector (2) */ pmv[1] = &motion[0]; pmv[2] = &motion[(x / 8) + 1]; result = svq1_decode_motion_vector(bitbuf, &motion[(x / 8) + 2], pmv); if (result != 0) return result; /* predict and decode motion vector (3) */ pmv[2] = &motion[(x / 8) + 2]; pmv[3] = &motion[(x / 8) + 3]; result = svq1_decode_motion_vector(bitbuf, pmv[3], pmv); if (result != 0) return result; /* form predictions */ for (i = 0; i < 4; i++) { int mvx = pmv[i]->x + (i & 1) * 16; int mvy = pmv[i]->y + (i >> 1) * 16; // FIXME: clipping or padding? mvx = av_clip(mvx, -2 * x, 2 * (width - x - 8)); mvy = av_clip(mvy, -2 * y, 2 * (height - y - 8)); src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1)) * pitch]; dst = current; hdsp->put_pixels_tab[1][((mvy & 1) << 1) | (mvx & 1)](dst, src, pitch, 8); /* select next block */ if (i & 1) current += 8 * (pitch - 1); else current += 8; } return 0; } static int svq1_decode_delta_block(AVCodecContext *avctx, HpelDSPContext *hdsp, GetBitContext *bitbuf, uint8_t *current, uint8_t *previous, int pitch, svq1_pmv *motion, int x, int y, int width, int height) { uint32_t block_type; int result = 0; /* get block type */ block_type = get_vlc2(bitbuf, svq1_block_type.table, 2, 2); /* reset motion vectors */ if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) { motion[0].x = motion[0].y = motion[x / 8 + 2].x = motion[x / 8 + 2].y = motion[x / 8 + 3].x = motion[x / 8 + 3].y = 0; } switch (block_type) { case SVQ1_BLOCK_SKIP: svq1_skip_block(current, previous, pitch, x, y); break; case SVQ1_BLOCK_INTER: result = svq1_motion_inter_block(hdsp, bitbuf, current, previous, pitch, motion, x, y, width, height); if (result != 0) { ff_dlog(avctx, "Error in svq1_motion_inter_block %i\n", result); break; } result = svq1_decode_block_non_intra(bitbuf, current, pitch); break; case SVQ1_BLOCK_INTER_4V: result = svq1_motion_inter_4v_block(hdsp, bitbuf, current, previous, pitch, motion, x, y, width, height); if (result != 0) { ff_dlog(avctx, "Error in svq1_motion_inter_4v_block %i\n", result); break; } result = svq1_decode_block_non_intra(bitbuf, current, pitch); break; case SVQ1_BLOCK_INTRA: result = svq1_decode_block_intra(bitbuf, current, pitch); break; } return result; } static void svq1_parse_string(GetBitContext *bitbuf, uint8_t *out) { uint8_t seed; int i; out[0] = get_bits(bitbuf, 8); seed = string_table[out[0]]; for (i = 1; i <= out[0]; i++) { out[i] = get_bits(bitbuf, 8) ^ seed; seed = string_table[out[i] ^ seed]; } } static int svq1_decode_frame_header(AVCodecContext *avctx, AVFrame *frame) { SVQ1Context *s = avctx->priv_data; GetBitContext *bitbuf = &s->gb; int frame_size_code; skip_bits(bitbuf, 8); /* temporal_reference */ /* frame type */ s->nonref = 0; switch (get_bits(bitbuf, 2)) { case 0: frame->pict_type = AV_PICTURE_TYPE_I; break; case 2: s->nonref = 1; case 1: frame->pict_type = AV_PICTURE_TYPE_P; break; default: av_log(avctx, AV_LOG_ERROR, "Invalid frame type.\n"); return AVERROR_INVALIDDATA; } if (frame->pict_type == AV_PICTURE_TYPE_I) { /* unknown fields */ if (s->frame_code == 0x50 || s->frame_code == 0x60) { int csum = get_bits(bitbuf, 16); csum = ff_svq1_packet_checksum(bitbuf->buffer, bitbuf->size_in_bits >> 3, csum); ff_dlog(avctx, "%s checksum (%02x) for packet data\n", (csum == 0) ? "correct" : "incorrect", csum); } if ((s->frame_code ^ 0x10) >= 0x50) { uint8_t msg[256]; svq1_parse_string(bitbuf, msg); av_log(avctx, AV_LOG_INFO, "embedded message: \"%s\"\n", (char *)msg); } skip_bits(bitbuf, 2); skip_bits(bitbuf, 2); skip_bits1(bitbuf); /* load frame size */ frame_size_code = get_bits(bitbuf, 3); if (frame_size_code == 7) { /* load width, height (12 bits each) */ s->width = get_bits(bitbuf, 12); s->height = get_bits(bitbuf, 12); if (!s->width || !s->height) return AVERROR_INVALIDDATA; } else { /* get width, height from table */ s->width = ff_svq1_frame_size_table[frame_size_code][0]; s->height = ff_svq1_frame_size_table[frame_size_code][1]; } } /* unknown fields */ if (get_bits1(bitbuf) == 1) { skip_bits1(bitbuf); /* use packet checksum if (1) */ skip_bits1(bitbuf); /* component checksums after image data if (1) */ if (get_bits(bitbuf, 2) != 0) return AVERROR_INVALIDDATA; } if (get_bits1(bitbuf) == 1) { skip_bits1(bitbuf); skip_bits(bitbuf, 4); skip_bits1(bitbuf); skip_bits(bitbuf, 2); while (get_bits1(bitbuf) == 1) skip_bits(bitbuf, 8); } return 0; } static int svq1_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; SVQ1Context *s = avctx->priv_data; AVFrame *cur = data; uint8_t *current; int result, i, x, y, width, height; svq1_pmv *pmv; /* initialize bit buffer */ init_get_bits(&s->gb, buf, buf_size * 8); /* decode frame header */ s->frame_code = get_bits(&s->gb, 22); if ((s->frame_code & ~0x70) || !(s->frame_code & 0x60)) return AVERROR_INVALIDDATA; /* swap some header bytes (why?) */ if (s->frame_code != 0x20) { uint32_t *src; if (buf_size < 9 * 4) { av_log(avctx, AV_LOG_ERROR, "Input packet too small\n"); return AVERROR_INVALIDDATA; } av_fast_padded_malloc(&s->pkt_swapped, &s->pkt_swapped_allocated, buf_size); if (!s->pkt_swapped) return AVERROR(ENOMEM); memcpy(s->pkt_swapped, buf, buf_size); buf = s->pkt_swapped; init_get_bits(&s->gb, buf, buf_size * 8); skip_bits(&s->gb, 22); src = (uint32_t *)(s->pkt_swapped + 4); for (i = 0; i < 4; i++) src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i]; } result = svq1_decode_frame_header(avctx, cur); if (result != 0) { ff_dlog(avctx, "Error in svq1_decode_frame_header %i\n", result); return result; } result = ff_set_dimensions(avctx, s->width, s->height); if (result < 0) return result; if ((avctx->skip_frame >= AVDISCARD_NONREF && s->nonref) || (avctx->skip_frame >= AVDISCARD_NONKEY && cur->pict_type != AV_PICTURE_TYPE_I) || avctx->skip_frame >= AVDISCARD_ALL) return buf_size; result = ff_get_buffer(avctx, cur, s->nonref ? 0 : AV_GET_BUFFER_FLAG_REF); if (result < 0) return result; pmv = av_malloc((FFALIGN(s->width, 16) / 8 + 3) * sizeof(*pmv)); if (!pmv) return AVERROR(ENOMEM); /* decode y, u and v components */ for (i = 0; i < 3; i++) { int linesize = cur->linesize[i]; if (i == 0) { width = FFALIGN(s->width, 16); height = FFALIGN(s->height, 16); } else { if (avctx->flags & AV_CODEC_FLAG_GRAY) break; width = FFALIGN(s->width / 4, 16); height = FFALIGN(s->height / 4, 16); } current = cur->data[i]; if (cur->pict_type == AV_PICTURE_TYPE_I) { /* keyframe */ for (y = 0; y < height; y += 16) { for (x = 0; x < width; x += 16) { result = svq1_decode_block_intra(&s->gb, ¤t[x], linesize); if (result != 0) { av_log(avctx, AV_LOG_INFO, "Error in svq1_decode_block %i (keyframe)\n", result); goto err; } } current += 16 * linesize; } } else { /* delta frame */ uint8_t *previous = s->prev->data[i]; if (!previous || s->prev->width != s->width || s->prev->height != s->height) { av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n"); result = AVERROR_INVALIDDATA; goto err; } memset(pmv, 0, ((width / 8) + 3) * sizeof(svq1_pmv)); for (y = 0; y < height; y += 16) { for (x = 0; x < width; x += 16) { result = svq1_decode_delta_block(avctx, &s->hdsp, &s->gb, ¤t[x], previous, linesize, pmv, x, y, width, height); if (result != 0) { ff_dlog(avctx, "Error in svq1_decode_delta_block %i\n", result); goto err; } } pmv[0].x = pmv[0].y = 0; current += 16 * linesize; } } } if (!s->nonref) { av_frame_unref(s->prev); result = av_frame_ref(s->prev, cur); if (result < 0) goto err; } *got_frame = 1; result = buf_size; err: av_free(pmv); return result; } static av_cold int svq1_decode_init(AVCodecContext *avctx) { SVQ1Context *s = avctx->priv_data; int i; int offset = 0; s->prev = av_frame_alloc(); if (!s->prev) return AVERROR(ENOMEM); s->width = avctx->width + 3 & ~3; s->height = avctx->height + 3 & ~3; avctx->pix_fmt = AV_PIX_FMT_YUV410P; ff_hpeldsp_init(&s->hdsp, avctx->flags); INIT_VLC_STATIC(&svq1_block_type, 2, 4, &ff_svq1_block_type_vlc[0][1], 2, 1, &ff_svq1_block_type_vlc[0][0], 2, 1, 6); INIT_VLC_STATIC(&svq1_motion_component, 7, 33, &ff_mvtab[0][1], 2, 1, &ff_mvtab[0][0], 2, 1, 176); for (i = 0; i < 6; i++) { static const uint8_t sizes[2][6] = { { 14, 10, 14, 18, 16, 18 }, { 10, 10, 14, 14, 14, 16 } }; static VLC_TYPE table[168][2]; svq1_intra_multistage[i].table = &table[offset]; svq1_intra_multistage[i].table_allocated = sizes[0][i]; offset += sizes[0][i]; init_vlc(&svq1_intra_multistage[i], 3, 8, &ff_svq1_intra_multistage_vlc[i][0][1], 2, 1, &ff_svq1_intra_multistage_vlc[i][0][0], 2, 1, INIT_VLC_USE_NEW_STATIC); svq1_inter_multistage[i].table = &table[offset]; svq1_inter_multistage[i].table_allocated = sizes[1][i]; offset += sizes[1][i]; init_vlc(&svq1_inter_multistage[i], 3, 8, &ff_svq1_inter_multistage_vlc[i][0][1], 2, 1, &ff_svq1_inter_multistage_vlc[i][0][0], 2, 1, INIT_VLC_USE_NEW_STATIC); } INIT_VLC_STATIC(&svq1_intra_mean, 8, 256, &ff_svq1_intra_mean_vlc[0][1], 4, 2, &ff_svq1_intra_mean_vlc[0][0], 4, 2, 632); INIT_VLC_STATIC(&svq1_inter_mean, 9, 512, &ff_svq1_inter_mean_vlc[0][1], 4, 2, &ff_svq1_inter_mean_vlc[0][0], 4, 2, 1434); return 0; } static av_cold int svq1_decode_end(AVCodecContext *avctx) { SVQ1Context *s = avctx->priv_data; av_frame_free(&s->prev); av_freep(&s->pkt_swapped); return 0; } static void svq1_flush(AVCodecContext *avctx) { SVQ1Context *s = avctx->priv_data; av_frame_unref(s->prev); } AVCodec ff_svq1_decoder = { .name = "svq1", .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_SVQ1, .priv_data_size = sizeof(SVQ1Context), .init = svq1_decode_init, .close = svq1_decode_end, .decode = svq1_decode_frame, .capabilities = AV_CODEC_CAP_DR1, .flush = svq1_flush, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P, AV_PIX_FMT_NONE }, };