/* * NewTek SpeedHQ codec * Copyright 2017 Steinar H. Gunderson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * NewTek SpeedHQ decoder. */ #define BITSTREAM_READER_LE #include "config.h" #include "config_components.h" #include "libavutil/attributes.h" #include "libavutil/mem_internal.h" #include "avcodec.h" #include "blockdsp.h" #include "codec_internal.h" #include "get_bits.h" #include "idctdsp.h" #include "internal.h" #include "libavutil/thread.h" #include "mathops.h" #include "mpeg12dec.h" #include "mpeg12data.h" #include "mpeg12vlc.h" #define MAX_INDEX (64 - 1) /* * 5 bits makes for very small tables, with no more than two lookups needed * for the longest (10-bit) codes. */ #define ALPHA_VLC_BITS 5 typedef struct SHQContext { AVCodecContext *avctx; BlockDSPContext bdsp; IDCTDSPContext idsp; ScanTable intra_scantable; int quant_matrix[64]; enum { SHQ_SUBSAMPLING_420, SHQ_SUBSAMPLING_422, SHQ_SUBSAMPLING_444 } subsampling; enum { SHQ_NO_ALPHA, SHQ_RLE_ALPHA, SHQ_DCT_ALPHA } alpha_type; } SHQContext; /* AC codes: Very similar but not identical to MPEG-2. */ static const uint16_t speedhq_vlc[123][2] = { {0x0001, 2}, {0x0003, 3}, {0x000E, 4}, {0x0007, 5}, {0x0017, 5}, {0x0028, 6}, {0x0008, 6}, {0x006F, 7}, {0x001F, 7}, {0x00C4, 8}, {0x0044, 8}, {0x005F, 8}, {0x00DF, 8}, {0x007F, 8}, {0x00FF, 8}, {0x3E00, 14}, {0x1E00, 14}, {0x2E00, 14}, {0x0E00, 14}, {0x3600, 14}, {0x1600, 14}, {0x2600, 14}, {0x0600, 14}, {0x3A00, 14}, {0x1A00, 14}, {0x2A00, 14}, {0x0A00, 14}, {0x3200, 14}, {0x1200, 14}, {0x2200, 14}, {0x0200, 14}, {0x0C00, 15}, {0x7400, 15}, {0x3400, 15}, {0x5400, 15}, {0x1400, 15}, {0x6400, 15}, {0x2400, 15}, {0x4400, 15}, {0x0400, 15}, {0x0002, 3}, {0x000C, 5}, {0x004F, 7}, {0x00E4, 8}, {0x0004, 8}, {0x0D00, 13}, {0x1500, 13}, {0x7C00, 15}, {0x3C00, 15}, {0x5C00, 15}, {0x1C00, 15}, {0x6C00, 15}, {0x2C00, 15}, {0x4C00, 15}, {0xC800, 16}, {0x4800, 16}, {0x8800, 16}, {0x0800, 16}, {0x0300, 13}, {0x1D00, 13}, {0x0014, 5}, {0x0070, 7}, {0x003F, 8}, {0x00C0, 10}, {0x0500, 13}, {0x0180, 12}, {0x0280, 12}, {0x0C80, 12}, {0x0080, 12}, {0x0B00, 13}, {0x1300, 13}, {0x001C, 5}, {0x0064, 8}, {0x0380, 12}, {0x1900, 13}, {0x0D80, 12}, {0x0018, 6}, {0x00BF, 8}, {0x0480, 12}, {0x0B80, 12}, {0x0038, 6}, {0x0040, 9}, {0x0900, 13}, {0x0030, 7}, {0x0780, 12}, {0x2800, 16}, {0x0010, 7}, {0x0A80, 12}, {0x0050, 7}, {0x0880, 12}, {0x000F, 7}, {0x1100, 13}, {0x002F, 7}, {0x0100, 13}, {0x0084, 8}, {0x5800, 16}, {0x00A4, 8}, {0x9800, 16}, {0x0024, 8}, {0x1800, 16}, {0x0140, 9}, {0xE800, 16}, {0x01C0, 9}, {0x6800, 16}, {0x02C0, 10}, {0xA800, 16}, {0x0F80, 12}, {0x0580, 12}, {0x0980, 12}, {0x0E80, 12}, {0x0680, 12}, {0x1F00, 13}, {0x0F00, 13}, {0x1700, 13}, {0x0700, 13}, {0x1B00, 13}, {0xF800, 16}, {0x7800, 16}, {0xB800, 16}, {0x3800, 16}, {0xD800, 16}, {0x0020, 6}, /* escape */ {0x0006, 4} /* EOB */ }; static const uint8_t speedhq_level[121] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, }; static const uint8_t speedhq_run[121] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, }; RLTable ff_rl_speedhq = { 121, 121, speedhq_vlc, speedhq_run, speedhq_level, }; #if CONFIG_SPEEDHQ_DECODER /* NOTE: The first element is always 16, unscaled. */ static const uint8_t unscaled_quant_matrix[64] = { 16, 16, 19, 22, 26, 27, 29, 34, 16, 16, 22, 24, 27, 29, 34, 37, 19, 22, 26, 27, 29, 34, 34, 38, 22, 22, 26, 27, 29, 34, 37, 40, 22, 26, 27, 29, 32, 35, 40, 48, 26, 27, 29, 32, 35, 40, 48, 58, 26, 27, 29, 34, 38, 46, 56, 69, 27, 29, 35, 38, 46, 56, 69, 83 }; static VLC dc_lum_vlc_le; static VLC dc_chroma_vlc_le; static VLC dc_alpha_run_vlc_le; static VLC dc_alpha_level_vlc_le; static inline int decode_dc_le(GetBitContext *gb, int component) { int code, diff; if (component == 0 || component == 3) { code = get_vlc2(gb, dc_lum_vlc_le.table, DC_VLC_BITS, 2); } else { code = get_vlc2(gb, dc_chroma_vlc_le.table, DC_VLC_BITS, 2); } if (!code) { diff = 0; } else { diff = get_xbits_le(gb, code); } return diff; } static inline int decode_alpha_block(const SHQContext *s, GetBitContext *gb, uint8_t last_alpha[16], uint8_t *dest, int linesize) { uint8_t block[128]; int i = 0, x, y; memset(block, 0, sizeof(block)); { OPEN_READER(re, gb); for ( ;; ) { int run, level; UPDATE_CACHE_LE(re, gb); GET_VLC(run, re, gb, dc_alpha_run_vlc_le.table, ALPHA_VLC_BITS, 2); if (run < 0) break; i += run; if (i >= 128) return AVERROR_INVALIDDATA; UPDATE_CACHE_LE(re, gb); GET_VLC(level, re, gb, dc_alpha_level_vlc_le.table, ALPHA_VLC_BITS, 2); block[i++] = level; } CLOSE_READER(re, gb); } for (y = 0; y < 8; y++) { for (x = 0; x < 16; x++) { last_alpha[x] -= block[y * 16 + x]; } memcpy(dest, last_alpha, 16); dest += linesize; } return 0; } static inline int decode_dct_block(const SHQContext *s, GetBitContext *gb, int last_dc[4], int component, uint8_t *dest, int linesize) { const int *quant_matrix = s->quant_matrix; const uint8_t *scantable = s->intra_scantable.permutated; LOCAL_ALIGNED_32(int16_t, block, [64]); int dc_offset; s->bdsp.clear_block(block); dc_offset = decode_dc_le(gb, component); last_dc[component] -= dc_offset; /* Note: Opposite of most codecs. */ block[scantable[0]] = last_dc[component]; /* quant_matrix[0] is always 16. */ /* Read AC coefficients. */ { int i = 0; OPEN_READER(re, gb); for ( ;; ) { int level, run; UPDATE_CACHE_LE(re, gb); GET_RL_VLC(level, run, re, gb, ff_rl_speedhq.rl_vlc[0], TEX_VLC_BITS, 2, 0); if (level == 127) { break; } else if (level) { i += run; if (i > MAX_INDEX) return AVERROR_INVALIDDATA; /* If next bit is 1, level = -level */ level = (level ^ SHOW_SBITS(re, gb, 1)) - SHOW_SBITS(re, gb, 1); LAST_SKIP_BITS(re, gb, 1); } else { /* Escape. */ #if MIN_CACHE_BITS < 6 + 6 + 12 #error MIN_CACHE_BITS is too small for the escape code, add UPDATE_CACHE #endif run = SHOW_UBITS(re, gb, 6) + 1; SKIP_BITS(re, gb, 6); level = SHOW_UBITS(re, gb, 12) - 2048; LAST_SKIP_BITS(re, gb, 12); i += run; if (i > MAX_INDEX) return AVERROR_INVALIDDATA; } block[scantable[i]] = (level * quant_matrix[i]) >> 4; } CLOSE_READER(re, gb); } s->idsp.idct_put(dest, linesize, block); return 0; } static int decode_speedhq_border(const SHQContext *s, GetBitContext *gb, AVFrame *frame, int field_number, int line_stride) { int linesize_y = frame->linesize[0] * line_stride; int linesize_cb = frame->linesize[1] * line_stride; int linesize_cr = frame->linesize[2] * line_stride; int linesize_a; int ret; if (s->alpha_type != SHQ_NO_ALPHA) linesize_a = frame->linesize[3] * line_stride; for (int y = 0; y < frame->height; y += 16 * line_stride) { int last_dc[4] = { 1024, 1024, 1024, 1024 }; uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a; uint8_t last_alpha[16]; int x = frame->width - 8; dest_y = frame->data[0] + frame->linesize[0] * (y + field_number) + x; if (s->subsampling == SHQ_SUBSAMPLING_420) { dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number) + x / 2; dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number) + x / 2; } else { av_assert2(s->subsampling == SHQ_SUBSAMPLING_422); dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number) + x / 2; dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number) + x / 2; } if (s->alpha_type != SHQ_NO_ALPHA) { memset(last_alpha, 255, sizeof(last_alpha)); dest_a = frame->data[3] + frame->linesize[3] * (y + field_number) + x; } if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 1, dest_cb, linesize_cb)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 2, dest_cr, linesize_cr)) < 0) return ret; if (s->subsampling != SHQ_SUBSAMPLING_420) { if ((ret = decode_dct_block(s, gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0) return ret; } if (s->alpha_type == SHQ_RLE_ALPHA) { /* Alpha coded using 16x8 RLE blocks. */ if ((ret = decode_alpha_block(s, gb, last_alpha, dest_a, linesize_a)) < 0) return ret; if ((ret = decode_alpha_block(s, gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0) return ret; } else if (s->alpha_type == SHQ_DCT_ALPHA) { /* Alpha encoded exactly like luma. */ if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a, linesize_a)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8, linesize_a)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0) return ret; if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0) return ret; } } return 0; } static int decode_speedhq_field(const SHQContext *s, const uint8_t *buf, int buf_size, AVFrame *frame, int field_number, int start, int end, int line_stride) { int ret, slice_number, slice_offsets[5]; int linesize_y = frame->linesize[0] * line_stride; int linesize_cb = frame->linesize[1] * line_stride; int linesize_cr = frame->linesize[2] * line_stride; int linesize_a; GetBitContext gb; if (s->alpha_type != SHQ_NO_ALPHA) linesize_a = frame->linesize[3] * line_stride; if (end < start || end - start < 3 || end > buf_size) return AVERROR_INVALIDDATA; slice_offsets[0] = start; slice_offsets[4] = end; for (slice_number = 1; slice_number < 4; slice_number++) { uint32_t last_offset, slice_len; last_offset = slice_offsets[slice_number - 1]; slice_len = AV_RL24(buf + last_offset); slice_offsets[slice_number] = last_offset + slice_len; if (slice_len < 3 || slice_offsets[slice_number] > end - 3) return AVERROR_INVALIDDATA; } for (slice_number = 0; slice_number < 4; slice_number++) { uint32_t slice_begin, slice_end; int x, y; slice_begin = slice_offsets[slice_number]; slice_end = slice_offsets[slice_number + 1]; if ((ret = init_get_bits8(&gb, buf + slice_begin + 3, slice_end - slice_begin - 3)) < 0) return ret; for (y = slice_number * 16 * line_stride; y < frame->height; y += line_stride * 64) { uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a; int last_dc[4] = { 1024, 1024, 1024, 1024 }; uint8_t last_alpha[16]; memset(last_alpha, 255, sizeof(last_alpha)); dest_y = frame->data[0] + frame->linesize[0] * (y + field_number); if (s->subsampling == SHQ_SUBSAMPLING_420) { dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number); dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number); } else { dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number); dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number); } if (s->alpha_type != SHQ_NO_ALPHA) { dest_a = frame->data[3] + frame->linesize[3] * (y + field_number); } for (x = 0; x < frame->width - 8 * (s->subsampling != SHQ_SUBSAMPLING_444); x += 16) { /* Decode the four luma blocks. */ if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0) return ret; /* * Decode the first chroma block. For 4:2:0, this is the only one; * for 4:2:2, it's the top block; for 4:4:4, it's the top-left block. */ if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb, linesize_cb)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr, linesize_cr)) < 0) return ret; if (s->subsampling != SHQ_SUBSAMPLING_420) { /* For 4:2:2, this is the bottom block; for 4:4:4, it's the bottom-left block. */ if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0) return ret; if (s->subsampling == SHQ_SUBSAMPLING_444) { /* Top-right and bottom-right blocks. */ if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8, linesize_cb)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8, linesize_cr)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb + 8, linesize_cb)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr + 8, linesize_cr)) < 0) return ret; dest_cb += 8; dest_cr += 8; } } dest_y += 16; dest_cb += 8; dest_cr += 8; if (s->alpha_type == SHQ_RLE_ALPHA) { /* Alpha coded using 16x8 RLE blocks. */ if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a, linesize_a)) < 0) return ret; if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0) return ret; dest_a += 16; } else if (s->alpha_type == SHQ_DCT_ALPHA) { /* Alpha encoded exactly like luma. */ if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a, linesize_a)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8, linesize_a)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0) return ret; if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0) return ret; dest_a += 16; } } } } if (s->subsampling != SHQ_SUBSAMPLING_444 && (frame->width & 15)) return decode_speedhq_border(s, &gb, frame, field_number, line_stride); return 0; } static void compute_quant_matrix(int *output, int qscale) { int i; for (i = 0; i < 64; i++) output[i] = unscaled_quant_matrix[ff_zigzag_direct[i]] * qscale; } static int speedhq_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt) { SHQContext * const s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; uint8_t quality; uint32_t second_field_offset; int ret; if (buf_size < 4 || avctx->width < 8) return AVERROR_INVALIDDATA; quality = buf[0]; if (quality >= 100) { return AVERROR_INVALIDDATA; } compute_quant_matrix(s->quant_matrix, 100 - quality); second_field_offset = AV_RL24(buf + 1); if (second_field_offset >= buf_size - 3) { return AVERROR_INVALIDDATA; } avctx->coded_width = FFALIGN(avctx->width, 16); avctx->coded_height = FFALIGN(avctx->height, 16); if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { return ret; } frame->key_frame = 1; if (second_field_offset == 4 || second_field_offset == (buf_size-4)) { /* * Overlapping first and second fields is used to signal * encoding only a single field. In this case, "height" * is ambiguous; it could mean either the height of the * frame as a whole, or of the field. The former would make * more sense for compatibility with legacy decoders, * but this matches the convention used in NDI, which is * the primary user of this trick. */ if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, buf_size, 1)) < 0) return ret; } else { if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, second_field_offset, 2)) < 0) return ret; if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 1, second_field_offset, buf_size, 2)) < 0) return ret; } *got_frame = 1; return buf_size; } /* * Alpha VLC. Run and level are independently coded, and would be * outside the default limits for MAX_RUN/MAX_LEVEL, so we don't * bother with combining them into one table. */ static av_cold void compute_alpha_vlcs(void) { uint16_t run_code[134], level_code[266]; uint8_t run_bits[134], level_bits[266]; int16_t run_symbols[134], level_symbols[266]; int entry, i, sign; /* Initialize VLC for alpha run. */ entry = 0; /* 0 -> 0. */ run_code[entry] = 0; run_bits[entry] = 1; run_symbols[entry] = 0; ++entry; /* 10xx -> xx plus 1. */ for (i = 0; i < 4; ++i) { run_code[entry] = (i << 2) | 1; run_bits[entry] = 4; run_symbols[entry] = i + 1; ++entry; } /* 111xxxxxxx -> xxxxxxx. */ for (i = 0; i < 128; ++i) { run_code[entry] = (i << 3) | 7; run_bits[entry] = 10; run_symbols[entry] = i; ++entry; } /* 110 -> EOB. */ run_code[entry] = 3; run_bits[entry] = 3; run_symbols[entry] = -1; ++entry; av_assert0(entry == FF_ARRAY_ELEMS(run_code)); INIT_LE_VLC_SPARSE_STATIC(&dc_alpha_run_vlc_le, ALPHA_VLC_BITS, FF_ARRAY_ELEMS(run_code), run_bits, 1, 1, run_code, 2, 2, run_symbols, 2, 2, 160); /* Initialize VLC for alpha level. */ entry = 0; for (sign = 0; sign <= 1; ++sign) { /* 1s -> -1 or +1 (depending on sign bit). */ level_code[entry] = (sign << 1) | 1; level_bits[entry] = 2; level_symbols[entry] = sign ? -1 : 1; ++entry; /* 01sxx -> xx plus 2 (2..5 or -2..-5, depending on sign bit). */ for (i = 0; i < 4; ++i) { level_code[entry] = (i << 3) | (sign << 2) | 2; level_bits[entry] = 5; level_symbols[entry] = sign ? -(i + 2) : (i + 2); ++entry; } } /* * 00xxxxxxxx -> xxxxxxxx, in two's complement. There are many codes * here that would better be encoded in other ways (e.g. 0 would be * encoded by increasing run, and +/- 1 would be encoded with a * shorter code), but it doesn't hurt to allow everything. */ for (i = 0; i < 256; ++i) { level_code[entry] = i << 2; level_bits[entry] = 10; level_symbols[entry] = i; ++entry; } av_assert0(entry == FF_ARRAY_ELEMS(level_code)); INIT_LE_VLC_SPARSE_STATIC(&dc_alpha_level_vlc_le, ALPHA_VLC_BITS, FF_ARRAY_ELEMS(level_code), level_bits, 1, 1, level_code, 2, 2, level_symbols, 2, 2, 288); } static av_cold void speedhq_static_init(void) { /* Exactly the same as MPEG-2, except for a little-endian reader. */ INIT_CUSTOM_VLC_STATIC(&dc_lum_vlc_le, DC_VLC_BITS, 12, ff_mpeg12_vlc_dc_lum_bits, 1, 1, ff_mpeg12_vlc_dc_lum_code, 2, 2, INIT_VLC_OUTPUT_LE, 512); INIT_CUSTOM_VLC_STATIC(&dc_chroma_vlc_le, DC_VLC_BITS, 12, ff_mpeg12_vlc_dc_chroma_bits, 1, 1, ff_mpeg12_vlc_dc_chroma_code, 2, 2, INIT_VLC_OUTPUT_LE, 514); INIT_2D_VLC_RL(ff_rl_speedhq, 674, INIT_VLC_LE); compute_alpha_vlcs(); } static av_cold int speedhq_decode_init(AVCodecContext *avctx) { int ret; static AVOnce init_once = AV_ONCE_INIT; SHQContext * const s = avctx->priv_data; s->avctx = avctx; ret = ff_thread_once(&init_once, speedhq_static_init); if (ret) return AVERROR_UNKNOWN; ff_blockdsp_init(&s->bdsp, avctx); ff_idctdsp_init(&s->idsp, avctx); ff_init_scantable(s->idsp.idct_permutation, &s->intra_scantable, ff_zigzag_direct); switch (avctx->codec_tag) { case MKTAG('S', 'H', 'Q', '0'): s->subsampling = SHQ_SUBSAMPLING_420; s->alpha_type = SHQ_NO_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case MKTAG('S', 'H', 'Q', '1'): s->subsampling = SHQ_SUBSAMPLING_420; s->alpha_type = SHQ_RLE_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUVA420P; break; case MKTAG('S', 'H', 'Q', '2'): s->subsampling = SHQ_SUBSAMPLING_422; s->alpha_type = SHQ_NO_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUV422P; break; case MKTAG('S', 'H', 'Q', '3'): s->subsampling = SHQ_SUBSAMPLING_422; s->alpha_type = SHQ_RLE_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break; case MKTAG('S', 'H', 'Q', '4'): s->subsampling = SHQ_SUBSAMPLING_444; s->alpha_type = SHQ_NO_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUV444P; break; case MKTAG('S', 'H', 'Q', '5'): s->subsampling = SHQ_SUBSAMPLING_444; s->alpha_type = SHQ_RLE_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break; case MKTAG('S', 'H', 'Q', '7'): s->subsampling = SHQ_SUBSAMPLING_422; s->alpha_type = SHQ_DCT_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break; case MKTAG('S', 'H', 'Q', '9'): s->subsampling = SHQ_SUBSAMPLING_444; s->alpha_type = SHQ_DCT_ALPHA; avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown NewTek SpeedHQ FOURCC provided (%08X)\n", avctx->codec_tag); return AVERROR_INVALIDDATA; } /* This matches what NDI's RGB -> Y'CbCr 4:2:2 converter uses. */ avctx->colorspace = AVCOL_SPC_BT470BG; avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; return 0; } const FFCodec ff_speedhq_decoder = { .p.name = "speedhq", .p.long_name = NULL_IF_CONFIG_SMALL("NewTek SpeedHQ"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_SPEEDHQ, .priv_data_size = sizeof(SHQContext), .init = speedhq_decode_init, FF_CODEC_DECODE_CB(speedhq_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1, }; #endif /* CONFIG_SPEEDHQ_DECODER */