/* Copyright (C) 2002 Michael Niedermayer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "common.h" //needed for mpegvideo.h to compile #include "dsputil.h" //needed for mpegvideo.h to compile #include "avcodec.h" #include "mpegvideo.h" #define STATS_FILE "lavc_stats.txt" static int init_pass2(MpegEncContext *s); void ff_write_pass1_stats(MpegEncContext *s){ RateControlContext *rcc= &s->rc_context; // fprintf(c->stats_file, "type:%d q:%d icount:%d pcount:%d scount:%d itex:%d ptex%d mv:%d misc:%d fcode:%d bcode:%d\") fprintf(rcc->stats_file, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d\n", s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type, s->qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits, s->f_code, s->b_code); } int ff_rate_control_init(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; emms_c(); if(s->flags&CODEC_FLAG_PASS1){ rcc->stats_file= fopen(STATS_FILE, "w"); if(!rcc->stats_file){ fprintf(stderr, "failed to open " STATS_FILE "\n"); return -1; } } else if(s->flags&CODEC_FLAG_PASS2){ int size; int i; rcc->stats_file= fopen(STATS_FILE, "r"); if(!rcc->stats_file){ fprintf(stderr, "failed to open " STATS_FILE "\n"); return -1; } /* find number of pics without reading the file twice :) */ fseek(rcc->stats_file, 0, SEEK_END); size= ftell(rcc->stats_file); fseek(rcc->stats_file, 0, SEEK_SET); size/= 64; // we need at least 64 byte to store a line ... rcc->entry = (RateControlEntry*)av_mallocz(size*sizeof(RateControlEntry)); for(i=0; !feof(rcc->stats_file); i++){ RateControlEntry *rce; int picture_number; int e; e= fscanf(rcc->stats_file, "in:%d ", &picture_number); rce= &rcc->entry[picture_number]; e+=fscanf(rcc->stats_file, "out:%*d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%*d bcode:%*d\n", &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits); if(e!=7){ fprintf(stderr, STATS_FILE " is damaged\n"); return -1; } } rcc->num_entries= i; if(init_pass2(s) < 0) return -1; } /* no 2pass stuff, just normal 1-pass */ //initial values, they dont really matter as they will be totally different within a few frames s->i_pred.coeff= s->p_pred.coeff= 7.0; s->i_pred.count= s->p_pred.count= 1.0; s->i_pred.decay= s->p_pred.decay= 0.4; // use more bits at the beginning, otherwise high motion at the begin will look like shit s->qsum=100 * s->qmin; s->qcount=100; s->short_term_qsum=0.001; s->short_term_qcount=0.001; return 0; } void ff_rate_control_uninit(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; emms_c(); if(rcc->stats_file) fclose(rcc->stats_file); if(rcc->entry) free(rcc->entry); rcc->stats_file= NULL; rcc->entry= NULL; } //---------------------------------- // 1 Pass Code static double predict(Predictor *p, double q, double var) { return p->coeff*var / (q*p->count); } static void update_predictor(Predictor *p, double q, double var, double size) { double new_coeff= size*q / (var + 1); if(var<1000) return; p->count*= p->decay; p->coeff*= p->decay; p->count++; p->coeff+= new_coeff; } int ff_rate_estimate_qscale(MpegEncContext *s) { int qmin= s->qmin; int qmax= s->qmax; int rate_q=5; float q; int qscale; float br_compensation; double diff; double short_term_q; double long_term_q; double fps; int picture_number= s->input_picture_number - s->max_b_frames; int64_t wanted_bits; emms_c(); fps= (double)s->frame_rate / FRAME_RATE_BASE; wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps); // printf("%d %d %d\n", picture_number, (int)wanted_bits, (int)s->total_bits); if(s->pict_type==B_TYPE){ qmin= (int)(qmin*s->b_quant_factor+0.5); qmax= (int)(qmax*s->b_quant_factor+0.5); } if(qmin<2) qmin=2; if(qmax>31) qmax=31; if(qmax<=qmin) qmax= qmin; /* update predictors */ if(picture_number>2){ if(s->pict_type!=B_TYPE && s->last_non_b_pict_type == P_TYPE){ //printf("%d %d %d %f\n", s->qscale, s->last_mc_mb_var, s->frame_bits, s->p_pred.coeff); update_predictor(&s->p_pred, s->last_non_b_qscale, s->last_non_b_mc_mb_var, s->pb_frame_bits); } } if(s->pict_type == I_TYPE){ short_term_q= s->short_term_qsum/s->short_term_qcount; long_term_q= s->qsum/s->qcount*(s->total_bits+1)/(wanted_bits+1); //+1 to avoid nan & 0 q= 1/((1/long_term_q - 1/short_term_q)*s->qcompress + 1/short_term_q); }else if(s->pict_type==B_TYPE){ q= (int)(s->last_non_b_qscale*s->b_quant_factor+0.5); }else{ //P Frame int i; int diff, best_diff=1000000000; for(i=1; i<=31; i++){ diff= predict(&s->p_pred, i, s->mc_mb_var) - (double)s->bit_rate/fps; if(diff<0) diff= -diff; if(diffshort_term_qsum*=s->qblur; s->short_term_qcount*=s->qblur; s->short_term_qsum+= rate_q; s->short_term_qcount++; short_term_q= s->short_term_qsum/s->short_term_qcount; long_term_q= s->qsum/s->qcount*(s->total_bits+1)/(wanted_bits+1); //+1 to avoid nan & 0 // q= (long_term_q - short_term_q)*s->qcompress + short_term_q; q= 1/((1/long_term_q - 1/short_term_q)*s->qcompress + 1/short_term_q); } diff= s->total_bits - wanted_bits; br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance; if(br_compensation<=0.0) br_compensation=0.001; q/=br_compensation; //printf("%f %f %f\n", q, br_compensation, short_term_q); qscale= (int)(q + 0.5); if (qscaleqmax) qscale=qmax; if(s->pict_type!=B_TYPE){ s->qsum+= qscale; s->qcount++; if (qscalelast_non_b_qscale-s->max_qdiff) qscale=s->last_non_b_qscale-s->max_qdiff; else if(qscale>s->last_non_b_qscale+s->max_qdiff) qscale=s->last_non_b_qscale+s->max_qdiff; } //printf("q:%d diff:%d comp:%f rate_q:%d st_q:%f fvar:%d last_size:%d\n", qscale, (int)diff, br_compensation, // rate_q, short_term_q, s->mc_mb_var, s->frame_bits); //printf("%d %d\n", s->bit_rate, (int)fps); return qscale; } //---------------------------------------------- // 2-Pass code static int init_pass2(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; int i; double fps= (double)s->frame_rate / FRAME_RATE_BASE; double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1 double avg_quantizer[5]; uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits uint64_t available_bits[5]; uint64_t all_const_bits; uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps); int num_frames[5]={0,0,0,0,0}; double rate_factor=0; double step; int last_i_frame=-10000000; /* find complexity & const_bits & decide the pict_types */ for(i=0; inum_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; if(s->b_frame_strategy==0 || s->max_b_frames==0){ rce->new_pict_type= rce->pict_type; }else{ int j; int next_non_b_type=P_TYPE; switch(rce->pict_type){ case I_TYPE: if(i-last_i_frame>s->gop_size/2){ //FIXME this is not optimal rce->new_pict_type= I_TYPE; last_i_frame= i; }else{ rce->new_pict_type= P_TYPE; // will be caught by the scene detection anyway } break; case P_TYPE: rce->new_pict_type= P_TYPE; break; case B_TYPE: for(j=i+1; jmax_b_frames+2 && jnum_entries; j++){ if(rcc->entry[j].pict_type != B_TYPE){ next_non_b_type= rcc->entry[j].pict_type; break; } } if(next_non_b_type==I_TYPE) rce->new_pict_type= P_TYPE; else rce->new_pict_type= B_TYPE; break; } } complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale; const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits; num_frames[rce->new_pict_type]++; } all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE]; if(all_available_bits < all_const_bits){ fprintf(stderr, "requested bitrate is to low\n"); return -1; } // avg_complexity= complexity/rcc->num_entries; avg_quantizer[P_TYPE]= avg_quantizer[I_TYPE]= (complexity[I_TYPE]+complexity[P_TYPE] + complexity[B_TYPE]/s->b_quant_factor) / (all_available_bits - all_const_bits); avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*s->b_quant_factor; //printf("avg quantizer: %f %f\n", avg_quantizer[P_TYPE], avg_quantizer[B_TYPE]); for(i=0; i<5; i++){ available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i]; } //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits); for(step=256*256; step>0.0000001; step*=0.5){ uint64_t expected_bits=0; rate_factor+= step; /* find qscale */ for(i=0; inum_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; double short_term_q, q, bits_left; const int pict_type= rce->new_pict_type; int qmin= s->qmin; int qmax= s->qmax; if(pict_type==B_TYPE){ qmin= (int)(qmin*s->b_quant_factor+0.5); qmax= (int)(qmax*s->b_quant_factor+0.5); } if(qmin<2) qmin=2; if(qmax>31) qmax=31; if(qmax<=qmin) qmax= qmin; switch(s->rc_strategy){ case 0: bits_left= available_bits[pict_type]/num_frames[pict_type]*rate_factor - rce->misc_bits - rce->mv_bits; if(bits_left<1.0) bits_left=1.0; short_term_q= rce->qscale*(rce->i_tex_bits + rce->p_tex_bits)/bits_left; break; case 1: bits_left= (available_bits[pict_type] - const_bits[pict_type])/num_frames[pict_type]*rate_factor; if(bits_left<1.0) bits_left=1.0; short_term_q= rce->qscale*(rce->i_tex_bits + rce->p_tex_bits)/bits_left; break; case 2: bits_left= available_bits[pict_type]/num_frames[pict_type]*rate_factor; if(bits_left<1.0) bits_left=1.0; short_term_q= rce->qscale*(rce->i_tex_bits + rce->p_tex_bits + rce->misc_bits + rce->mv_bits)/bits_left; break; default: fprintf(stderr, "unknown strategy\n"); short_term_q=3; //gcc warning fix } if(short_term_q>31.0) short_term_q=31.0; else if (short_term_q<1.0) short_term_q=1.0; q= 1/((1/avg_quantizer[pict_type] - 1/short_term_q)*s->qcompress + 1/short_term_q); if (qqmax) q=qmax; //printf("lq:%f, sq:%f t:%f q:%f\n", avg_quantizer[rce->pict_type], short_term_q, bits_left, q); rce->new_qscale= q; } /* smooth curve */ /* find expected bits */ for(i=0; inum_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; double factor= rce->qscale / rce->new_qscale; rce->expected_bits= expected_bits; expected_bits += (int)(rce->misc_bits + rce->mv_bits + (rce->i_tex_bits + rce->p_tex_bits)*factor + 0.5); } // printf("%d %d %f\n", (int)expected_bits, (int)all_available_bits, rate_factor); if(expected_bits > all_available_bits) rate_factor-= step; } return 0; } int ff_rate_estimate_qscale_pass2(MpegEncContext *s) { int qmin= s->qmin; int qmax= s->qmax; float q; int qscale; float br_compensation; double diff; int picture_number= s->picture_number; RateControlEntry *rce= &s->rc_context.entry[picture_number]; int64_t wanted_bits= rce->expected_bits; emms_c(); // printf("%d %d %d\n", picture_number, (int)wanted_bits, (int)s->total_bits); if(s->pict_type==B_TYPE){ qmin= (int)(qmin*s->b_quant_factor+0.5); qmax= (int)(qmax*s->b_quant_factor+0.5); } if(qmin<2) qmin=2; if(qmax>31) qmax=31; if(qmax<=qmin) qmax= qmin; q= rce->new_qscale; diff= s->total_bits - wanted_bits; br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance; if(br_compensation<=0.0) br_compensation=0.001; q/=br_compensation; qscale= (int)(q + 0.5); if (qscaleqmax) qscale=qmax; // printf("%d %d %d %d type:%d\n", qmin, qscale, qmax, picture_number, s->pict_type); fflush(stdout); return qscale; }