/* * Apple ProRes encoder * * Copyright (c) 2012 Konstantin Shishkov * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/opt.h" #include "avcodec.h" #include "put_bits.h" #include "bytestream.h" #include "internal.h" #include "proresdsp.h" #include "proresdata.h" #define CFACTOR_Y422 2 #define CFACTOR_Y444 3 #define MAX_MBS_PER_SLICE 8 #define MAX_PLANES 3 // should be increased to 4 when there's PIX_FMT_YUV444AP10 enum { PRORES_PROFILE_PROXY = 0, PRORES_PROFILE_LT, PRORES_PROFILE_STANDARD, PRORES_PROFILE_HQ, }; #define NUM_MB_LIMITS 4 static const int prores_mb_limits[NUM_MB_LIMITS] = { 1620, // up to 720x576 2700, // up to 960x720 6075, // up to 1440x1080 9216, // up to 2048x1152 }; static const struct prores_profile { const char *full_name; uint32_t tag; int min_quant; int max_quant; int br_tab[NUM_MB_LIMITS]; uint8_t quant[64]; } prores_profile_info[4] = { { .full_name = "proxy", .tag = MKTAG('a', 'p', 'c', 'o'), .min_quant = 4, .max_quant = 8, .br_tab = { 300, 242, 220, 194 }, .quant = { 4, 7, 9, 11, 13, 14, 15, 63, 7, 7, 11, 12, 14, 15, 63, 63, 9, 11, 13, 14, 15, 63, 63, 63, 11, 11, 13, 14, 63, 63, 63, 63, 11, 13, 14, 63, 63, 63, 63, 63, 13, 14, 63, 63, 63, 63, 63, 63, 13, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, }, }, { .full_name = "LT", .tag = MKTAG('a', 'p', 'c', 's'), .min_quant = 1, .max_quant = 9, .br_tab = { 720, 560, 490, 440 }, .quant = { 4, 5, 6, 7, 9, 11, 13, 15, 5, 5, 7, 8, 11, 13, 15, 17, 6, 7, 9, 11, 13, 15, 15, 17, 7, 7, 9, 11, 13, 15, 17, 19, 7, 9, 11, 13, 14, 16, 19, 23, 9, 11, 13, 14, 16, 19, 23, 29, 9, 11, 13, 15, 17, 21, 28, 35, 11, 13, 16, 17, 21, 28, 35, 41, }, }, { .full_name = "standard", .tag = MKTAG('a', 'p', 'c', 'n'), .min_quant = 1, .max_quant = 6, .br_tab = { 1050, 808, 710, 632 }, .quant = { 4, 4, 5, 5, 6, 7, 7, 9, 4, 4, 5, 6, 7, 7, 9, 9, 5, 5, 6, 7, 7, 9, 9, 10, 5, 5, 6, 7, 7, 9, 9, 10, 5, 6, 7, 7, 8, 9, 10, 12, 6, 7, 7, 8, 9, 10, 12, 15, 6, 7, 7, 9, 10, 11, 14, 17, 7, 7, 9, 10, 11, 14, 17, 21, }, }, { .full_name = "high quality", .tag = MKTAG('a', 'p', 'c', 'h'), .min_quant = 1, .max_quant = 6, .br_tab = { 1566, 1216, 1070, 950 }, .quant = { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 6, 4, 4, 4, 4, 5, 5, 6, 7, 4, 4, 4, 4, 5, 6, 7, 7, }, } // for 4444 profile bitrate numbers are { 2350, 1828, 1600, 1425 } }; #define TRELLIS_WIDTH 16 #define SCORE_LIMIT INT_MAX / 2 struct TrellisNode { int prev_node; int quant; int bits; int score; }; typedef struct ProresContext { AVClass *class; DECLARE_ALIGNED(16, DCTELEM, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16]; int16_t quants[16][64]; ProresDSPContext dsp; ScanTable scantable; int mb_width, mb_height; int mbs_per_slice; int num_chroma_blocks, chroma_factor; int slices_width; int num_slices; int num_planes; int bits_per_mb; int profile; const struct prores_profile *profile_info; struct TrellisNode *nodes; int *slice_q; } ProresContext; static void get_slice_data(ProresContext *ctx, const uint16_t *src, int linesize, int x, int y, int w, int h, DCTELEM *blocks, int mbs_per_slice, int blocks_per_mb) { const uint16_t *esrc; const int mb_width = 4 * blocks_per_mb; int elinesize; int i, j, k; for (i = 0; i < mbs_per_slice; i++, src += mb_width) { if (x >= w) { memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb * sizeof(*blocks)); return; } if (x + mb_width <= w && y + 16 <= h) { esrc = src; elinesize = linesize; } else { int bw, bh, pix; const int estride = 16 / sizeof(*ctx->emu_buf); esrc = ctx->emu_buf; elinesize = 16; bw = FFMIN(w - x, mb_width); bh = FFMIN(h - y, 16); for (j = 0; j < bh; j++) { memcpy(ctx->emu_buf + j * estride, src + j * linesize, bw * sizeof(*src)); pix = ctx->emu_buf[j * estride + bw - 1]; for (k = bw; k < mb_width; k++) ctx->emu_buf[j * estride + k] = pix; } for (; j < 16; j++) memcpy(ctx->emu_buf + j * estride, ctx->emu_buf + (bh - 1) * estride, mb_width * sizeof(*ctx->emu_buf)); } ctx->dsp.fdct(esrc, elinesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->dsp.fdct(src + 8, linesize, blocks); blocks += 64; } ctx->dsp.fdct(src + linesize * 4, linesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks); blocks += 64; } x += mb_width; } } /** * Write an unsigned rice/exp golomb codeword. */ static inline void encode_vlc_codeword(PutBitContext *pb, uint8_t codebook, int val) { unsigned int rice_order, exp_order, switch_bits, switch_val; int exponent; /* number of prefix bits to switch between Rice and expGolomb */ switch_bits = (codebook & 3) + 1; rice_order = codebook >> 5; /* rice code order */ exp_order = (codebook >> 2) & 7; /* exp golomb code order */ switch_val = switch_bits << rice_order; if (val >= switch_val) { val -= switch_val - (1 << exp_order); exponent = av_log2(val); put_bits(pb, exponent - exp_order + switch_bits, 0); put_bits(pb, 1, 1); put_bits(pb, exponent, val); } else { exponent = val >> rice_order; if (exponent) put_bits(pb, exponent, 0); put_bits(pb, 1, 1); if (rice_order) put_sbits(pb, rice_order, val); } } #define GET_SIGN(x) ((x) >> 31) #define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x)) static void encode_dcs(PutBitContext *pb, DCTELEM *blocks, int blocks_per_slice, int scale) { int i; int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; prev_dc = (blocks[0] - 0x4000) / scale; encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc)); sign = 0; codebook = 3; blocks += 64; for (i = 1; i < blocks_per_slice; i++, blocks += 64) { dc = (blocks[0] - 0x4000) / scale; delta = dc - prev_dc; new_sign = GET_SIGN(delta); delta = (delta ^ sign) - sign; code = MAKE_CODE(delta); encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code); codebook = (code + (code & 1)) >> 1; codebook = FFMIN(codebook, 3); sign = new_sign; prev_dc = dc; } } static void encode_acs(PutBitContext *pb, DCTELEM *blocks, int blocks_per_slice, int plane_size_factor, const uint8_t *scan, const int16_t *qmat) { int idx, i; int run, level, run_cb, lev_cb; int max_coeffs, abs_level; max_coeffs = blocks_per_slice << 6; run_cb = ff_prores_run_to_cb_index[4]; lev_cb = ff_prores_lev_to_cb_index[2]; run = 0; for (i = 1; i < 64; i++) { for (idx = scan[i]; idx < max_coeffs; idx += 64) { level = blocks[idx] / qmat[scan[i]]; if (level) { abs_level = FFABS(level); encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run); encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb], abs_level - 1); put_sbits(pb, 1, GET_SIGN(level)); run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; run = 0; } else { run++; } } } } static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb, const uint16_t *src, int linesize, int mbs_per_slice, DCTELEM *blocks, int blocks_per_mb, int plane_size_factor, const int16_t *qmat) { int blocks_per_slice, saved_pos; saved_pos = put_bits_count(pb); blocks_per_slice = mbs_per_slice * blocks_per_mb; encode_dcs(pb, blocks, blocks_per_slice, qmat[0]); encode_acs(pb, blocks, blocks_per_slice, plane_size_factor, ctx->scantable.permutated, qmat); flush_put_bits(pb); return (put_bits_count(pb) - saved_pos) >> 3; } static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, PutBitContext *pb, int sizes[4], int x, int y, int quant, int mbs_per_slice) { ProresContext *ctx = avctx->priv_data; int i, xp, yp; int total_size = 0; const uint16_t *src; int slice_width_factor = av_log2(mbs_per_slice); int num_cblocks, pwidth; int plane_factor, is_chroma; for (i = 0; i < ctx->num_planes; i++) { is_chroma = (i == 1 || i == 2); plane_factor = slice_width_factor + 2; if (is_chroma) plane_factor += ctx->chroma_factor - 3; if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) { xp = x << 4; yp = y << 4; num_cblocks = 4; pwidth = avctx->width; } else { xp = x << 3; yp = y << 4; num_cblocks = 2; pwidth = avctx->width >> 1; } src = (const uint16_t*)(pic->data[i] + yp * pic->linesize[i]) + xp; get_slice_data(ctx, src, pic->linesize[i], xp, yp, pwidth, avctx->height, ctx->blocks[0], mbs_per_slice, num_cblocks); sizes[i] = encode_slice_plane(ctx, pb, src, pic->linesize[i], mbs_per_slice, ctx->blocks[0], num_cblocks, plane_factor, ctx->quants[quant]); total_size += sizes[i]; } return total_size; } static inline int estimate_vlc(uint8_t codebook, int val) { unsigned int rice_order, exp_order, switch_bits, switch_val; int exponent; /* number of prefix bits to switch between Rice and expGolomb */ switch_bits = (codebook & 3) + 1; rice_order = codebook >> 5; /* rice code order */ exp_order = (codebook >> 2) & 7; /* exp golomb code order */ switch_val = switch_bits << rice_order; if (val >= switch_val) { val -= switch_val - (1 << exp_order); exponent = av_log2(val); return exponent * 2 - exp_order + switch_bits + 1; } else { return (val >> rice_order) + rice_order + 1; } } static int estimate_dcs(int *error, DCTELEM *blocks, int blocks_per_slice, int scale) { int i; int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; int bits; prev_dc = (blocks[0] - 0x4000) / scale; bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc)); sign = 0; codebook = 3; blocks += 64; *error += FFABS(blocks[0] - 0x4000) % scale; for (i = 1; i < blocks_per_slice; i++, blocks += 64) { dc = (blocks[0] - 0x4000) / scale; *error += FFABS(blocks[0] - 0x4000) % scale; delta = dc - prev_dc; new_sign = GET_SIGN(delta); delta = (delta ^ sign) - sign; code = MAKE_CODE(delta); bits += estimate_vlc(ff_prores_dc_codebook[codebook], code); codebook = (code + (code & 1)) >> 1; codebook = FFMIN(codebook, 3); sign = new_sign; prev_dc = dc; } return bits; } static int estimate_acs(int *error, DCTELEM *blocks, int blocks_per_slice, int plane_size_factor, const uint8_t *scan, const int16_t *qmat) { int idx, i; int run, level, run_cb, lev_cb; int max_coeffs, abs_level; int bits = 0; max_coeffs = blocks_per_slice << 6; run_cb = ff_prores_run_to_cb_index[4]; lev_cb = ff_prores_lev_to_cb_index[2]; run = 0; for (i = 1; i < 64; i++) { for (idx = scan[i]; idx < max_coeffs; idx += 64) { level = blocks[idx] / qmat[scan[i]]; *error += FFABS(blocks[idx]) % qmat[scan[i]]; if (level) { abs_level = FFABS(level); bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run); bits += estimate_vlc(ff_prores_ac_codebook[lev_cb], abs_level - 1) + 1; run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; run = 0; } else { run++; } } } return bits; } static int estimate_slice_plane(ProresContext *ctx, int *error, int plane, const uint16_t *src, int linesize, int mbs_per_slice, int blocks_per_mb, int plane_size_factor, const int16_t *qmat) { int blocks_per_slice; int bits; blocks_per_slice = mbs_per_slice * blocks_per_mb; bits = estimate_dcs(error, ctx->blocks[plane], blocks_per_slice, qmat[0]); bits += estimate_acs(error, ctx->blocks[plane], blocks_per_slice, plane_size_factor, ctx->scantable.permutated, qmat); return FFALIGN(bits, 8); } static int find_slice_quant(AVCodecContext *avctx, const AVFrame *pic, int trellis_node, int x, int y, int mbs_per_slice) { ProresContext *ctx = avctx->priv_data; int i, q, pq, xp, yp; const uint16_t *src; int slice_width_factor = av_log2(mbs_per_slice); int num_cblocks[MAX_PLANES], pwidth; int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES]; const int min_quant = ctx->profile_info->min_quant; const int max_quant = ctx->profile_info->max_quant; int error, bits, bits_limit; int mbs, prev, cur, new_score; int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH]; mbs = x + mbs_per_slice; for (i = 0; i < ctx->num_planes; i++) { is_chroma[i] = (i == 1 || i == 2); plane_factor[i] = slice_width_factor + 2; if (is_chroma[i]) plane_factor[i] += ctx->chroma_factor - 3; if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) { xp = x << 4; yp = y << 4; num_cblocks[i] = 4; pwidth = avctx->width; } else { xp = x << 3; yp = y << 4; num_cblocks[i] = 2; pwidth = avctx->width >> 1; } src = (const uint16_t*)(pic->data[i] + yp * pic->linesize[i]) + xp; get_slice_data(ctx, src, pic->linesize[i], xp, yp, pwidth, avctx->height, ctx->blocks[i], mbs_per_slice, num_cblocks[i]); } for (q = min_quant; q <= max_quant; q++) { ctx->nodes[trellis_node + q].prev_node = -1; ctx->nodes[trellis_node + q].quant = q; } // todo: maybe perform coarser quantising to fit into frame size when needed for (q = min_quant; q <= max_quant; q++) { bits = 0; error = 0; for (i = 0; i < ctx->num_planes; i++) { bits += estimate_slice_plane(ctx, &error, i, src, pic->linesize[i], mbs_per_slice, num_cblocks[i], plane_factor[i], ctx->quants[q]); } if (bits > 65000 * 8) { error = SCORE_LIMIT; break; } slice_bits[q] = bits; slice_score[q] = error; } bits_limit = mbs * ctx->bits_per_mb; for (pq = min_quant; pq <= max_quant; pq++) { prev = trellis_node - TRELLIS_WIDTH + pq; for (q = min_quant; q <= max_quant; q++) { cur = trellis_node + q; bits = ctx->nodes[prev].bits + slice_bits[q]; error = slice_score[q]; if (bits > bits_limit) error = SCORE_LIMIT; if (ctx->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT) new_score = ctx->nodes[prev].score + error; else new_score = SCORE_LIMIT; if (ctx->nodes[cur].prev_node == -1 || ctx->nodes[cur].score >= new_score) { ctx->nodes[cur].bits = bits; ctx->nodes[cur].score = new_score; ctx->nodes[cur].prev_node = prev; } } } error = ctx->nodes[trellis_node + min_quant].score; pq = trellis_node + min_quant; for (q = min_quant + 1; q <= max_quant; q++) { if (ctx->nodes[trellis_node + q].score <= error) { error = ctx->nodes[trellis_node + q].score; pq = trellis_node + q; } } return pq; } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic, int *got_packet) { ProresContext *ctx = avctx->priv_data; uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp; uint8_t *picture_size_pos; PutBitContext pb; int x, y, i, mb, q = 0; int sizes[4] = { 0 }; int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1); int frame_size, picture_size, slice_size; int mbs_per_slice = ctx->mbs_per_slice; int pkt_size, ret; *avctx->coded_frame = *pic; avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; avctx->coded_frame->key_frame = 1; pkt_size = ctx->mb_width * ctx->mb_height * 64 * 3 * 12 + ctx->num_slices * 2 + 200 + FF_MIN_BUFFER_SIZE; if ((ret = ff_alloc_packet(pkt, pkt_size)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); return ret; } orig_buf = pkt->data; // frame atom orig_buf += 4; // frame size bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID buf = orig_buf; // frame header tmp = buf; buf += 2; // frame header size will be stored here bytestream_put_be16 (&buf, 0); // version 1 bytestream_put_buffer(&buf, "Lavc", 4); // creator bytestream_put_be16 (&buf, avctx->width); bytestream_put_be16 (&buf, avctx->height); bytestream_put_byte (&buf, ctx->chroma_factor << 6); // frame flags bytestream_put_byte (&buf, 0); // reserved bytestream_put_byte (&buf, 0); // primaries bytestream_put_byte (&buf, 0); // transfer function bytestream_put_byte (&buf, 6); // colour matrix - ITU-R BT.601-4 bytestream_put_byte (&buf, 0x40); // source format and alpha information bytestream_put_byte (&buf, 0); // reserved bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present // luma quantisation matrix for (i = 0; i < 64; i++) bytestream_put_byte(&buf, ctx->profile_info->quant[i]); // chroma quantisation matrix for (i = 0; i < 64; i++) bytestream_put_byte(&buf, ctx->profile_info->quant[i]); bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size // picture header picture_size_pos = buf + 1; bytestream_put_byte (&buf, 0x40); // picture header size (in bits) buf += 4; // picture data size will be stored here bytestream_put_be16 (&buf, ctx->num_slices); // total number of slices bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs // seek table - will be filled during slice encoding slice_sizes = buf; buf += ctx->num_slices * 2; // slices for (y = 0; y < ctx->mb_height; y++) { mbs_per_slice = ctx->mbs_per_slice; for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { while (ctx->mb_width - x < mbs_per_slice) mbs_per_slice >>= 1; q = find_slice_quant(avctx, pic, (mb + 1) * TRELLIS_WIDTH, x, y, mbs_per_slice); } for (x = ctx->slices_width - 1; x >= 0; x--) { ctx->slice_q[x] = ctx->nodes[q].quant; q = ctx->nodes[q].prev_node; } mbs_per_slice = ctx->mbs_per_slice; for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { q = ctx->slice_q[mb]; while (ctx->mb_width - x < mbs_per_slice) mbs_per_slice >>= 1; bytestream_put_byte(&buf, slice_hdr_size << 3); slice_hdr = buf; buf += slice_hdr_size - 1; init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)) * 8); encode_slice(avctx, pic, &pb, sizes, x, y, q, mbs_per_slice); bytestream_put_byte(&slice_hdr, q); slice_size = slice_hdr_size + sizes[ctx->num_planes - 1]; for (i = 0; i < ctx->num_planes - 1; i++) { bytestream_put_be16(&slice_hdr, sizes[i]); slice_size += sizes[i]; } bytestream_put_be16(&slice_sizes, slice_size); buf += slice_size - slice_hdr_size; } } orig_buf -= 8; frame_size = buf - orig_buf; picture_size = buf - picture_size_pos - 6; bytestream_put_be32(&orig_buf, frame_size); bytestream_put_be32(&picture_size_pos, picture_size); pkt->size = frame_size; pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } static av_cold int encode_close(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; if (avctx->coded_frame->data[0]) avctx->release_buffer(avctx, avctx->coded_frame); av_freep(&avctx->coded_frame); av_freep(&ctx->nodes); av_freep(&ctx->slice_q); return 0; } static av_cold int encode_init(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; int mps; int i, j; int min_quant, max_quant; avctx->bits_per_raw_sample = 10; avctx->coded_frame = avcodec_alloc_frame(); if (!avctx->coded_frame) return AVERROR(ENOMEM); ff_proresdsp_init(&ctx->dsp); ff_init_scantable(ctx->dsp.dct_permutation, &ctx->scantable, ff_prores_progressive_scan); mps = ctx->mbs_per_slice; if (mps & (mps - 1)) { av_log(avctx, AV_LOG_ERROR, "there should be an integer power of two MBs per slice\n"); return AVERROR(EINVAL); } ctx->chroma_factor = avctx->pix_fmt == PIX_FMT_YUV422P10 ? CFACTOR_Y422 : CFACTOR_Y444; ctx->profile_info = prores_profile_info + ctx->profile; ctx->num_planes = 3; ctx->mb_width = FFALIGN(avctx->width, 16) >> 4; ctx->mb_height = FFALIGN(avctx->height, 16) >> 4; ctx->slices_width = ctx->mb_width / mps; ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps); ctx->num_slices = ctx->mb_height * ctx->slices_width; for (i = 0; i < NUM_MB_LIMITS - 1; i++) if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height) break; ctx->bits_per_mb = ctx->profile_info->br_tab[i]; min_quant = ctx->profile_info->min_quant; max_quant = ctx->profile_info->max_quant; for (i = min_quant; i <= max_quant; i++) { for (j = 0; j < 64; j++) ctx->quants[i][j] = ctx->profile_info->quant[j] * i; } avctx->codec_tag = ctx->profile_info->tag; av_log(avctx, AV_LOG_DEBUG, "profile %d, %d slices, %d bits per MB\n", ctx->profile, ctx->num_slices, ctx->bits_per_mb); ctx->nodes = av_malloc((ctx->slices_width + 1) * TRELLIS_WIDTH * sizeof(*ctx->nodes)); if (!ctx->nodes) { encode_close(avctx); return AVERROR(ENOMEM); } for (i = min_quant; i <= max_quant; i++) { ctx->nodes[i].prev_node = -1; ctx->nodes[i].bits = 0; ctx->nodes[i].score = 0; } ctx->slice_q = av_malloc(ctx->slices_width * sizeof(*ctx->slice_q)); if (!ctx->slice_q) { encode_close(avctx); return AVERROR(ENOMEM); } return 0; } #define OFFSET(x) offsetof(ProresContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice), AV_OPT_TYPE_INT, { 8 }, 1, MAX_MBS_PER_SLICE, VE }, { "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT, { PRORES_PROFILE_STANDARD }, PRORES_PROFILE_PROXY, PRORES_PROFILE_HQ, VE, "profile" }, { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_PROXY }, 0, 0, VE, "profile" }, { "lt", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_LT }, 0, 0, VE, "profile" }, { "standard", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_STANDARD }, 0, 0, VE, "profile" }, { "hq", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_HQ }, 0, 0, VE, "profile" }, { NULL } }; static const AVClass proresenc_class = { .class_name = "ProRes encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_prores_encoder = { .name = "prores", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_PRORES, .priv_data_size = sizeof(ProresContext), .init = encode_init, .close = encode_close, .encode2 = encode_frame, .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), .pix_fmts = (const enum PixelFormat[]) { PIX_FMT_YUV422P10, PIX_FMT_YUV444P10, PIX_FMT_NONE }, .priv_class = &proresenc_class, };