/* * NVIDIA NVENC Support * Copyright (C) 2015 Luca Barbato * Copyright (C) 2015 Philip Langdale * Copyright (C) 2014 Timo Rothenpieler * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include #include #define CUDA_LIBNAME "libcuda.so" #if HAVE_DLFCN_H #include #define NVENC_LIBNAME "libnvidia-encode.so" #elif HAVE_WINDOWS_H #include #if ARCH_X86_64 #define NVENC_LIBNAME "nvEncodeAPI64.dll" #else #define NVENC_LIBNAME "nvEncodeAPI.dll" #endif #define dlopen(filename, flags) LoadLibrary((filename)) #define dlsym(handle, symbol) GetProcAddress(handle, symbol) #define dlclose(handle) FreeLibrary(handle) #endif #include "libavutil/common.h" #include "libavutil/hwcontext.h" #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "avcodec.h" #include "internal.h" #include "nvenc.h" #if CONFIG_CUDA #include "libavutil/hwcontext_cuda.h" #endif #define NVENC_CAP 0x30 #define BITSTREAM_BUFFER_SIZE 1024 * 1024 #define IS_CBR(rc) (rc == NV_ENC_PARAMS_RC_CBR || \ rc == NV_ENC_PARAMS_RC_2_PASS_QUALITY || \ rc == NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP) #define LOAD_LIBRARY(l, path) \ do { \ if (!((l) = dlopen(path, RTLD_LAZY))) { \ av_log(avctx, AV_LOG_ERROR, \ "Cannot load %s\n", \ path); \ return AVERROR_UNKNOWN; \ } \ } while (0) #define LOAD_SYMBOL(fun, lib, symbol) \ do { \ if (!((fun) = dlsym(lib, symbol))) { \ av_log(avctx, AV_LOG_ERROR, \ "Cannot load %s\n", \ symbol); \ return AVERROR_UNKNOWN; \ } \ } while (0) const enum AVPixelFormat ff_nvenc_pix_fmts[] = { AV_PIX_FMT_NV12, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, #if CONFIG_CUDA AV_PIX_FMT_CUDA, #endif AV_PIX_FMT_NONE }; static const struct { NVENCSTATUS nverr; int averr; const char *desc; } nvenc_errors[] = { { NV_ENC_SUCCESS, 0, "success" }, { NV_ENC_ERR_NO_ENCODE_DEVICE, AVERROR(ENOENT), "no encode device" }, { NV_ENC_ERR_UNSUPPORTED_DEVICE, AVERROR(ENOSYS), "unsupported device" }, { NV_ENC_ERR_INVALID_ENCODERDEVICE, AVERROR(EINVAL), "invalid encoder device" }, { NV_ENC_ERR_INVALID_DEVICE, AVERROR(EINVAL), "invalid device" }, { NV_ENC_ERR_DEVICE_NOT_EXIST, AVERROR(EIO), "device does not exist" }, { NV_ENC_ERR_INVALID_PTR, AVERROR(EFAULT), "invalid ptr" }, { NV_ENC_ERR_INVALID_EVENT, AVERROR(EINVAL), "invalid event" }, { NV_ENC_ERR_INVALID_PARAM, AVERROR(EINVAL), "invalid param" }, { NV_ENC_ERR_INVALID_CALL, AVERROR(EINVAL), "invalid call" }, { NV_ENC_ERR_OUT_OF_MEMORY, AVERROR(ENOMEM), "out of memory" }, { NV_ENC_ERR_ENCODER_NOT_INITIALIZED, AVERROR(EINVAL), "encoder not initialized" }, { NV_ENC_ERR_UNSUPPORTED_PARAM, AVERROR(ENOSYS), "unsupported param" }, { NV_ENC_ERR_LOCK_BUSY, AVERROR(EAGAIN), "lock busy" }, { NV_ENC_ERR_NOT_ENOUGH_BUFFER, AVERROR(ENOBUFS), "not enough buffer" }, { NV_ENC_ERR_INVALID_VERSION, AVERROR(EINVAL), "invalid version" }, { NV_ENC_ERR_MAP_FAILED, AVERROR(EIO), "map failed" }, { NV_ENC_ERR_NEED_MORE_INPUT, AVERROR(EAGAIN), "need more input" }, { NV_ENC_ERR_ENCODER_BUSY, AVERROR(EAGAIN), "encoder busy" }, { NV_ENC_ERR_EVENT_NOT_REGISTERD, AVERROR(EBADF), "event not registered" }, { NV_ENC_ERR_GENERIC, AVERROR_UNKNOWN, "generic error" }, { NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY, AVERROR(EINVAL), "incompatible client key" }, { NV_ENC_ERR_UNIMPLEMENTED, AVERROR(ENOSYS), "unimplemented" }, { NV_ENC_ERR_RESOURCE_REGISTER_FAILED, AVERROR(EIO), "resource register failed" }, { NV_ENC_ERR_RESOURCE_NOT_REGISTERED, AVERROR(EBADF), "resource not registered" }, { NV_ENC_ERR_RESOURCE_NOT_MAPPED, AVERROR(EBADF), "resource not mapped" }, }; static int nvenc_map_error(NVENCSTATUS err, const char **desc) { int i; for (i = 0; i < FF_ARRAY_ELEMS(nvenc_errors); i++) { if (nvenc_errors[i].nverr == err) { if (desc) *desc = nvenc_errors[i].desc; return nvenc_errors[i].averr; } } if (desc) *desc = "unknown error"; return AVERROR_UNKNOWN; } static int nvenc_print_error(void *log_ctx, NVENCSTATUS err, const char *error_string) { const char *desc; int ret; ret = nvenc_map_error(err, &desc); av_log(log_ctx, AV_LOG_ERROR, "%s: %s (%d)\n", error_string, desc, err); return ret; } static av_cold int nvenc_load_libraries(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NVENCLibraryContext *nvel = &ctx->nvel; PNVENCODEAPICREATEINSTANCE nvenc_create_instance; NVENCSTATUS err; #if CONFIG_CUDA nvel->cu_init = cuInit; nvel->cu_device_get_count = cuDeviceGetCount; nvel->cu_device_get = cuDeviceGet; nvel->cu_device_get_name = cuDeviceGetName; nvel->cu_device_compute_capability = cuDeviceComputeCapability; nvel->cu_ctx_create = cuCtxCreate_v2; nvel->cu_ctx_pop_current = cuCtxPopCurrent_v2; nvel->cu_ctx_destroy = cuCtxDestroy_v2; #else LOAD_LIBRARY(nvel->cuda, CUDA_LIBNAME); LOAD_SYMBOL(nvel->cu_init, nvel->cuda, "cuInit"); LOAD_SYMBOL(nvel->cu_device_get_count, nvel->cuda, "cuDeviceGetCount"); LOAD_SYMBOL(nvel->cu_device_get, nvel->cuda, "cuDeviceGet"); LOAD_SYMBOL(nvel->cu_device_get_name, nvel->cuda, "cuDeviceGetName"); LOAD_SYMBOL(nvel->cu_device_compute_capability, nvel->cuda, "cuDeviceComputeCapability"); LOAD_SYMBOL(nvel->cu_ctx_create, nvel->cuda, "cuCtxCreate_v2"); LOAD_SYMBOL(nvel->cu_ctx_pop_current, nvel->cuda, "cuCtxPopCurrent_v2"); LOAD_SYMBOL(nvel->cu_ctx_destroy, nvel->cuda, "cuCtxDestroy_v2"); #endif LOAD_LIBRARY(nvel->nvenc, NVENC_LIBNAME); LOAD_SYMBOL(nvenc_create_instance, nvel->nvenc, "NvEncodeAPICreateInstance"); nvel->nvenc_funcs.version = NV_ENCODE_API_FUNCTION_LIST_VER; err = nvenc_create_instance(&nvel->nvenc_funcs); if (err != NV_ENC_SUCCESS) return nvenc_print_error(avctx, err, "Cannot create the NVENC instance"); return 0; } static int nvenc_open_session(AVCodecContext *avctx) { NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0 }; NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; int ret; params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER; params.apiVersion = NVENCAPI_VERSION; params.device = ctx->cu_context; params.deviceType = NV_ENC_DEVICE_TYPE_CUDA; ret = nv->nvEncOpenEncodeSessionEx(¶ms, &ctx->nvenc_ctx); if (ret != NV_ENC_SUCCESS) { ctx->nvenc_ctx = NULL; return nvenc_print_error(avctx, ret, "Cannot open the NVENC Session"); } return 0; } static int nvenc_check_codec_support(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; int i, ret, count = 0; GUID *guids = NULL; ret = nv->nvEncGetEncodeGUIDCount(ctx->nvenc_ctx, &count); if (ret != NV_ENC_SUCCESS || !count) return AVERROR(ENOSYS); guids = av_malloc(count * sizeof(GUID)); if (!guids) return AVERROR(ENOMEM); ret = nv->nvEncGetEncodeGUIDs(ctx->nvenc_ctx, guids, count, &count); if (ret != NV_ENC_SUCCESS) { ret = AVERROR(ENOSYS); goto fail; } ret = AVERROR(ENOSYS); for (i = 0; i < count; i++) { if (!memcmp(&guids[i], &ctx->params.encodeGUID, sizeof(*guids))) { ret = 0; break; } } fail: av_free(guids); return ret; } static int nvenc_check_cap(AVCodecContext *avctx, NV_ENC_CAPS cap) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; NV_ENC_CAPS_PARAM params = { 0 }; int ret, val = 0; params.version = NV_ENC_CAPS_PARAM_VER; params.capsToQuery = cap; ret = nv->nvEncGetEncodeCaps(ctx->nvenc_ctx, ctx->params.encodeGUID, ¶ms, &val); if (ret == NV_ENC_SUCCESS) return val; return 0; } static int nvenc_check_capabilities(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; int ret; ret = nvenc_check_codec_support(avctx); if (ret < 0) { av_log(avctx, AV_LOG_VERBOSE, "Codec not supported\n"); return ret; } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_YUV444_ENCODE); if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P && ret <= 0) { av_log(avctx, AV_LOG_VERBOSE, "YUV444P not supported\n"); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_WIDTH_MAX); if (ret < avctx->width) { av_log(avctx, AV_LOG_VERBOSE, "Width %d exceeds %d\n", avctx->width, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_HEIGHT_MAX); if (ret < avctx->height) { av_log(avctx, AV_LOG_VERBOSE, "Height %d exceeds %d\n", avctx->height, ret); return AVERROR(ENOSYS); } ret = nvenc_check_cap(avctx, NV_ENC_CAPS_NUM_MAX_BFRAMES); if (ret < avctx->max_b_frames) { av_log(avctx, AV_LOG_VERBOSE, "Max B-frames %d exceed %d\n", avctx->max_b_frames, ret); return AVERROR(ENOSYS); } return 0; } static int nvenc_check_device(AVCodecContext *avctx, int idx) { NVENCContext *ctx = avctx->priv_data; NVENCLibraryContext *nvel = &ctx->nvel; char name[128] = { 0 }; int major, minor, ret; CUdevice cu_device; CUcontext dummy; int loglevel = AV_LOG_VERBOSE; if (ctx->device == LIST_DEVICES) loglevel = AV_LOG_INFO; ret = nvel->cu_device_get(&cu_device, idx); if (ret != CUDA_SUCCESS) { av_log(avctx, AV_LOG_ERROR, "Cannot access the CUDA device %d\n", idx); return -1; } ret = nvel->cu_device_get_name(name, sizeof(name), cu_device); if (ret != CUDA_SUCCESS) return -1; ret = nvel->cu_device_compute_capability(&major, &minor, cu_device); if (ret != CUDA_SUCCESS) return -1; av_log(avctx, loglevel, "Device %d [%s] ", cu_device, name); if (((major << 4) | minor) < NVENC_CAP) goto fail; ret = nvel->cu_ctx_create(&ctx->cu_context_internal, 0, cu_device); if (ret != CUDA_SUCCESS) goto fail; ctx->cu_context = ctx->cu_context_internal; ret = nvel->cu_ctx_pop_current(&dummy); if (ret != CUDA_SUCCESS) goto fail2; if ((ret = nvenc_open_session(avctx)) < 0) goto fail2; if ((ret = nvenc_check_capabilities(avctx)) < 0) goto fail3; av_log(avctx, loglevel, "supports NVENC\n"); if (ctx->device == cu_device || ctx->device == ANY_DEVICE) return 0; fail3: nvel->nvenc_funcs.nvEncDestroyEncoder(ctx->nvenc_ctx); ctx->nvenc_ctx = NULL; fail2: nvel->cu_ctx_destroy(ctx->cu_context_internal); ctx->cu_context_internal = NULL; fail: if (ret != 0) av_log(avctx, loglevel, "does not support NVENC (major %d minor %d)\n", major, minor); return AVERROR(ENOSYS); } static int nvenc_setup_device(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NVENCLibraryContext *nvel = &ctx->nvel; switch (avctx->codec->id) { case AV_CODEC_ID_H264: ctx->params.encodeGUID = NV_ENC_CODEC_H264_GUID; break; case AV_CODEC_ID_HEVC: ctx->params.encodeGUID = NV_ENC_CODEC_HEVC_GUID; break; default: return AVERROR_BUG; } if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { #if CONFIG_CUDA AVHWFramesContext *frames_ctx; AVCUDADeviceContext *device_hwctx; int ret; if (!avctx->hw_frames_ctx) return AVERROR(EINVAL); frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; device_hwctx = frames_ctx->device_ctx->hwctx; ctx->cu_context = device_hwctx->cuda_ctx; ret = nvenc_open_session(avctx); if (ret < 0) return ret; ret = nvenc_check_capabilities(avctx); if (ret < 0) return ret; #else return AVERROR_BUG; #endif } else { int i, nb_devices = 0; if ((nvel->cu_init(0)) != CUDA_SUCCESS) { av_log(avctx, AV_LOG_ERROR, "Cannot init CUDA\n"); return AVERROR_UNKNOWN; } if ((nvel->cu_device_get_count(&nb_devices)) != CUDA_SUCCESS) { av_log(avctx, AV_LOG_ERROR, "Cannot enumerate the CUDA devices\n"); return AVERROR_UNKNOWN; } for (i = 0; i < nb_devices; ++i) { if ((nvenc_check_device(avctx, i)) >= 0 && ctx->device != LIST_DEVICES) return 0; } if (ctx->device == LIST_DEVICES) return AVERROR_EXIT; return AVERROR(ENOSYS); } return 0; } typedef struct GUIDTuple { const GUID guid; int flags; } GUIDTuple; static int nvec_map_preset(NVENCContext *ctx) { GUIDTuple presets[] = { { NV_ENC_PRESET_DEFAULT_GUID }, { NV_ENC_PRESET_HP_GUID }, { NV_ENC_PRESET_HQ_GUID }, { NV_ENC_PRESET_BD_GUID }, { NV_ENC_PRESET_LOW_LATENCY_DEFAULT_GUID, NVENC_LOWLATENCY }, { NV_ENC_PRESET_LOW_LATENCY_HP_GUID, NVENC_LOWLATENCY }, { NV_ENC_PRESET_LOW_LATENCY_HQ_GUID, NVENC_LOWLATENCY }, { NV_ENC_PRESET_LOSSLESS_DEFAULT_GUID, NVENC_LOSSLESS }, { NV_ENC_PRESET_LOSSLESS_HP_GUID, NVENC_LOSSLESS }, { { 0 } } }; GUIDTuple *t = &presets[ctx->preset]; ctx->params.presetGUID = t->guid; ctx->flags = t->flags; return AVERROR(EINVAL); } static void set_constqp(AVCodecContext *avctx, NV_ENC_RC_PARAMS *rc) { rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP; rc->constQP.qpInterB = avctx->global_quality; rc->constQP.qpInterP = avctx->global_quality; rc->constQP.qpIntra = avctx->global_quality; } static void set_vbr(AVCodecContext *avctx, NV_ENC_RC_PARAMS *rc) { if (avctx->qmin >= 0) { rc->enableMinQP = 1; rc->minQP.qpInterB = avctx->qmin; rc->minQP.qpInterP = avctx->qmin; rc->minQP.qpIntra = avctx->qmin; } if (avctx->qmax >= 0) { rc->enableMaxQP = 1; rc->maxQP.qpInterB = avctx->qmax; rc->maxQP.qpInterP = avctx->qmax; rc->maxQP.qpIntra = avctx->qmax; } } static void set_lossless(AVCodecContext *avctx, NV_ENC_RC_PARAMS *rc) { rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP; rc->constQP.qpInterB = 0; rc->constQP.qpInterP = 0; rc->constQP.qpIntra = 0; } static void nvenc_override_rate_control(AVCodecContext *avctx, NV_ENC_RC_PARAMS *rc) { NVENCContext *ctx = avctx->priv_data; switch (ctx->rc) { case NV_ENC_PARAMS_RC_CONSTQP: if (avctx->global_quality < 0) { av_log(avctx, AV_LOG_WARNING, "The constant quality rate-control requires " "the 'global_quality' option set.\n"); return; } set_constqp(avctx, rc); return; case NV_ENC_PARAMS_RC_2_PASS_VBR: case NV_ENC_PARAMS_RC_VBR: if (avctx->qmin < 0 && avctx->qmax < 0) { av_log(avctx, AV_LOG_WARNING, "The variable bitrate rate-control requires " "the 'qmin' and/or 'qmax' option set.\n"); return; } case NV_ENC_PARAMS_RC_VBR_MINQP: if (avctx->qmin < 0) { av_log(avctx, AV_LOG_WARNING, "The variable bitrate rate-control requires " "the 'qmin' option set.\n"); return; } set_vbr(avctx, rc); break; case NV_ENC_PARAMS_RC_CBR: break; case NV_ENC_PARAMS_RC_2_PASS_QUALITY: case NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP: if (!(ctx->flags & NVENC_LOWLATENCY)) { av_log(avctx, AV_LOG_WARNING, "The multipass rate-control requires " "a low-latency preset.\n"); return; } } rc->rateControlMode = ctx->rc; } static void nvenc_setup_rate_control(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENC_RC_PARAMS *rc = &ctx->config.rcParams; if (avctx->bit_rate > 0) rc->averageBitRate = avctx->bit_rate; if (avctx->rc_max_rate > 0) rc->maxBitRate = avctx->rc_max_rate; if (ctx->rc > 0) { nvenc_override_rate_control(avctx, rc); } else if (ctx->flags & NVENC_LOSSLESS) { set_lossless(avctx, rc); } else if (avctx->global_quality > 0) { set_constqp(avctx, rc); } else if (avctx->qmin >= 0 && avctx->qmax >= 0) { rc->rateControlMode = NV_ENC_PARAMS_RC_VBR; set_vbr(avctx, rc); } if (avctx->rc_buffer_size > 0) rc->vbvBufferSize = avctx->rc_buffer_size; if (rc->averageBitRate > 0) avctx->bit_rate = rc->averageBitRate; } static int nvenc_setup_h264_config(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENC_CONFIG *cc = &ctx->config; NV_ENC_CONFIG_H264 *h264 = &cc->encodeCodecConfig.h264Config; NV_ENC_CONFIG_H264_VUI_PARAMETERS *vui = &h264->h264VUIParameters; vui->colourDescriptionPresentFlag = avctx->colorspace != AVCOL_SPC_UNSPECIFIED || avctx->color_primaries != AVCOL_PRI_UNSPECIFIED || avctx->color_trc != AVCOL_TRC_UNSPECIFIED; vui->colourMatrix = avctx->colorspace; vui->colourPrimaries = avctx->color_primaries; vui->transferCharacteristics = avctx->color_trc; vui->videoFullRangeFlag = avctx->color_range == AVCOL_RANGE_JPEG; vui->videoSignalTypePresentFlag = vui->colourDescriptionPresentFlag || vui->videoFullRangeFlag; h264->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0; h264->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1; h264->outputAUD = 1; h264->maxNumRefFrames = avctx->refs; h264->idrPeriod = cc->gopLength; h264->sliceMode = 3; h264->sliceModeData = FFMAX(avctx->slices, 1); if (ctx->flags & NVENC_LOSSLESS) h264->qpPrimeYZeroTransformBypassFlag = 1; if (IS_CBR(cc->rcParams.rateControlMode)) { h264->outputBufferingPeriodSEI = 1; h264->outputPictureTimingSEI = 1; } if (ctx->profile) avctx->profile = ctx->profile; if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P) h264->chromaFormatIDC = 3; else h264->chromaFormatIDC = 1; switch (ctx->profile) { case NV_ENC_H264_PROFILE_BASELINE: cc->profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID; break; case NV_ENC_H264_PROFILE_MAIN: cc->profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID; break; case NV_ENC_H264_PROFILE_HIGH: cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID; break; case NV_ENC_H264_PROFILE_HIGH_444: cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID; break; case NV_ENC_H264_PROFILE_CONSTRAINED_HIGH: cc->profileGUID = NV_ENC_H264_PROFILE_CONSTRAINED_HIGH_GUID; break; } h264->level = ctx->level; return 0; } static int nvenc_setup_hevc_config(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENC_CONFIG *cc = &ctx->config; NV_ENC_CONFIG_HEVC *hevc = &cc->encodeCodecConfig.hevcConfig; NV_ENC_CONFIG_HEVC_VUI_PARAMETERS *vui = &hevc->hevcVUIParameters; vui->colourDescriptionPresentFlag = avctx->colorspace != AVCOL_SPC_UNSPECIFIED || avctx->color_primaries != AVCOL_PRI_UNSPECIFIED || avctx->color_trc != AVCOL_TRC_UNSPECIFIED; vui->colourMatrix = avctx->colorspace; vui->colourPrimaries = avctx->color_primaries; vui->transferCharacteristics = avctx->color_trc; vui->videoFullRangeFlag = avctx->color_range == AVCOL_RANGE_JPEG; vui->videoSignalTypePresentFlag = vui->colourDescriptionPresentFlag || vui->videoFullRangeFlag; hevc->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0; hevc->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1; hevc->outputAUD = 1; hevc->maxNumRefFramesInDPB = avctx->refs; hevc->idrPeriod = cc->gopLength; if (IS_CBR(cc->rcParams.rateControlMode)) { hevc->outputBufferingPeriodSEI = 1; hevc->outputPictureTimingSEI = 1; } /* No other profile is supported in the current SDK version 5 */ cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID; avctx->profile = FF_PROFILE_HEVC_MAIN; hevc->sliceMode = 3; hevc->sliceModeData = FFMAX(avctx->slices, 1); if (ctx->level) { hevc->level = ctx->level; } else { hevc->level = NV_ENC_LEVEL_AUTOSELECT; } if (ctx->tier) { hevc->tier = ctx->tier; } return 0; } static int nvenc_setup_codec_config(AVCodecContext *avctx) { switch (avctx->codec->id) { case AV_CODEC_ID_H264: return nvenc_setup_h264_config(avctx); case AV_CODEC_ID_HEVC: return nvenc_setup_hevc_config(avctx); } return 0; } static int nvenc_setup_encoder(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; NV_ENC_PRESET_CONFIG preset_cfg = { 0 }; AVCPBProperties *cpb_props; int ret; ctx->params.version = NV_ENC_INITIALIZE_PARAMS_VER; ctx->params.encodeHeight = avctx->height; ctx->params.encodeWidth = avctx->width; if (avctx->sample_aspect_ratio.num && avctx->sample_aspect_ratio.den && (avctx->sample_aspect_ratio.num != 1 || avctx->sample_aspect_ratio.den != 1)) { av_reduce(&ctx->params.darWidth, &ctx->params.darHeight, avctx->width * avctx->sample_aspect_ratio.num, avctx->height * avctx->sample_aspect_ratio.den, INT_MAX / 8); } else { ctx->params.darHeight = avctx->height; ctx->params.darWidth = avctx->width; } // De-compensate for hardware, dubiously, trying to compensate for // playback at 704 pixel width. if (avctx->width == 720 && (avctx->height == 480 || avctx->height == 576)) { av_reduce(&ctx->params.darWidth, &ctx->params.darHeight, ctx->params.darWidth * 44, ctx->params.darHeight * 45, 1024 * 1024); } ctx->params.frameRateNum = avctx->time_base.den; ctx->params.frameRateDen = avctx->time_base.num * avctx->ticks_per_frame; ctx->params.enableEncodeAsync = 0; ctx->params.enablePTD = 1; ctx->params.encodeConfig = &ctx->config; nvec_map_preset(ctx); preset_cfg.version = NV_ENC_PRESET_CONFIG_VER; preset_cfg.presetCfg.version = NV_ENC_CONFIG_VER; ret = nv->nvEncGetEncodePresetConfig(ctx->nvenc_ctx, ctx->params.encodeGUID, ctx->params.presetGUID, &preset_cfg); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "Cannot get the preset configuration"); memcpy(&ctx->config, &preset_cfg.presetCfg, sizeof(ctx->config)); ctx->config.version = NV_ENC_CONFIG_VER; if (avctx->gop_size > 0) { if (avctx->max_b_frames > 0) { /* 0 is intra-only, * 1 is I/P only, * 2 is one B-Frame, * 3 two B-frames, and so on. */ ctx->config.frameIntervalP = avctx->max_b_frames + 1; } else if (avctx->max_b_frames == 0) { ctx->config.frameIntervalP = 1; } ctx->config.gopLength = avctx->gop_size; } else if (avctx->gop_size == 0) { ctx->config.frameIntervalP = 0; ctx->config.gopLength = 1; } if (ctx->config.frameIntervalP > 1) avctx->max_b_frames = ctx->config.frameIntervalP - 1; ctx->initial_pts[0] = AV_NOPTS_VALUE; ctx->initial_pts[1] = AV_NOPTS_VALUE; nvenc_setup_rate_control(avctx); if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { ctx->config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD; } else { ctx->config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME; } if ((ret = nvenc_setup_codec_config(avctx)) < 0) return ret; ret = nv->nvEncInitializeEncoder(ctx->nvenc_ctx, &ctx->params); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "Cannot initialize the decoder"); cpb_props = ff_add_cpb_side_data(avctx); if (!cpb_props) return AVERROR(ENOMEM); cpb_props->max_bitrate = avctx->rc_max_rate; cpb_props->min_bitrate = avctx->rc_min_rate; cpb_props->avg_bitrate = avctx->bit_rate; cpb_props->buffer_size = avctx->rc_buffer_size; return 0; } static int nvenc_alloc_surface(AVCodecContext *avctx, int idx) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; int ret; NV_ENC_CREATE_BITSTREAM_BUFFER out_buffer = { 0 }; switch (ctx->data_pix_fmt) { case AV_PIX_FMT_YUV420P: ctx->frames[idx].format = NV_ENC_BUFFER_FORMAT_YV12_PL; break; case AV_PIX_FMT_NV12: ctx->frames[idx].format = NV_ENC_BUFFER_FORMAT_NV12_PL; break; case AV_PIX_FMT_YUV444P: ctx->frames[idx].format = NV_ENC_BUFFER_FORMAT_YUV444_PL; break; default: return AVERROR_BUG; } if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { ctx->frames[idx].in_ref = av_frame_alloc(); if (!ctx->frames[idx].in_ref) return AVERROR(ENOMEM); } else { NV_ENC_CREATE_INPUT_BUFFER in_buffer = { 0 }; in_buffer.version = NV_ENC_CREATE_INPUT_BUFFER_VER; in_buffer.width = avctx->width; in_buffer.height = avctx->height; in_buffer.bufferFmt = ctx->frames[idx].format; in_buffer.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_UNCACHED; ret = nv->nvEncCreateInputBuffer(ctx->nvenc_ctx, &in_buffer); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "CreateInputBuffer failed"); ctx->frames[idx].in = in_buffer.inputBuffer; } out_buffer.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER; /* 1MB is large enough to hold most output frames. * NVENC increases this automatically if it is not enough. */ out_buffer.size = BITSTREAM_BUFFER_SIZE; out_buffer.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_UNCACHED; ret = nv->nvEncCreateBitstreamBuffer(ctx->nvenc_ctx, &out_buffer); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "CreateBitstreamBuffer failed"); ctx->frames[idx].out = out_buffer.bitstreamBuffer; return 0; } static int nvenc_setup_surfaces(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; int i, ret; ctx->nb_surfaces = FFMAX(4 + avctx->max_b_frames, ctx->nb_surfaces); ctx->async_depth = FFMIN(ctx->async_depth, ctx->nb_surfaces - 1); ctx->frames = av_mallocz_array(ctx->nb_surfaces, sizeof(*ctx->frames)); if (!ctx->frames) return AVERROR(ENOMEM); ctx->timestamps = av_fifo_alloc(ctx->nb_surfaces * sizeof(int64_t)); if (!ctx->timestamps) return AVERROR(ENOMEM); ctx->pending = av_fifo_alloc(ctx->nb_surfaces * sizeof(*ctx->frames)); if (!ctx->pending) return AVERROR(ENOMEM); ctx->ready = av_fifo_alloc(ctx->nb_surfaces * sizeof(*ctx->frames)); if (!ctx->ready) return AVERROR(ENOMEM); for (i = 0; i < ctx->nb_surfaces; i++) { if ((ret = nvenc_alloc_surface(avctx, i)) < 0) return ret; } return 0; } #define EXTRADATA_SIZE 512 static int nvenc_setup_extradata(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 }; int ret; avctx->extradata = av_mallocz(EXTRADATA_SIZE + AV_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) return AVERROR(ENOMEM); payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER; payload.spsppsBuffer = avctx->extradata; payload.inBufferSize = EXTRADATA_SIZE; payload.outSPSPPSPayloadSize = &avctx->extradata_size; ret = nv->nvEncGetSequenceParams(ctx->nvenc_ctx, &payload); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "Cannot get the extradata"); return 0; } av_cold int ff_nvenc_encode_close(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; int i; /* the encoder has to be flushed before it can be closed */ if (ctx->nvenc_ctx) { NV_ENC_PIC_PARAMS params = { .version = NV_ENC_PIC_PARAMS_VER, .encodePicFlags = NV_ENC_PIC_FLAG_EOS }; nv->nvEncEncodePicture(ctx->nvenc_ctx, ¶ms); } av_fifo_free(ctx->timestamps); av_fifo_free(ctx->pending); av_fifo_free(ctx->ready); if (ctx->frames) { for (i = 0; i < ctx->nb_surfaces; ++i) { if (avctx->pix_fmt != AV_PIX_FMT_CUDA) { nv->nvEncDestroyInputBuffer(ctx->nvenc_ctx, ctx->frames[i].in); } else if (ctx->frames[i].in) { nv->nvEncUnmapInputResource(ctx->nvenc_ctx, ctx->frames[i].in_map.mappedResource); } av_frame_free(&ctx->frames[i].in_ref); nv->nvEncDestroyBitstreamBuffer(ctx->nvenc_ctx, ctx->frames[i].out); } } for (i = 0; i < ctx->nb_registered_frames; i++) { if (ctx->registered_frames[i].regptr) nv->nvEncUnregisterResource(ctx->nvenc_ctx, ctx->registered_frames[i].regptr); } ctx->nb_registered_frames = 0; av_freep(&ctx->frames); if (ctx->nvenc_ctx) nv->nvEncDestroyEncoder(ctx->nvenc_ctx); if (ctx->cu_context_internal) ctx->nvel.cu_ctx_destroy(ctx->cu_context_internal); if (ctx->nvel.nvenc) dlclose(ctx->nvel.nvenc); #if !CONFIG_CUDA if (ctx->nvel.cuda) dlclose(ctx->nvel.cuda); #endif return 0; } av_cold int ff_nvenc_encode_init(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; int ret; if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { AVHWFramesContext *frames_ctx; if (!avctx->hw_frames_ctx) { av_log(avctx, AV_LOG_ERROR, "hw_frames_ctx must be set when using GPU frames as input\n"); return AVERROR(EINVAL); } frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; ctx->data_pix_fmt = frames_ctx->sw_format; } else { ctx->data_pix_fmt = avctx->pix_fmt; } if ((ret = nvenc_load_libraries(avctx)) < 0) return ret; if ((ret = nvenc_setup_device(avctx)) < 0) return ret; if ((ret = nvenc_setup_encoder(avctx)) < 0) return ret; if ((ret = nvenc_setup_surfaces(avctx)) < 0) return ret; if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) { if ((ret = nvenc_setup_extradata(avctx)) < 0) return ret; } return 0; } static NVENCFrame *get_free_frame(NVENCContext *ctx) { int i; for (i = 0; i < ctx->nb_surfaces; i++) { if (!ctx->frames[i].locked) { ctx->frames[i].locked = 1; return &ctx->frames[i]; } } return NULL; } static int nvenc_copy_frame(NV_ENC_LOCK_INPUT_BUFFER *in, const AVFrame *frame) { uint8_t *buf = in->bufferDataPtr; int off = frame->height * in->pitch; switch (frame->format) { case AV_PIX_FMT_YUV420P: av_image_copy_plane(buf, in->pitch, frame->data[0], frame->linesize[0], frame->width, frame->height); buf += off; av_image_copy_plane(buf, in->pitch >> 1, frame->data[2], frame->linesize[2], frame->width >> 1, frame->height >> 1); buf += off >> 2; av_image_copy_plane(buf, in->pitch >> 1, frame->data[1], frame->linesize[1], frame->width >> 1, frame->height >> 1); break; case AV_PIX_FMT_NV12: av_image_copy_plane(buf, in->pitch, frame->data[0], frame->linesize[0], frame->width, frame->height); buf += off; av_image_copy_plane(buf, in->pitch, frame->data[1], frame->linesize[1], frame->width, frame->height >> 1); break; case AV_PIX_FMT_YUV444P: av_image_copy_plane(buf, in->pitch, frame->data[0], frame->linesize[0], frame->width, frame->height); buf += off; av_image_copy_plane(buf, in->pitch, frame->data[1], frame->linesize[1], frame->width, frame->height); buf += off; av_image_copy_plane(buf, in->pitch, frame->data[2], frame->linesize[2], frame->width, frame->height); break; default: return AVERROR_BUG; } return 0; } static int nvenc_find_free_reg_resource(AVCodecContext *avctx) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; int i; if (ctx->nb_registered_frames == FF_ARRAY_ELEMS(ctx->registered_frames)) { for (i = 0; i < ctx->nb_registered_frames; i++) { if (!ctx->registered_frames[i].mapped) { if (ctx->registered_frames[i].regptr) { nv->nvEncUnregisterResource(ctx->nvenc_ctx, ctx->registered_frames[i].regptr); ctx->registered_frames[i].regptr = NULL; } return i; } } } else { return ctx->nb_registered_frames++; } av_log(avctx, AV_LOG_ERROR, "Too many registered CUDA frames\n"); return AVERROR(ENOMEM); } static int nvenc_register_frame(AVCodecContext *avctx, const AVFrame *frame) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; AVHWFramesContext *frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data; NV_ENC_REGISTER_RESOURCE reg; int i, idx, ret; for (i = 0; i < ctx->nb_registered_frames; i++) { if (ctx->registered_frames[i].ptr == (CUdeviceptr)frame->data[0]) return i; } idx = nvenc_find_free_reg_resource(avctx); if (idx < 0) return idx; reg.version = NV_ENC_REGISTER_RESOURCE_VER; reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR; reg.width = frames_ctx->width; reg.height = frames_ctx->height; reg.bufferFormat = ctx->frames[0].format; reg.pitch = frame->linesize[0]; reg.resourceToRegister = frame->data[0]; ret = nv->nvEncRegisterResource(ctx->nvenc_ctx, ®); if (ret != NV_ENC_SUCCESS) { nvenc_print_error(avctx, ret, "Error registering an input resource"); return AVERROR_UNKNOWN; } ctx->registered_frames[idx].ptr = (CUdeviceptr)frame->data[0]; ctx->registered_frames[idx].regptr = reg.registeredResource; return idx; } static int nvenc_upload_frame(AVCodecContext *avctx, const AVFrame *frame, NVENCFrame *nvenc_frame) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; int ret; if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { int reg_idx; ret = nvenc_register_frame(avctx, frame); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Could not register an input CUDA frame\n"); return ret; } reg_idx = ret; ret = av_frame_ref(nvenc_frame->in_ref, frame); if (ret < 0) return ret; nvenc_frame->in_map.version = NV_ENC_MAP_INPUT_RESOURCE_VER; nvenc_frame->in_map.registeredResource = ctx->registered_frames[reg_idx].regptr; ret = nv->nvEncMapInputResource(ctx->nvenc_ctx, &nvenc_frame->in_map); if (ret != NV_ENC_SUCCESS) { av_frame_unref(nvenc_frame->in_ref); return nvenc_print_error(avctx, ret, "Error mapping an input resource"); } ctx->registered_frames[reg_idx].mapped = 1; nvenc_frame->reg_idx = reg_idx; nvenc_frame->in = nvenc_frame->in_map.mappedResource; } else { NV_ENC_LOCK_INPUT_BUFFER params = { 0 }; params.version = NV_ENC_LOCK_INPUT_BUFFER_VER; params.inputBuffer = nvenc_frame->in; ret = nv->nvEncLockInputBuffer(ctx->nvenc_ctx, ¶ms); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "Cannot lock the buffer"); ret = nvenc_copy_frame(¶ms, frame); if (ret < 0) { nv->nvEncUnlockInputBuffer(ctx->nvenc_ctx, nvenc_frame->in); return ret; } ret = nv->nvEncUnlockInputBuffer(ctx->nvenc_ctx, nvenc_frame->in); if (ret != NV_ENC_SUCCESS) return nvenc_print_error(avctx, ret, "Cannot unlock the buffer"); } return 0; } static void nvenc_codec_specific_pic_params(AVCodecContext *avctx, NV_ENC_PIC_PARAMS *params) { NVENCContext *ctx = avctx->priv_data; switch (avctx->codec->id) { case AV_CODEC_ID_H264: params->codecPicParams.h264PicParams.sliceMode = ctx->config.encodeCodecConfig.h264Config.sliceMode; params->codecPicParams.h264PicParams.sliceModeData = ctx->config.encodeCodecConfig.h264Config.sliceModeData; break; case AV_CODEC_ID_HEVC: params->codecPicParams.hevcPicParams.sliceMode = ctx->config.encodeCodecConfig.hevcConfig.sliceMode; params->codecPicParams.hevcPicParams.sliceModeData = ctx->config.encodeCodecConfig.hevcConfig.sliceModeData; break; } } static inline int nvenc_enqueue_timestamp(AVFifoBuffer *f, int64_t pts) { return av_fifo_generic_write(f, &pts, sizeof(pts), NULL); } static inline int nvenc_dequeue_timestamp(AVFifoBuffer *f, int64_t *pts) { return av_fifo_generic_read(f, pts, sizeof(*pts), NULL); } static int nvenc_set_timestamp(AVCodecContext *avctx, NV_ENC_LOCK_BITSTREAM *params, AVPacket *pkt) { NVENCContext *ctx = avctx->priv_data; pkt->pts = params->outputTimeStamp; pkt->duration = params->outputDuration; /* generate the first dts by linearly extrapolating the * first two pts values to the past */ if (avctx->max_b_frames > 0 && !ctx->first_packet_output && ctx->initial_pts[1] != AV_NOPTS_VALUE) { int64_t ts0 = ctx->initial_pts[0], ts1 = ctx->initial_pts[1]; int64_t delta; if ((ts0 < 0 && ts1 > INT64_MAX + ts0) || (ts0 > 0 && ts1 < INT64_MIN + ts0)) return AVERROR(ERANGE); delta = ts1 - ts0; if ((delta < 0 && ts0 > INT64_MAX + delta) || (delta > 0 && ts0 < INT64_MIN + delta)) return AVERROR(ERANGE); pkt->dts = ts0 - delta; ctx->first_packet_output = 1; return 0; } return nvenc_dequeue_timestamp(ctx->timestamps, &pkt->dts); } static int nvenc_get_output(AVCodecContext *avctx, AVPacket *pkt) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; NV_ENC_LOCK_BITSTREAM params = { 0 }; NVENCFrame *frame; int ret; ret = av_fifo_generic_read(ctx->ready, &frame, sizeof(frame), NULL); if (ret) return ret; params.version = NV_ENC_LOCK_BITSTREAM_VER; params.outputBitstream = frame->out; ret = nv->nvEncLockBitstream(ctx->nvenc_ctx, ¶ms); if (ret < 0) return nvenc_print_error(avctx, ret, "Cannot lock the bitstream"); ret = ff_alloc_packet(pkt, params.bitstreamSizeInBytes); if (ret < 0) return ret; memcpy(pkt->data, params.bitstreamBufferPtr, pkt->size); ret = nv->nvEncUnlockBitstream(ctx->nvenc_ctx, frame->out); if (ret < 0) return nvenc_print_error(avctx, ret, "Cannot unlock the bitstream"); if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { nv->nvEncUnmapInputResource(ctx->nvenc_ctx, frame->in_map.mappedResource); av_frame_unref(frame->in_ref); ctx->registered_frames[frame->reg_idx].mapped = 0; frame->in = NULL; } frame->locked = 0; ret = nvenc_set_timestamp(avctx, ¶ms, pkt); if (ret < 0) return ret; switch (params.pictureType) { case NV_ENC_PIC_TYPE_IDR: pkt->flags |= AV_PKT_FLAG_KEY; #if FF_API_CODED_FRAME FF_DISABLE_DEPRECATION_WARNINGS case NV_ENC_PIC_TYPE_INTRA_REFRESH: case NV_ENC_PIC_TYPE_I: avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; break; case NV_ENC_PIC_TYPE_P: avctx->coded_frame->pict_type = AV_PICTURE_TYPE_P; break; case NV_ENC_PIC_TYPE_B: avctx->coded_frame->pict_type = AV_PICTURE_TYPE_B; break; case NV_ENC_PIC_TYPE_BI: avctx->coded_frame->pict_type = AV_PICTURE_TYPE_BI; break; FF_ENABLE_DEPRECATION_WARNINGS #endif } return 0; } static int output_ready(AVCodecContext *avctx, int flush) { NVENCContext *ctx = avctx->priv_data; int nb_ready, nb_pending; /* when B-frames are enabled, we wait for two initial timestamps to * calculate the first dts */ if (!flush && avctx->max_b_frames > 0 && (ctx->initial_pts[0] == AV_NOPTS_VALUE || ctx->initial_pts[1] == AV_NOPTS_VALUE)) return 0; nb_ready = av_fifo_size(ctx->ready) / sizeof(NVENCFrame*); nb_pending = av_fifo_size(ctx->pending) / sizeof(NVENCFrame*); if (flush) return nb_ready > 0; return (nb_ready > 0) && (nb_ready + nb_pending >= ctx->async_depth); } int ff_nvenc_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { NVENCContext *ctx = avctx->priv_data; NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs; NV_ENC_PIC_PARAMS params = { 0 }; NVENCFrame *nvenc_frame = NULL; int enc_ret, ret; params.version = NV_ENC_PIC_PARAMS_VER; if (frame) { nvenc_frame = get_free_frame(ctx); if (!nvenc_frame) { av_log(avctx, AV_LOG_ERROR, "No free surfaces\n"); return AVERROR_BUG; } ret = nvenc_upload_frame(avctx, frame, nvenc_frame); if (ret < 0) return ret; params.inputBuffer = nvenc_frame->in; params.bufferFmt = nvenc_frame->format; params.inputWidth = frame->width; params.inputHeight = frame->height; params.outputBitstream = nvenc_frame->out; params.inputTimeStamp = frame->pts; if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { if (frame->top_field_first) params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM; else params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP; } else { params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME; } nvenc_codec_specific_pic_params(avctx, ¶ms); ret = nvenc_enqueue_timestamp(ctx->timestamps, frame->pts); if (ret < 0) return ret; if (ctx->initial_pts[0] == AV_NOPTS_VALUE) ctx->initial_pts[0] = frame->pts; else if (ctx->initial_pts[1] == AV_NOPTS_VALUE) ctx->initial_pts[1] = frame->pts; } else { params.encodePicFlags = NV_ENC_PIC_FLAG_EOS; } enc_ret = nv->nvEncEncodePicture(ctx->nvenc_ctx, ¶ms); if (enc_ret != NV_ENC_SUCCESS && enc_ret != NV_ENC_ERR_NEED_MORE_INPUT) return nvenc_print_error(avctx, enc_ret, "Error encoding the frame"); if (nvenc_frame) { ret = av_fifo_generic_write(ctx->pending, &nvenc_frame, sizeof(nvenc_frame), NULL); if (ret < 0) return ret; } /* all the pending buffers are now ready for output */ if (enc_ret == NV_ENC_SUCCESS) { while (av_fifo_size(ctx->pending) > 0) { av_fifo_generic_read(ctx->pending, &nvenc_frame, sizeof(nvenc_frame), NULL); av_fifo_generic_write(ctx->ready, &nvenc_frame, sizeof(nvenc_frame), NULL); } } if (output_ready(avctx, !frame)) { ret = nvenc_get_output(avctx, pkt); if (ret < 0) return ret; *got_packet = 1; } else { *got_packet = 0; } return 0; }