/* * The simplest mpeg encoder (well, it was the simplest!) * Copyright (c) 2000,2001 Gerard Lantau. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" #ifdef USE_FASTMEMCPY #include "fastmemcpy.h" #endif static void encode_picture(MpegEncContext *s, int picture_number); static void rate_control_init(MpegEncContext *s); static int rate_estimate_qscale(MpegEncContext *s); static void dct_unquantize_mpeg1_c(MpegEncContext *s, DCTELEM *block, int n, int qscale); static void dct_unquantize_h263_c(MpegEncContext *s, DCTELEM *block, int n, int qscale); static int dct_quantize(MpegEncContext *s, DCTELEM *block, int n, int qscale); static int dct_quantize_mmx(MpegEncContext *s, DCTELEM *block, int n, int qscale); #define EDGE_WIDTH 16 /* enable all paranoid tests for rounding, overflows, etc... */ //#define PARANOID //#define DEBUG /* for jpeg fast DCT */ #define CONST_BITS 14 static const unsigned short aanscales[64] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; static UINT8 h263_chroma_roundtab[16] = { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, }; /* default motion estimation */ int motion_estimation_method = ME_LOG; /* XXX: should use variable shift ? */ #define QMAT_SHIFT_MMX 19 #define QMAT_SHIFT 25 static void convert_matrix(int *qmat, const UINT16 *quant_matrix, int qscale) { int i; if (av_fdct == jpeg_fdct_ifast) { for(i=0;i<64;i++) { /* 16 <= qscale * quant_matrix[i] <= 7905 */ /* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */ qmat[i] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11)) / (aanscales[i] * qscale * quant_matrix[i])); } } else { for(i=0;i<64;i++) { /* We can safely suppose that 16 <= quant_matrix[i] <= 255 So 16 <= qscale * quant_matrix[i] <= 7905 so (1 << QMAT_SHIFT) / 16 >= qmat[i] >= (1 << QMAT_SHIFT) / 7905 */ qmat[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]); } } } /* init common structure for both encoder and decoder */ int MPV_common_init(MpegEncContext *s) { int c_size, i; UINT8 *pict; if (s->out_format == FMT_H263) s->dct_unquantize = dct_unquantize_h263_c; else s->dct_unquantize = dct_unquantize_mpeg1_c; #ifdef HAVE_MMX MPV_common_init_mmx(s); #endif s->mb_width = (s->width + 15) / 16; s->mb_height = (s->height + 15) / 16; s->linesize = s->mb_width * 16 + 2 * EDGE_WIDTH; for(i=0;i<3;i++) { int w, h, shift, pict_start; w = s->linesize; h = s->mb_height * 16 + 2 * EDGE_WIDTH; shift = (i == 0) ? 0 : 1; c_size = (w >> shift) * (h >> shift); pict_start = (w >> shift) * (EDGE_WIDTH >> shift) + (EDGE_WIDTH >> shift); pict = av_mallocz(c_size); if (pict == NULL) goto fail; s->last_picture_base[i] = pict; s->last_picture[i] = pict + pict_start; pict = av_mallocz(c_size); if (pict == NULL) goto fail; s->next_picture_base[i] = pict; s->next_picture[i] = pict + pict_start; if (s->has_b_frames) { pict = av_mallocz(c_size); if (pict == NULL) goto fail; s->aux_picture_base[i] = pict; s->aux_picture[i] = pict + pict_start; } } if (s->out_format == FMT_H263) { int size; /* MV prediction */ size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2); s->motion_val = malloc(size * 2 * sizeof(INT16)); if (s->motion_val == NULL) goto fail; memset(s->motion_val, 0, size * 2 * sizeof(INT16)); } if (s->h263_pred) { int y_size, c_size, i, size; /* dc values */ y_size = (2 * s->mb_width + 2) * (2 * s->mb_height + 2); c_size = (s->mb_width + 2) * (s->mb_height + 2); size = y_size + 2 * c_size; s->dc_val[0] = malloc(size * sizeof(INT16)); if (s->dc_val[0] == NULL) goto fail; s->dc_val[1] = s->dc_val[0] + y_size; s->dc_val[2] = s->dc_val[1] + c_size; for(i=0;idc_val[0][i] = 1024; /* ac values */ s->ac_val[0] = av_mallocz(size * sizeof(INT16) * 16); if (s->ac_val[0] == NULL) goto fail; s->ac_val[1] = s->ac_val[0] + y_size; s->ac_val[2] = s->ac_val[1] + c_size; /* cbp values */ s->coded_block = av_mallocz(y_size); if (!s->coded_block) goto fail; } /* default structure is frame */ s->picture_structure = PICT_FRAME; /* init macroblock skip table */ if (!s->encoding) { s->mbskip_table = av_mallocz(s->mb_width * s->mb_height); if (!s->mbskip_table) goto fail; } s->context_initialized = 1; return 0; fail: if (s->motion_val) free(s->motion_val); if (s->dc_val[0]) free(s->dc_val[0]); if (s->ac_val[0]) free(s->ac_val[0]); if (s->coded_block) free(s->coded_block); if (s->mbskip_table) free(s->mbskip_table); for(i=0;i<3;i++) { if (s->last_picture_base[i]) free(s->last_picture_base[i]); if (s->next_picture_base[i]) free(s->next_picture_base[i]); if (s->aux_picture_base[i]) free(s->aux_picture_base[i]); } return -1; } /* init common structure for both encoder and decoder */ void MPV_common_end(MpegEncContext *s) { int i; if (s->motion_val) free(s->motion_val); if (s->h263_pred) { free(s->dc_val[0]); free(s->ac_val[0]); free(s->coded_block); } if (s->mbskip_table) free(s->mbskip_table); for(i=0;i<3;i++) { free(s->last_picture_base[i]); free(s->next_picture_base[i]); if (s->has_b_frames) free(s->aux_picture_base[i]); } s->context_initialized = 0; } /* init video encoder */ int MPV_encode_init(AVCodecContext *avctx) { MpegEncContext *s = avctx->priv_data; int i; s->bit_rate = avctx->bit_rate; s->frame_rate = avctx->frame_rate; s->width = avctx->width; s->height = avctx->height; s->gop_size = avctx->gop_size; if (s->gop_size <= 1) { s->intra_only = 1; s->gop_size = 12; } else { s->intra_only = 0; } s->full_search = motion_estimation_method; s->fixed_qscale = (avctx->flags & CODEC_FLAG_QSCALE); switch(avctx->codec->id) { case CODEC_ID_MPEG1VIDEO: s->out_format = FMT_MPEG1; break; case CODEC_ID_MJPEG: s->out_format = FMT_MJPEG; s->intra_only = 1; /* force intra only for jpeg */ if (mjpeg_init(s) < 0) return -1; break; case CODEC_ID_H263: if (h263_get_picture_format(s->width, s->height) == 7) return -1; s->out_format = FMT_H263; break; case CODEC_ID_H263P: s->out_format = FMT_H263; s->h263_plus = 1; s->unrestricted_mv = 1; /* These are just to be sure */ s->umvplus = 0; s->umvplus_dec = 0; break; case CODEC_ID_RV10: s->out_format = FMT_H263; s->h263_rv10 = 1; break; case CODEC_ID_MPEG4: s->out_format = FMT_H263; s->h263_pred = 1; s->unrestricted_mv = 1; break; case CODEC_ID_MSMPEG4: s->out_format = FMT_H263; s->h263_msmpeg4 = 1; s->h263_pred = 1; s->unrestricted_mv = 1; break; default: return -1; } if (s->out_format == FMT_H263) h263_encode_init_vlc(s); s->encoding = 1; /* init */ if (MPV_common_init(s) < 0) return -1; /* init default q matrix */ for(i=0;i<64;i++) { s->intra_matrix[i] = default_intra_matrix[i]; s->non_intra_matrix[i] = default_non_intra_matrix[i]; } /* rate control init */ rate_control_init(s); s->picture_number = 0; s->fake_picture_number = 0; /* motion detector init */ s->f_code = 1; return 0; } int MPV_encode_end(AVCodecContext *avctx) { MpegEncContext *s = avctx->priv_data; #ifdef STATS print_stats(); #endif MPV_common_end(s); if (s->out_format == FMT_MJPEG) mjpeg_close(s); return 0; } /* draw the edges of width 'w' of an image of size width, height */ static void draw_edges(UINT8 *buf, int wrap, int width, int height, int w) { UINT8 *ptr, *last_line; int i; last_line = buf + (height - 1) * wrap; for(i=0;imb_skiped = 0; if (s->pict_type == B_TYPE) { for(i=0;i<3;i++) { s->current_picture[i] = s->aux_picture[i]; } } else { for(i=0;i<3;i++) { /* swap next and last */ tmp = s->last_picture[i]; s->last_picture[i] = s->next_picture[i]; s->next_picture[i] = tmp; s->current_picture[i] = tmp; } } } /* generic function for encode/decode called after a frame has been coded/decoded */ void MPV_frame_end(MpegEncContext *s) { /* draw edge for correct motion prediction if outside */ if (s->pict_type != B_TYPE) { draw_edges(s->current_picture[0], s->linesize, s->width, s->height, EDGE_WIDTH); draw_edges(s->current_picture[1], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2); draw_edges(s->current_picture[2], s->linesize/2, s->width/2, s->height/2, EDGE_WIDTH/2); } } int MPV_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) { MpegEncContext *s = avctx->priv_data; AVPicture *pict = data; int i, j; if (s->fixed_qscale) s->qscale = avctx->quality; init_put_bits(&s->pb, buf, buf_size, NULL, NULL); if (!s->intra_only) { /* first picture of GOP is intra */ if ((s->picture_number % s->gop_size) == 0) s->pict_type = I_TYPE; else s->pict_type = P_TYPE; } else { s->pict_type = I_TYPE; } avctx->key_frame = (s->pict_type == I_TYPE); MPV_frame_start(s); for(i=0;i<3;i++) { UINT8 *src = pict->data[i]; UINT8 *dest = s->current_picture[i]; int src_wrap = pict->linesize[i]; int dest_wrap = s->linesize; int w = s->width; int h = s->height; if (i >= 1) { dest_wrap >>= 1; w >>= 1; h >>= 1; } for(j=0;jnew_picture[i] = s->current_picture[i]; } encode_picture(s, s->picture_number); MPV_frame_end(s); s->picture_number++; if (s->out_format == FMT_MJPEG) mjpeg_picture_trailer(s); flush_put_bits(&s->pb); s->total_bits += (s->pb.buf_ptr - s->pb.buf) * 8; avctx->quality = s->qscale; return s->pb.buf_ptr - s->pb.buf; } static inline int clip(int a, int amin, int amax) { if (a < amin) return amin; else if (a > amax) return amax; else return a; } /* apply one mpeg motion vector to the three components */ static inline void mpeg_motion(MpegEncContext *s, UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr, int dest_offset, UINT8 **ref_picture, int src_offset, int field_based, op_pixels_func *pix_op, int motion_x, int motion_y, int h) { UINT8 *ptr; int dxy, offset, mx, my, src_x, src_y, height, linesize; dxy = ((motion_y & 1) << 1) | (motion_x & 1); src_x = s->mb_x * 16 + (motion_x >> 1); src_y = s->mb_y * (16 >> field_based) + (motion_y >> 1); /* WARNING: do no forget half pels */ height = s->height >> field_based; src_x = clip(src_x, -16, s->width); if (src_x == s->width) dxy &= ~1; src_y = clip(src_y, -16, height); if (src_y == height) dxy &= ~2; linesize = s->linesize << field_based; ptr = ref_picture[0] + (src_y * linesize) + (src_x) + src_offset; dest_y += dest_offset; pix_op[dxy](dest_y, ptr, linesize, h); pix_op[dxy](dest_y + 8, ptr + 8, linesize, h); if (s->out_format == FMT_H263) { dxy = 0; if ((motion_x & 3) != 0) dxy |= 1; if ((motion_y & 3) != 0) dxy |= 2; mx = motion_x >> 2; my = motion_y >> 2; } else { mx = motion_x / 2; my = motion_y / 2; dxy = ((my & 1) << 1) | (mx & 1); mx >>= 1; my >>= 1; } src_x = s->mb_x * 8 + mx; src_y = s->mb_y * (8 >> field_based) + my; src_x = clip(src_x, -8, s->width >> 1); if (src_x == (s->width >> 1)) dxy &= ~1; src_y = clip(src_y, -8, height >> 1); if (src_y == (height >> 1)) dxy &= ~2; offset = (src_y * (linesize >> 1)) + src_x + (src_offset >> 1); ptr = ref_picture[1] + offset; pix_op[dxy](dest_cb + (dest_offset >> 1), ptr, linesize >> 1, h >> 1); ptr = ref_picture[2] + offset; pix_op[dxy](dest_cr + (dest_offset >> 1), ptr, linesize >> 1, h >> 1); } static inline void MPV_motion(MpegEncContext *s, UINT8 *dest_y, UINT8 *dest_cb, UINT8 *dest_cr, int dir, UINT8 **ref_picture, op_pixels_func *pix_op) { int dxy, offset, mx, my, src_x, src_y, motion_x, motion_y; int mb_x, mb_y, i; UINT8 *ptr, *dest; mb_x = s->mb_x; mb_y = s->mb_y; switch(s->mv_type) { case MV_TYPE_16X16: mpeg_motion(s, dest_y, dest_cb, dest_cr, 0, ref_picture, 0, 0, pix_op, s->mv[dir][0][0], s->mv[dir][0][1], 16); break; case MV_TYPE_8X8: for(i=0;i<4;i++) { motion_x = s->mv[dir][i][0]; motion_y = s->mv[dir][i][1]; dxy = ((motion_y & 1) << 1) | (motion_x & 1); src_x = mb_x * 16 + (motion_x >> 1) + (i & 1) * 8; src_y = mb_y * 16 + (motion_y >> 1) + ((i >> 1) & 1) * 8; /* WARNING: do no forget half pels */ src_x = clip(src_x, -16, s->width); if (src_x == s->width) dxy &= ~1; src_y = clip(src_y, -16, s->height); if (src_y == s->height) dxy &= ~2; ptr = ref_picture[0] + (src_y * s->linesize) + (src_x); dest = dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize; pix_op[dxy](dest, ptr, s->linesize, 8); } /* In case of 8X8, we construct a single chroma motion vector with a special rounding */ mx = 0; my = 0; for(i=0;i<4;i++) { mx += s->mv[dir][i][0]; my += s->mv[dir][i][1]; } if (mx >= 0) mx = (h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1)); else { mx = -mx; mx = -(h263_chroma_roundtab[mx & 0xf] + ((mx >> 3) & ~1)); } if (my >= 0) my = (h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1)); else { my = -my; my = -(h263_chroma_roundtab[my & 0xf] + ((my >> 3) & ~1)); } dxy = ((my & 1) << 1) | (mx & 1); mx >>= 1; my >>= 1; src_x = mb_x * 8 + mx; src_y = mb_y * 8 + my; src_x = clip(src_x, -8, s->width/2); if (src_x == s->width/2) dxy &= ~1; src_y = clip(src_y, -8, s->height/2); if (src_y == s->height/2) dxy &= ~2; offset = (src_y * (s->linesize >> 1)) + src_x; ptr = ref_picture[1] + offset; pix_op[dxy](dest_cb, ptr, s->linesize >> 1, 8); ptr = ref_picture[2] + offset; pix_op[dxy](dest_cr, ptr, s->linesize >> 1, 8); break; case MV_TYPE_FIELD: if (s->picture_structure == PICT_FRAME) { /* top field */ mpeg_motion(s, dest_y, dest_cb, dest_cr, 0, ref_picture, s->field_select[dir][0] ? s->linesize : 0, 1, pix_op, s->mv[dir][0][0], s->mv[dir][0][1], 8); /* bottom field */ mpeg_motion(s, dest_y, dest_cb, dest_cr, s->linesize, ref_picture, s->field_select[dir][1] ? s->linesize : 0, 1, pix_op, s->mv[dir][1][0], s->mv[dir][1][1], 8); } else { } break; } } /* put block[] to dest[] */ static inline void put_dct(MpegEncContext *s, DCTELEM *block, int i, UINT8 *dest, int line_size) { if (!s->mpeg2) s->dct_unquantize(s, block, i, s->qscale); ff_idct (block); put_pixels_clamped(block, dest, line_size); } /* add block[] to dest[] */ static inline void add_dct(MpegEncContext *s, DCTELEM *block, int i, UINT8 *dest, int line_size) { if (s->block_last_index[i] >= 0) { if (!s->mpeg2) s->dct_unquantize(s, block, i, s->qscale); ff_idct (block); add_pixels_clamped(block, dest, line_size); } } /* generic function called after a macroblock has been parsed by the decoder or after it has been encoded by the encoder. Important variables used: s->mb_intra : true if intra macroblock s->mv_dir : motion vector direction s->mv_type : motion vector type s->mv : motion vector s->interlaced_dct : true if interlaced dct used (mpeg2) */ void MPV_decode_mb(MpegEncContext *s, DCTELEM block[6][64]) { int mb_x, mb_y, motion_x, motion_y; int dct_linesize, dct_offset; op_pixels_func *op_pix; mb_x = s->mb_x; mb_y = s->mb_y; /* update DC predictors for P macroblocks */ if (!s->mb_intra) { if (s->h263_pred) { int wrap, x, y, v; wrap = 2 * s->mb_width + 2; v = 1024; x = 2 * mb_x + 1; y = 2 * mb_y + 1; s->dc_val[0][(x) + (y) * wrap] = v; s->dc_val[0][(x + 1) + (y) * wrap] = v; s->dc_val[0][(x) + (y + 1) * wrap] = v; s->dc_val[0][(x + 1) + (y + 1) * wrap] = v; /* ac pred */ memset(s->ac_val[0][(x) + (y) * wrap], 0, 16 * sizeof(INT16)); memset(s->ac_val[0][(x + 1) + (y) * wrap], 0, 16 * sizeof(INT16)); memset(s->ac_val[0][(x) + (y + 1) * wrap], 0, 16 * sizeof(INT16)); memset(s->ac_val[0][(x + 1) + (y + 1) * wrap], 0, 16 * sizeof(INT16)); if (s->h263_msmpeg4) { s->coded_block[(x) + (y) * wrap] = 0; s->coded_block[(x + 1) + (y) * wrap] = 0; s->coded_block[(x) + (y + 1) * wrap] = 0; s->coded_block[(x + 1) + (y + 1) * wrap] = 0; } /* chroma */ wrap = s->mb_width + 2; x = mb_x + 1; y = mb_y + 1; s->dc_val[1][(x) + (y) * wrap] = v; s->dc_val[2][(x) + (y) * wrap] = v; /* ac pred */ memset(s->ac_val[1][(x) + (y) * wrap], 0, 16 * sizeof(INT16)); memset(s->ac_val[2][(x) + (y) * wrap], 0, 16 * sizeof(INT16)); } else { s->last_dc[0] = 128 << s->intra_dc_precision; s->last_dc[1] = 128 << s->intra_dc_precision; s->last_dc[2] = 128 << s->intra_dc_precision; } } /* update motion predictor */ if (s->out_format == FMT_H263) { int x, y, wrap; x = 2 * mb_x + 1; y = 2 * mb_y + 1; wrap = 2 * s->mb_width + 2; if (s->mb_intra) { motion_x = 0; motion_y = 0; goto motion_init; } else if (s->mv_type == MV_TYPE_16X16) { motion_x = s->mv[0][0][0]; motion_y = s->mv[0][0][1]; motion_init: /* no update if 8X8 because it has been done during parsing */ s->motion_val[(x) + (y) * wrap][0] = motion_x; s->motion_val[(x) + (y) * wrap][1] = motion_y; s->motion_val[(x + 1) + (y) * wrap][0] = motion_x; s->motion_val[(x + 1) + (y) * wrap][1] = motion_y; s->motion_val[(x) + (y + 1) * wrap][0] = motion_x; s->motion_val[(x) + (y + 1) * wrap][1] = motion_y; s->motion_val[(x + 1) + (y + 1) * wrap][0] = motion_x; s->motion_val[(x + 1) + (y + 1) * wrap][1] = motion_y; } } if (!s->intra_only) { UINT8 *dest_y, *dest_cb, *dest_cr; UINT8 *mbskip_ptr; /* avoid copy if macroblock skipped in last frame too */ if (!s->encoding && s->pict_type != B_TYPE) { mbskip_ptr = &s->mbskip_table[s->mb_y * s->mb_width + s->mb_x]; if (s->mb_skiped) { s->mb_skiped = 0; /* if previous was skipped too, then nothing to do ! */ if (*mbskip_ptr != 0) goto the_end; *mbskip_ptr = 1; /* indicate that this time we skiped it */ } else { *mbskip_ptr = 0; /* not skipped */ } } dest_y = s->current_picture[0] + (mb_y * 16 * s->linesize) + mb_x * 16; dest_cb = s->current_picture[1] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8; dest_cr = s->current_picture[2] + (mb_y * 8 * (s->linesize >> 1)) + mb_x * 8; if (s->interlaced_dct) { dct_linesize = s->linesize * 2; dct_offset = s->linesize; } else { dct_linesize = s->linesize; dct_offset = s->linesize * 8; } if (!s->mb_intra) { /* motion handling */ if (!s->no_rounding) op_pix = put_pixels_tab; else op_pix = put_no_rnd_pixels_tab; if (s->mv_dir & MV_DIR_FORWARD) { MPV_motion(s, dest_y, dest_cb, dest_cr, 0, s->last_picture, op_pix); if (!s->no_rounding) op_pix = avg_pixels_tab; else op_pix = avg_no_rnd_pixels_tab; } if (s->mv_dir & MV_DIR_BACKWARD) { MPV_motion(s, dest_y, dest_cb, dest_cr, 1, s->next_picture, op_pix); } /* add dct residue */ add_dct(s, block[0], 0, dest_y, dct_linesize); add_dct(s, block[1], 1, dest_y + 8, dct_linesize); add_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize); add_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize); add_dct(s, block[4], 4, dest_cb, s->linesize >> 1); add_dct(s, block[5], 5, dest_cr, s->linesize >> 1); } else { /* dct only in intra block */ put_dct(s, block[0], 0, dest_y, dct_linesize); put_dct(s, block[1], 1, dest_y + 8, dct_linesize); put_dct(s, block[2], 2, dest_y + dct_offset, dct_linesize); put_dct(s, block[3], 3, dest_y + dct_offset + 8, dct_linesize); put_dct(s, block[4], 4, dest_cb, s->linesize >> 1); put_dct(s, block[5], 5, dest_cr, s->linesize >> 1); } } the_end: emms_c(); } static void encode_picture(MpegEncContext *s, int picture_number) { int mb_x, mb_y, wrap; UINT8 *ptr; int i, motion_x, motion_y; s->picture_number = picture_number; if (!s->fixed_qscale) s->qscale = rate_estimate_qscale(s); /* precompute matrix */ if (s->out_format == FMT_MJPEG) { /* for mjpeg, we do include qscale in the matrix */ s->intra_matrix[0] = default_intra_matrix[0]; for(i=1;i<64;i++) s->intra_matrix[i] = (default_intra_matrix[i] * s->qscale) >> 3; convert_matrix(s->q_intra_matrix, s->intra_matrix, 8); } else { convert_matrix(s->q_intra_matrix, s->intra_matrix, s->qscale); convert_matrix(s->q_non_intra_matrix, s->non_intra_matrix, s->qscale); } switch(s->out_format) { case FMT_MJPEG: mjpeg_picture_header(s); break; case FMT_H263: if (s->h263_msmpeg4) msmpeg4_encode_picture_header(s, picture_number); else if (s->h263_pred) mpeg4_encode_picture_header(s, picture_number); else if (s->h263_rv10) rv10_encode_picture_header(s, picture_number); else h263_encode_picture_header(s, picture_number); break; case FMT_MPEG1: mpeg1_encode_picture_header(s, picture_number); break; } /* init last dc values */ /* note: quant matrix value (8) is implied here */ s->last_dc[0] = 128; s->last_dc[1] = 128; s->last_dc[2] = 128; s->mb_incr = 1; s->last_mv[0][0][0] = 0; s->last_mv[0][0][1] = 0; s->mv_type = MV_TYPE_16X16; s->mv_dir = MV_DIR_FORWARD; for(mb_y=0; mb_y < s->mb_height; mb_y++) { for(mb_x=0; mb_x < s->mb_width; mb_x++) { s->mb_x = mb_x; s->mb_y = mb_y; /* compute motion vector and macro block type (intra or non intra) */ motion_x = 0; motion_y = 0; if (s->pict_type == P_TYPE) { s->mb_intra = estimate_motion(s, mb_x, mb_y, &motion_x, &motion_y); } else { s->mb_intra = 1; } /* get the pixels */ wrap = s->linesize; ptr = s->new_picture[0] + (mb_y * 16 * wrap) + mb_x * 16; get_pixels(s->block[0], ptr, wrap); get_pixels(s->block[1], ptr + 8, wrap); get_pixels(s->block[2], ptr + 8 * wrap, wrap); get_pixels(s->block[3], ptr + 8 * wrap + 8, wrap); wrap = s->linesize >> 1; ptr = s->new_picture[1] + (mb_y * 8 * wrap) + mb_x * 8; get_pixels(s->block[4], ptr, wrap); wrap = s->linesize >> 1; ptr = s->new_picture[2] + (mb_y * 8 * wrap) + mb_x * 8; get_pixels(s->block[5], ptr, wrap); /* subtract previous frame if non intra */ if (!s->mb_intra) { int dxy, offset, mx, my; dxy = ((motion_y & 1) << 1) | (motion_x & 1); ptr = s->last_picture[0] + ((mb_y * 16 + (motion_y >> 1)) * s->linesize) + (mb_x * 16 + (motion_x >> 1)); sub_pixels_2(s->block[0], ptr, s->linesize, dxy); sub_pixels_2(s->block[1], ptr + 8, s->linesize, dxy); sub_pixels_2(s->block[2], ptr + s->linesize * 8, s->linesize, dxy); sub_pixels_2(s->block[3], ptr + 8 + s->linesize * 8, s->linesize ,dxy); if (s->out_format == FMT_H263) { /* special rounding for h263 */ dxy = 0; if ((motion_x & 3) != 0) dxy |= 1; if ((motion_y & 3) != 0) dxy |= 2; mx = motion_x >> 2; my = motion_y >> 2; } else { mx = motion_x / 2; my = motion_y / 2; dxy = ((my & 1) << 1) | (mx & 1); mx >>= 1; my >>= 1; } offset = ((mb_y * 8 + my) * (s->linesize >> 1)) + (mb_x * 8 + mx); ptr = s->last_picture[1] + offset; sub_pixels_2(s->block[4], ptr, s->linesize >> 1, dxy); ptr = s->last_picture[2] + offset; sub_pixels_2(s->block[5], ptr, s->linesize >> 1, dxy); } emms_c(); /* DCT & quantize */ if (s->h263_msmpeg4) { msmpeg4_dc_scale(s); } else if (s->h263_pred) { h263_dc_scale(s); } else { /* default quantization values */ s->y_dc_scale = 8; s->c_dc_scale = 8; } for(i=0;i<6;i++) { int last_index; if (av_fdct == jpeg_fdct_ifast) last_index = dct_quantize(s, s->block[i], i, s->qscale); else last_index = dct_quantize_mmx(s, s->block[i], i, s->qscale); s->block_last_index[i] = last_index; } /* huffman encode */ switch(s->out_format) { case FMT_MPEG1: mpeg1_encode_mb(s, s->block, motion_x, motion_y); break; case FMT_H263: if (s->h263_msmpeg4) msmpeg4_encode_mb(s, s->block, motion_x, motion_y); else h263_encode_mb(s, s->block, motion_x, motion_y); break; case FMT_MJPEG: mjpeg_encode_mb(s, s->block); break; } /* decompress blocks so that we keep the state of the decoder */ s->mv[0][0][0] = motion_x; s->mv[0][0][1] = motion_y; MPV_decode_mb(s, s->block); } } } static int dct_quantize(MpegEncContext *s, DCTELEM *block, int n, int qscale) { int i, j, level, last_non_zero, q; const int *qmat; av_fdct (block); /* we need this permutation so that we correct the IDCT permutation. will be moved into DCT code */ block_permute(block); if (s->mb_intra) { if (n < 4) q = s->y_dc_scale; else q = s->c_dc_scale; q = q << 3; /* note: block[0] is assumed to be positive */ block[0] = (block[0] + (q >> 1)) / q; i = 1; last_non_zero = 0; if (s->out_format == FMT_H263) { qmat = s->q_non_intra_matrix; } else { qmat = s->q_intra_matrix; } } else { i = 0; last_non_zero = -1; qmat = s->q_non_intra_matrix; } for(;i<64;i++) { j = zigzag_direct[i]; level = block[j]; level = level * qmat[j]; #ifdef PARANOID { static int count = 0; int level1, level2, qmat1; double val; if (qmat == s->q_non_intra_matrix) { qmat1 = default_non_intra_matrix[j] * s->qscale; } else { qmat1 = default_intra_matrix[j] * s->qscale; } if (av_fdct != jpeg_fdct_ifast) val = ((double)block[j] * 8.0) / (double)qmat1; else val = ((double)block[j] * 8.0 * 2048.0) / ((double)qmat1 * aanscales[j]); level1 = (int)val; level2 = level / (1 << (QMAT_SHIFT - 3)); if (level1 != level2) { fprintf(stderr, "%d: quant error qlevel=%d wanted=%d level=%d qmat1=%d qmat=%d wantedf=%0.6f\n", count, level2, level1, block[j], qmat1, qmat[j], val); count++; } } #endif /* XXX: slight error for the low range. Test should be equivalent to (level <= -(1 << (QMAT_SHIFT - 3)) || level >= (1 << (QMAT_SHIFT - 3))) */ if (((level << (31 - (QMAT_SHIFT - 3))) >> (31 - (QMAT_SHIFT - 3))) != level) { level = level / (1 << (QMAT_SHIFT - 3)); /* XXX: currently, this code is not optimal. the range should be: mpeg1: -255..255 mpeg2: -2048..2047 h263: -128..127 mpeg4: -2048..2047 */ if (level > 127) level = 127; else if (level < -128) level = -128; block[j] = level; last_non_zero = i; } else { block[j] = 0; } } return last_non_zero; } static int dct_quantize_mmx(MpegEncContext *s, DCTELEM *block, int n, int qscale) { int i, j, level, last_non_zero, q; const int *qmat; av_fdct (block); /* we need this permutation so that we correct the IDCT permutation. will be moved into DCT code */ block_permute(block); if (s->mb_intra) { if (n < 4) q = s->y_dc_scale; else q = s->c_dc_scale; /* note: block[0] is assumed to be positive */ block[0] = (block[0] + (q >> 1)) / q; i = 1; last_non_zero = 0; if (s->out_format == FMT_H263) { qmat = s->q_non_intra_matrix; } else { qmat = s->q_intra_matrix; } } else { i = 0; last_non_zero = -1; qmat = s->q_non_intra_matrix; } for(;i<64;i++) { j = zigzag_direct[i]; level = block[j]; level = level * qmat[j]; /* XXX: slight error for the low range. Test should be equivalent to (level <= -(1 << (QMAT_SHIFT_MMX - 3)) || level >= (1 << (QMAT_SHIFT_MMX - 3))) */ if (((level << (31 - (QMAT_SHIFT_MMX - 3))) >> (31 - (QMAT_SHIFT_MMX - 3))) != level) { level = level / (1 << (QMAT_SHIFT_MMX - 3)); /* XXX: currently, this code is not optimal. the range should be: mpeg1: -255..255 mpeg2: -2048..2047 h263: -128..127 mpeg4: -2048..2047 */ if (level > 127) level = 127; else if (level < -128) level = -128; block[j] = level; last_non_zero = i; } else { block[j] = 0; } } return last_non_zero; } static void dct_unquantize_mpeg1_c(MpegEncContext *s, DCTELEM *block, int n, int qscale) { int i, level; const UINT16 *quant_matrix; if (s->mb_intra) { if (n < 4) block[0] = block[0] * s->y_dc_scale; else block[0] = block[0] * s->c_dc_scale; /* XXX: only mpeg1 */ quant_matrix = s->intra_matrix; for(i=1;i<64;i++) { level = block[i]; if (level) { if (level < 0) { level = -level; level = (int)(level * qscale * quant_matrix[i]) >> 3; level = (level - 1) | 1; level = -level; } else { level = (int)(level * qscale * quant_matrix[i]) >> 3; level = (level - 1) | 1; } #ifdef PARANOID if (level < -2048 || level > 2047) fprintf(stderr, "unquant error %d %d\n", i, level); #endif block[i] = level; } } } else { i = 0; quant_matrix = s->non_intra_matrix; for(;i<64;i++) { level = block[i]; if (level) { if (level < 0) { level = -level; level = (((level << 1) + 1) * qscale * ((int) (quant_matrix[i]))) >> 4; level = (level - 1) | 1; level = -level; } else { level = (((level << 1) + 1) * qscale * ((int) (quant_matrix[i]))) >> 4; level = (level - 1) | 1; } #ifdef PARANOID if (level < -2048 || level > 2047) fprintf(stderr, "unquant error %d %d\n", i, level); #endif block[i] = level; } } } } static void dct_unquantize_h263_c(MpegEncContext *s, DCTELEM *block, int n, int qscale) { int i, level, qmul, qadd; if (s->mb_intra) { if (n < 4) block[0] = block[0] * s->y_dc_scale; else block[0] = block[0] * s->c_dc_scale; i = 1; } else { i = 0; } qmul = s->qscale << 1; qadd = (s->qscale - 1) | 1; for(;i<64;i++) { level = block[i]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } #ifdef PARANOID if (level < -2048 || level > 2047) fprintf(stderr, "unquant error %d %d\n", i, level); #endif block[i] = level; } } } /* rate control */ /* an I frame is I_FRAME_SIZE_RATIO bigger than a P frame */ #define I_FRAME_SIZE_RATIO 3.0 #define QSCALE_K 20 static void rate_control_init(MpegEncContext *s) { s->wanted_bits = 0; if (s->intra_only) { s->I_frame_bits = ((INT64)s->bit_rate * FRAME_RATE_BASE) / s->frame_rate; s->P_frame_bits = s->I_frame_bits; } else { s->P_frame_bits = (int) ((float)(s->gop_size * s->bit_rate) / (float)((float)s->frame_rate / FRAME_RATE_BASE * (I_FRAME_SIZE_RATIO + s->gop_size - 1))); s->I_frame_bits = (int)(s->P_frame_bits * I_FRAME_SIZE_RATIO); } #if defined(DEBUG) printf("I_frame_size=%d P_frame_size=%d\n", s->I_frame_bits, s->P_frame_bits); #endif } /* * This heuristic is rather poor, but at least we do not have to * change the qscale at every macroblock. */ static int rate_estimate_qscale(MpegEncContext *s) { INT64 total_bits = s->total_bits; float q; int qscale, diff, qmin; if (s->pict_type == I_TYPE) { s->wanted_bits += s->I_frame_bits; } else { s->wanted_bits += s->P_frame_bits; } diff = s->wanted_bits - total_bits; q = 31.0 - (float)diff / (QSCALE_K * s->mb_height * s->mb_width); /* adjust for I frame */ if (s->pict_type == I_TYPE && !s->intra_only) { q /= I_FRAME_SIZE_RATIO; } /* using a too small Q scale leeds to problems in mpeg1 and h263 because AC coefficients are clamped to 255 or 127 */ qmin = 3; if (q < qmin) q = qmin; else if (q > 31) q = 31; qscale = (int)(q + 0.5); #if defined(DEBUG) printf("%d: total=%0.0f br=%0.1f diff=%d qest=%0.1f\n", s->picture_number, (double)total_bits, (float)s->frame_rate / FRAME_RATE_BASE * total_bits / s->picture_number, diff, q); #endif return qscale; } AVCodec mpeg1video_encoder = { "mpeg1video", CODEC_TYPE_VIDEO, CODEC_ID_MPEG1VIDEO, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, }; AVCodec h263_encoder = { "h263", CODEC_TYPE_VIDEO, CODEC_ID_H263, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, }; AVCodec h263p_encoder = { "h263p", CODEC_TYPE_VIDEO, CODEC_ID_H263P, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, }; AVCodec rv10_encoder = { "rv10", CODEC_TYPE_VIDEO, CODEC_ID_RV10, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, }; AVCodec mjpeg_encoder = { "mjpeg", CODEC_TYPE_VIDEO, CODEC_ID_MJPEG, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, }; AVCodec mpeg4_encoder = { "mpeg4", CODEC_TYPE_VIDEO, CODEC_ID_MPEG4, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, }; AVCodec msmpeg4_encoder = { "msmpeg4", CODEC_TYPE_VIDEO, CODEC_ID_MSMPEG4, sizeof(MpegEncContext), MPV_encode_init, MPV_encode_picture, MPV_encode_end, };