/** * MLP encoder * Copyright (c) 2008 Ramiro Polla * Copyright (c) 2016-2019 Jai Luthra * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config_components.h" #include "avcodec.h" #include "codec_internal.h" #include "encode.h" #include "put_bits.h" #include "audio_frame_queue.h" #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/crc.h" #include "libavutil/avstring.h" #include "libavutil/intmath.h" #include "libavutil/opt.h" #include "libavutil/samplefmt.h" #include "libavutil/thread.h" #include "mlp_parse.h" #include "mlp.h" #include "lpc.h" #define MAX_NCHANNELS (MAX_CHANNELS + 2) #define MIN_HEADER_INTERVAL 8 #define MAX_HEADER_INTERVAL 128 #define MLP_MIN_LPC_ORDER 1 #define MLP_MAX_LPC_ORDER 8 #define MLP_MIN_LPC_SHIFT 0 #define MLP_MAX_LPC_SHIFT 15 typedef struct RestartHeader { uint8_t min_channel; ///< The index of the first channel coded in this substream. uint8_t max_channel; ///< The index of the last channel coded in this substream. uint8_t max_matrix_channel; ///< The number of channels input into the rematrix stage. int8_t max_shift; uint8_t noise_shift; ///< The left shift applied to random noise in 0x31ea substreams. uint32_t noisegen_seed; ///< The current seed value for the pseudorandom noise generator(s). uint8_t data_check_present; ///< Set if the substream contains extra info to check the size of VLC blocks. int32_t lossless_check_data; ///< XOR of all output samples uint8_t max_huff_lsbs; ///< largest huff_lsbs uint8_t max_output_bits; ///< largest output bit-depth } RestartHeader; typedef struct MatrixParams { uint8_t count; ///< number of matrices to apply uint8_t outch[MAX_MATRICES]; ///< output channel for each matrix int32_t forco[MAX_MATRICES][MAX_NCHANNELS]; ///< forward coefficients int32_t coeff[MAX_MATRICES][MAX_NCHANNELS]; ///< decoding coefficients uint8_t fbits[MAX_MATRICES]; ///< fraction bits int8_t noise_shift[MAX_CHANNELS]; uint8_t lsb_bypass[MAX_MATRICES]; int8_t bypassed_lsbs[MAX_MATRICES][MAX_BLOCKSIZE]; } MatrixParams; #define PARAMS_DEFAULT (0xff) #define PARAM_PRESENCE_FLAGS (1 << 8) typedef struct DecodingParams { uint16_t blocksize; ///< number of PCM samples in current audio block uint8_t quant_step_size[MAX_CHANNELS]; ///< left shift to apply to Huffman-decoded residuals int8_t output_shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output. uint8_t max_order[MAX_CHANNELS]; MatrixParams matrix_params; uint8_t param_presence_flags; ///< Bitmask of which parameter sets are conveyed in a decoding parameter block. int32_t sample_buffer[MAX_NCHANNELS][MAX_BLOCKSIZE]; } DecodingParams; typedef struct BestOffset { int32_t offset; uint32_t bitcount; uint8_t lsb_bits; int32_t min; int32_t max; } BestOffset; #define HUFF_OFFSET_MIN (-16384) #define HUFF_OFFSET_MAX ( 16383) /** Number of possible codebooks (counting "no codebooks") */ #define NUM_CODEBOOKS 4 typedef struct MLPBlock { unsigned int seq_size; ChannelParams channel_params[MAX_CHANNELS]; DecodingParams decoding_params; int32_t lossless_check_data; unsigned int max_output_bits; ///< largest output bit-depth BestOffset best_offset[MAX_CHANNELS][NUM_CODEBOOKS]; ChannelParams major_channel_params[MAX_CHANNELS]; ///< ChannelParams to be written to bitstream. DecodingParams major_decoding_params; ///< DecodingParams to be written to bitstream. int major_params_changed; ///< params_changed to be written to bitstream. int32_t inout_buffer[MAX_NCHANNELS][MAX_BLOCKSIZE]; } MLPBlock; typedef struct MLPSubstream { RestartHeader restart_header; RestartHeader *cur_restart_header; MLPBlock b[MAX_HEADER_INTERVAL + 1]; unsigned int major_cur_subblock_index; unsigned int major_filter_state_subblock; int32_t coefs[MAX_CHANNELS][MAX_LPC_ORDER][MAX_LPC_ORDER]; } MLPSubstream; typedef struct MLPEncodeContext { AVClass *class; AVCodecContext *avctx; int max_restart_interval; ///< Max interval of access units in between two major frames. int min_restart_interval; ///< Min interval of access units in between two major frames. int cur_restart_interval; int lpc_coeff_precision; int rematrix_precision; int lpc_type; int lpc_passes; int prediction_order; int max_codebook_search; int num_substreams; ///< Number of substreams contained within this stream. int num_channels; /**< Number of channels in major_scratch_buffer. * Normal channels + noise channels. */ int coded_sample_fmt [2]; ///< sample format encoded for MLP int coded_sample_rate[2]; ///< sample rate encoded for MLP int coded_peak_bitrate; ///< peak bitrate for this major sync header int flags; ///< major sync info flags /* channel_meaning */ int substream_info; int thd_substream_info; int fs; int wordlength; int channel_occupancy; int summary_info; int32_t last_frames; ///< Signal last frames. unsigned int major_number_of_frames; unsigned int next_major_number_of_frames; unsigned int major_frame_size; ///< Number of samples in current major frame being encoded. unsigned int next_major_frame_size; ///< Counter of number of samples for next major frame. unsigned int frame_index; ///< Index of current frame being encoded. unsigned int restart_intervals; ///< Number of possible major frame sizes. uint16_t output_timing; ///< Timestamp of current access unit. uint16_t input_timing; ///< Decoding timestamp of current access unit. uint8_t noise_type; uint8_t channel_arrangement; ///< channel arrangement for MLP streams uint16_t channel_arrangement8; ///< 8 channel arrangement for THD streams uint8_t multichannel_type6ch; ///< channel modifier for TrueHD stream 0 uint8_t multichannel_type8ch; ///< channel modifier for TrueHD stream 0 uint8_t ch2_presentation_mod; ///< channel modifier for TrueHD stream 0 uint8_t ch6_presentation_mod; ///< channel modifier for TrueHD stream 1 uint8_t ch8_presentation_mod; ///< channel modifier for TrueHD stream 2 MLPSubstream s[2]; int32_t filter_state[NUM_FILTERS][MAX_HEADER_INTERVAL * MAX_BLOCKSIZE]; int32_t lpc_sample_buffer[MAX_HEADER_INTERVAL * MAX_BLOCKSIZE]; AudioFrameQueue afq; /* Analysis stage. */ unsigned int number_of_frames; unsigned int number_of_subblocks; int shorten_by; LPCContext lpc_ctx; } MLPEncodeContext; static ChannelParams restart_channel_params[MAX_CHANNELS]; static DecodingParams restart_decoding_params[MAX_SUBSTREAMS]; static const BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}}; #define SYNC_MAJOR 0xf8726f #define MAJOR_SYNC_INFO_SIGNATURE 0xB752 /* must be set for DVD-A */ #define FLAGS_DVDA 0x4000 /* FIFO delay must be constant */ #define FLAGS_CONST 0x8000 #define SUBSTREAM_INFO_MAX_2_CHAN 0x01 #define SUBSTREAM_INFO_HIGH_RATE 0x02 #define SUBSTREAM_INFO_ALWAYS_SET 0x04 #define SUBSTREAM_INFO_2_SUBSTREAMS 0x08 /**************************************************************************** ************ Functions that copy, clear, or compare parameters ************* ****************************************************************************/ /** Compares two FilterParams structures and returns 1 if anything has * changed. Returns 0 if they are both equal. */ static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter) { const FilterParams *prev = &prev_cp->filter_params[filter]; const FilterParams *fp = &cp->filter_params[filter]; if (prev->order != fp->order) return 1; if (!fp->order) return 0; if (prev->shift != fp->shift) return 1; for (int i = 0; i < fp->order; i++) if (prev_cp->coeff[filter][i] != cp->coeff[filter][i]) return 1; return 0; } /** Compare two primitive matrices and returns 1 if anything has changed. * Returns 0 if they are both equal. */ static int compare_matrix_params(MLPEncodeContext *ctx, MLPSubstream *s, const MatrixParams *prev, const MatrixParams *mp) { RestartHeader *rh = s->cur_restart_header; if (prev->count != mp->count) return 1; if (!mp->count) return 0; for (unsigned int mat = 0; mat < mp->count; mat++) { if (prev->outch[mat] != mp->outch[mat]) return 1; if (prev->fbits[mat] != mp->fbits[mat]) return 1; if (prev->noise_shift[mat] != mp->noise_shift[mat]) return 1; if (prev->lsb_bypass[mat] != mp->lsb_bypass[mat]) return 1; for (int ch = 0; ch <= rh->max_matrix_channel; ch++) if (prev->coeff[mat][ch] != mp->coeff[mat][ch]) return 1; } return 0; } /** Compares two DecodingParams and ChannelParams structures to decide if a * new decoding params header has to be written. */ static int compare_decoding_params(MLPEncodeContext *ctx, MLPSubstream *s, unsigned int index) { const DecodingParams *prev = index ? &s->b[index-1].major_decoding_params : restart_decoding_params; DecodingParams *dp = &s->b[index].major_decoding_params; const MatrixParams *prev_mp = &prev->matrix_params; MatrixParams *mp = &dp->matrix_params; RestartHeader *rh = s->cur_restart_header; int retval = 0; if (prev->param_presence_flags != dp->param_presence_flags) retval |= PARAM_PRESENCE_FLAGS; if (prev->blocksize != dp->blocksize) retval |= PARAM_BLOCKSIZE; if (compare_matrix_params(ctx, s, prev_mp, mp)) retval |= PARAM_MATRIX; for (int ch = 0; ch <= rh->max_matrix_channel; ch++) if (prev->output_shift[ch] != dp->output_shift[ch]) { retval |= PARAM_OUTSHIFT; break; } for (int ch = 0; ch <= rh->max_channel; ch++) if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) { retval |= PARAM_QUANTSTEP; break; } for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { const ChannelParams *prev_cp = index ? &s->b[index-1].major_channel_params[ch] : &restart_channel_params[ch]; ChannelParams *cp = &s->b[index].major_channel_params[ch]; if (!(retval & PARAM_FIR) && compare_filter_params(prev_cp, cp, FIR)) retval |= PARAM_FIR; if (!(retval & PARAM_IIR) && compare_filter_params(prev_cp, cp, IIR)) retval |= PARAM_IIR; if (prev_cp->huff_offset != cp->huff_offset) retval |= PARAM_HUFFOFFSET; if (prev_cp->codebook != cp->codebook || prev_cp->huff_lsbs != cp->huff_lsbs ) retval |= PARAM_PRESENCE; } return retval; } static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter) { FilterParams *dst = &dst_cp->filter_params[filter]; FilterParams *src = &src_cp->filter_params[filter]; dst->order = src->order; if (dst->order) { dst->shift = src->shift; dst->coeff_shift = src->coeff_shift; dst->coeff_bits = src->coeff_bits; } for (int order = 0; order < dst->order; order++) dst_cp->coeff[filter][order] = src_cp->coeff[filter][order]; } static void copy_matrix_params(MatrixParams *dst, MatrixParams *src) { dst->count = src->count; if (!dst->count) return; for (int count = 0; count < MAX_MATRICES; count++) { dst->outch[count] = src->outch[count]; dst->fbits[count] = src->fbits[count]; dst->noise_shift[count] = src->noise_shift[count]; dst->lsb_bypass[count] = src->lsb_bypass[count]; for (int channel = 0; channel < MAX_NCHANNELS; channel++) dst->coeff[count][channel] = src->coeff[count][channel]; } } static void copy_restart_frame_params(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) { DecodingParams *dp = &s->b[index].decoding_params; copy_matrix_params(&dp->matrix_params, &s->b[1].decoding_params.matrix_params); for (int ch = 0; ch <= rh->max_matrix_channel; ch++) dp->output_shift[ch] = s->b[1].decoding_params.output_shift[ch]; for (int ch = 0; ch <= rh->max_channel; ch++) { ChannelParams *cp = &s->b[index].channel_params[ch]; dp->quant_step_size[ch] = s->b[1].decoding_params.quant_step_size[ch]; if (index) for (unsigned int filter = 0; filter < NUM_FILTERS; filter++) copy_filter_params(cp, &s->b[1].channel_params[ch], filter); } } } /** Clears a DecodingParams struct the way it should be after a restart header. */ static void clear_decoding_params(DecodingParams *decoding_params) { DecodingParams *dp = decoding_params; dp->param_presence_flags = 0xff; dp->blocksize = 0; memset(&dp->matrix_params, 0, sizeof(dp->matrix_params )); memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size)); memset(dp->sample_buffer, 0, sizeof(dp->sample_buffer )); memset(dp->output_shift, 0, sizeof(dp->output_shift )); memset(dp->max_order, MAX_FIR_ORDER, sizeof(dp->max_order)); } /** Clears a ChannelParams struct the way it should be after a restart header. */ static void clear_channel_params(ChannelParams *channel_params, int nb_channels) { for (unsigned channel = 0; channel < nb_channels; channel++) { ChannelParams *cp = &channel_params[channel]; memset(&cp->filter_params, 0, sizeof(cp->filter_params)); /* Default audio coding is 24-bit raw PCM. */ cp->huff_offset = 0; cp->codebook = 0; cp->huff_lsbs = 24; } } /** Sets default vales in our encoder for a DecodingParams struct. */ static void default_decoding_params(MLPEncodeContext *ctx, DecodingParams *dp) { uint8_t param_presence_flags = 0; clear_decoding_params(dp); param_presence_flags |= PARAM_BLOCKSIZE; param_presence_flags |= PARAM_MATRIX; param_presence_flags |= PARAM_OUTSHIFT; param_presence_flags |= PARAM_QUANTSTEP; param_presence_flags |= PARAM_FIR; param_presence_flags |= PARAM_IIR; param_presence_flags |= PARAM_HUFFOFFSET; param_presence_flags |= PARAM_PRESENCE; dp->param_presence_flags = param_presence_flags; } /****************************************************************************/ /** Calculates the smallest number of bits it takes to encode a given signed * value in two's complement. */ static int inline number_sbits(int32_t n) { return 33 - ff_clz(FFABS(n)|1) - !n; } enum InputBitDepth { BITS_16, BITS_20, BITS_24, }; static int mlp_peak_bitrate(int peak_bitrate, int sample_rate) { return ((peak_bitrate << 4) - 8) / sample_rate; } static av_cold void mlp_encode_init_static(void) { clear_channel_params (restart_channel_params, MAX_CHANNELS); clear_decoding_params(restart_decoding_params); ff_mlp_init_crc(); } static av_cold int mlp_encode_init(AVCodecContext *avctx) { static AVOnce init_static_once = AV_ONCE_INIT; MLPEncodeContext *ctx = avctx->priv_data; uint64_t channels_present; int ret; ctx->avctx = avctx; switch (avctx->sample_rate) { case 44100 << 0: avctx->frame_size = 40 << 0; ctx->coded_sample_rate[0] = 0x08 + 0; ctx->fs = 0x08 + 1; break; case 44100 << 1: avctx->frame_size = 40 << 1; ctx->coded_sample_rate[0] = 0x08 + 1; ctx->fs = 0x0C + 1; break; case 44100 << 2: ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE; avctx->frame_size = 40 << 2; ctx->coded_sample_rate[0] = 0x08 + 2; ctx->fs = 0x10 + 1; break; case 48000 << 0: avctx->frame_size = 40 << 0; ctx->coded_sample_rate[0] = 0x00 + 0; ctx->fs = 0x08 + 2; break; case 48000 << 1: avctx->frame_size = 40 << 1; ctx->coded_sample_rate[0] = 0x00 + 1; ctx->fs = 0x0C + 2; break; case 48000 << 2: ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE; avctx->frame_size = 40 << 2; ctx->coded_sample_rate[0] = 0x00 + 2; ctx->fs = 0x10 + 2; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported " "sample rates are 44100, 88200, 176400, 48000, " "96000, and 192000.\n", avctx->sample_rate); return AVERROR(EINVAL); } ctx->coded_sample_rate[1] = -1 & 0xf; ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate); ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET; if (avctx->ch_layout.nb_channels <= 2) ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN; switch (avctx->sample_fmt) { case AV_SAMPLE_FMT_S16P: ctx->coded_sample_fmt[0] = BITS_16; ctx->wordlength = 16; avctx->bits_per_raw_sample = 16; break; /* TODO 20 bits: */ case AV_SAMPLE_FMT_S32P: ctx->coded_sample_fmt[0] = BITS_24; ctx->wordlength = 24; avctx->bits_per_raw_sample = 24; break; default: av_log(avctx, AV_LOG_ERROR, "Sample format not supported. " "Only 16- and 24-bit samples are supported.\n"); return AVERROR(EINVAL); } ctx->coded_sample_fmt[1] = -1 & 0xf; ctx->input_timing = -avctx->frame_size; ctx->num_channels = avctx->ch_layout.nb_channels + 2; /* +2 noise channels */ ctx->min_restart_interval = ctx->cur_restart_interval = ctx->max_restart_interval; ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval; ctx->num_substreams = 1; channels_present = av_channel_layout_subset(&avctx->ch_layout, ~(uint64_t)0); if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) { static const uint64_t layout_arrangement[] = { AV_CH_LAYOUT_MONO, AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_2_1, AV_CH_LAYOUT_QUAD, AV_CH_LAYOUT_2POINT1, 0, 0, AV_CH_LAYOUT_SURROUND, AV_CH_LAYOUT_4POINT0, AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_3POINT1, AV_CH_LAYOUT_4POINT1, AV_CH_LAYOUT_5POINT1_BACK, }; int i; for (i = 0;; i++) { av_assert1(i < FF_ARRAY_ELEMS(layout_arrangement) || !"Impossible channel layout"); if (channels_present == layout_arrangement[i]) break; } ctx->channel_arrangement = i; ctx->flags = FLAGS_DVDA; ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy; ctx->summary_info = ff_mlp_ch_info[ctx->channel_arrangement].summary_info ; } else { /* TrueHD */ ctx->num_substreams = 1 + (avctx->ch_layout.nb_channels > 2); switch (channels_present) { case AV_CH_LAYOUT_MONO: ctx->ch2_presentation_mod= 3; ctx->ch6_presentation_mod= 3; ctx->ch8_presentation_mod= 3; ctx->thd_substream_info = 0x14; break; case AV_CH_LAYOUT_STEREO: ctx->ch2_presentation_mod= 1; ctx->ch6_presentation_mod= 1; ctx->ch8_presentation_mod= 1; ctx->thd_substream_info = 0x14; break; case AV_CH_LAYOUT_2POINT1: case AV_CH_LAYOUT_SURROUND: case AV_CH_LAYOUT_3POINT1: case AV_CH_LAYOUT_4POINT0: case AV_CH_LAYOUT_4POINT1: case AV_CH_LAYOUT_5POINT0: case AV_CH_LAYOUT_5POINT1: ctx->ch2_presentation_mod= 0; ctx->ch6_presentation_mod= 0; ctx->ch8_presentation_mod= 0; ctx->thd_substream_info = 0x3C; break; default: av_assert1(!"AVCodec.ch_layouts needs to be updated"); } ctx->flags = 0; ctx->channel_occupancy = 0; ctx->summary_info = 0; ctx->channel_arrangement = ctx->channel_arrangement8 = layout_truehd(channels_present); } for (unsigned int index = 0; index < ctx->restart_intervals; index++) { for (int n = 0; n < ctx->num_substreams; n++) ctx->s[n].b[index].seq_size = ((index + 1) * ctx->min_restart_interval) + 1; } /* TODO see if noisegen_seed is really worth it. */ if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) { RestartHeader *const rh = &ctx->s[0].restart_header; rh->noisegen_seed = 0; rh->min_channel = 0; rh->max_channel = avctx->ch_layout.nb_channels - 1; rh->max_matrix_channel = rh->max_channel; } else { RestartHeader *rh = &ctx->s[0].restart_header; rh->noisegen_seed = 0; rh->min_channel = 0; rh->max_channel = FFMIN(avctx->ch_layout.nb_channels, 2) - 1; rh->max_matrix_channel = rh->max_channel; if (avctx->ch_layout.nb_channels > 2) { rh = &ctx->s[1].restart_header; rh->noisegen_seed = 0; rh->min_channel = 2; rh->max_channel = avctx->ch_layout.nb_channels - 1; rh->max_matrix_channel = rh->max_channel; } } if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->avctx->frame_size, MLP_MAX_LPC_ORDER, ctx->lpc_type)) < 0) return ret; ff_af_queue_init(avctx, &ctx->afq); ff_thread_once(&init_static_once, mlp_encode_init_static); return 0; } /**************************************************************************** ****************** Functions that write to the bitstream ******************* ****************************************************************************/ /** Writes a major sync header to the bitstream. */ static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size) { PutBitContext pb; init_put_bits(&pb, buf, buf_size); put_bits(&pb, 24, SYNC_MAJOR ); if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) { put_bits(&pb, 8, SYNC_MLP ); put_bits(&pb, 4, ctx->coded_sample_fmt [0]); put_bits(&pb, 4, ctx->coded_sample_fmt [1]); put_bits(&pb, 4, ctx->coded_sample_rate[0]); put_bits(&pb, 4, ctx->coded_sample_rate[1]); put_bits(&pb, 4, 0 ); /* ignored */ put_bits(&pb, 4, 0 ); /* multi_channel_type */ put_bits(&pb, 3, 0 ); /* ignored */ put_bits(&pb, 5, ctx->channel_arrangement ); } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) { put_bits(&pb, 8, SYNC_TRUEHD ); put_bits(&pb, 4, ctx->coded_sample_rate[0]); put_bits(&pb, 1, ctx->multichannel_type6ch); put_bits(&pb, 1, ctx->multichannel_type8ch); put_bits(&pb, 2, 0 ); /* ignored */ put_bits(&pb, 2, ctx->ch2_presentation_mod); put_bits(&pb, 2, ctx->ch6_presentation_mod); put_bits(&pb, 5, ctx->channel_arrangement ); put_bits(&pb, 2, ctx->ch8_presentation_mod); put_bits(&pb, 13, ctx->channel_arrangement8); } put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE); put_bits(&pb, 16, ctx->flags ); put_bits(&pb, 16, 0 ); /* ignored */ put_bits(&pb, 1, 1 ); /* is_vbr */ put_bits(&pb, 15, ctx->coded_peak_bitrate ); put_bits(&pb, 4, ctx->num_substreams ); put_bits(&pb, 2, 0 ); /* ignored */ put_bits(&pb, 2, 0 ); /* extended substream info */ /* channel_meaning */ if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) { put_bits(&pb, 8, ctx->substream_info ); put_bits(&pb, 5, ctx->fs ); put_bits(&pb, 5, ctx->wordlength ); put_bits(&pb, 6, ctx->channel_occupancy ); put_bits(&pb, 3, 0 ); /* ignored */ put_bits(&pb, 10, 0 ); /* speaker_layout */ put_bits(&pb, 3, 0 ); /* copy_protection */ put_bits(&pb, 16, 0x8080 ); /* ignored */ put_bits(&pb, 7, 0 ); /* ignored */ put_bits(&pb, 4, 0 ); /* source_format */ put_bits(&pb, 5, ctx->summary_info ); } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) { put_bits(&pb, 8, ctx->thd_substream_info ); put_bits(&pb, 6, 0 ); /* reserved */ put_bits(&pb, 1, 0 ); /* 2ch control enabled */ put_bits(&pb, 1, 0 ); /* 6ch control enabled */ put_bits(&pb, 1, 0 ); /* 8ch control enabled */ put_bits(&pb, 1, 0 ); /* reserved */ put_bits(&pb, 7, 0 ); /* drc start up gain */ put_bits(&pb, 6, 0 ); /* 2ch dialogue norm */ put_bits(&pb, 6, 0 ); /* 2ch mix level */ put_bits(&pb, 5, 0 ); /* 6ch dialogue norm */ put_bits(&pb, 6, 0 ); /* 6ch mix level */ put_bits(&pb, 5, 0 ); /* 6ch source format */ put_bits(&pb, 5, 0 ); /* 8ch dialogue norm */ put_bits(&pb, 6, 0 ); /* 8ch mix level */ put_bits(&pb, 6, 0 ); /* 8ch source format */ put_bits(&pb, 1, 0 ); /* reserved */ put_bits(&pb, 1, 0 ); /* extra channel meaning present */ } flush_put_bits(&pb); AV_WL16(buf+26, ff_mlp_checksum16(buf, 26)); } /** Writes a restart header to the bitstream. Damaged streams can start being * decoded losslessly again after such a header and the subsequent decoding * params header. */ static void write_restart_header(MLPEncodeContext *ctx, MLPSubstream *s, PutBitContext *pb) { RestartHeader *rh = s->cur_restart_header; uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data); unsigned int start_count = put_bits_count(pb); PutBitContext tmpb; uint8_t checksum; put_bits(pb, 14, 0x31ea ); /* TODO 0x31eb */ put_bits(pb, 16, ctx->output_timing ); put_bits(pb, 4, rh->min_channel ); put_bits(pb, 4, rh->max_channel ); put_bits(pb, 4, rh->max_matrix_channel); put_bits(pb, 4, rh->noise_shift ); put_bits(pb, 23, rh->noisegen_seed ); put_bits(pb, 4, rh->max_shift ); put_bits(pb, 5, rh->max_huff_lsbs ); put_bits(pb, 5, rh->max_output_bits ); put_bits(pb, 5, rh->max_output_bits ); put_bits(pb, 1, rh->data_check_present); put_bits(pb, 8, lossless_check ); put_bits(pb, 16, 0 ); /* ignored */ for (int ch = 0; ch <= rh->max_matrix_channel; ch++) put_bits(pb, 6, ch); /* Data must be flushed for the checksum to be correct. */ tmpb = *pb; flush_put_bits(&tmpb); checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count); put_bits(pb, 8, checksum); } /** Writes matrix params for all primitive matrices to the bitstream. */ static void write_matrix_params(MLPEncodeContext *ctx, MLPSubstream *s, DecodingParams *dp, PutBitContext *pb) { RestartHeader *rh = s->cur_restart_header; MatrixParams *mp = &dp->matrix_params; int max_channel = rh->max_matrix_channel; put_bits(pb, 4, mp->count); if (!ctx->noise_type) max_channel += 2; for (unsigned int mat = 0; mat < mp->count; mat++) { put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */ put_bits(pb, 4, mp->fbits[mat]); put_bits(pb, 1, mp->lsb_bypass[mat]); for (int ch = 0; ch <= max_channel; ch++) { int32_t coeff = mp->coeff[mat][ch]; if (coeff) { put_bits(pb, 1, 1); coeff >>= 14 - mp->fbits[mat]; put_sbits(pb, mp->fbits[mat] + 2, coeff); } else { put_bits(pb, 1, 0); } } } } /** Writes filter parameters for one filter to the bitstream. */ static void write_filter_params(MLPEncodeContext *ctx, ChannelParams *cp, PutBitContext *pb, int channel, unsigned int filter) { FilterParams *fp = &cp->filter_params[filter]; put_bits(pb, 4, fp->order); if (fp->order > 0) { int32_t *fcoeff = cp->coeff[filter]; put_bits(pb, 4, fp->shift ); put_bits(pb, 5, fp->coeff_bits ); put_bits(pb, 3, fp->coeff_shift); for (int i = 0; i < fp->order; i++) { put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift); } /* TODO state data for IIR filter. */ put_bits(pb, 1, 0); } } /** Writes decoding parameters to the bitstream. These change very often, * usually at almost every frame. */ static void write_decoding_params(MLPEncodeContext *ctx, MLPSubstream *s, PutBitContext *pb, int params_changed, unsigned int subblock_index) { DecodingParams *dp = &s->b[subblock_index].major_decoding_params; RestartHeader *rh = s->cur_restart_header; if (dp->param_presence_flags != PARAMS_DEFAULT && params_changed & PARAM_PRESENCE_FLAGS) { put_bits(pb, 1, 1); put_bits(pb, 8, dp->param_presence_flags); } else { put_bits(pb, 1, 0); } if (dp->param_presence_flags & PARAM_BLOCKSIZE) { if (params_changed & PARAM_BLOCKSIZE) { put_bits(pb, 1, 1); put_bits(pb, 9, dp->blocksize); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_MATRIX) { if (params_changed & PARAM_MATRIX) { put_bits(pb, 1, 1); write_matrix_params(ctx, s, dp, pb); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_OUTSHIFT) { if (params_changed & PARAM_OUTSHIFT) { put_bits(pb, 1, 1); for (int ch = 0; ch <= rh->max_matrix_channel; ch++) put_sbits(pb, 4, dp->output_shift[ch]); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_QUANTSTEP) { if (params_changed & PARAM_QUANTSTEP) { put_bits(pb, 1, 1); for (int ch = 0; ch <= rh->max_channel; ch++) put_bits(pb, 4, dp->quant_step_size[ch]); } else { put_bits(pb, 1, 0); } } for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { ChannelParams *cp = &s->b[subblock_index].major_channel_params[ch]; if (dp->param_presence_flags & 0xF) { put_bits(pb, 1, 1); if (dp->param_presence_flags & PARAM_FIR) { if (params_changed & PARAM_FIR) { put_bits(pb, 1, 1); write_filter_params(ctx, cp, pb, ch, FIR); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_IIR) { if (params_changed & PARAM_IIR) { put_bits(pb, 1, 1); write_filter_params(ctx, cp, pb, ch, IIR); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_HUFFOFFSET) { if (params_changed & PARAM_HUFFOFFSET) { put_bits (pb, 1, 1); put_sbits(pb, 15, cp->huff_offset); } else { put_bits(pb, 1, 0); } } if (cp->codebook > 0 && cp->huff_lsbs > 24) { av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs %d\n", cp->huff_lsbs); } put_bits(pb, 2, cp->codebook ); put_bits(pb, 5, cp->huff_lsbs); } else { put_bits(pb, 1, 0); } } } /** Writes the residuals to the bitstream. That is, the VLC codes from the * codebooks (if any is used), and then the residual. */ static void write_block_data(MLPEncodeContext *ctx, MLPSubstream *s, PutBitContext *pb, unsigned int subblock_index) { RestartHeader *rh = s->cur_restart_header; DecodingParams *dp = &s->b[subblock_index].major_decoding_params; MatrixParams *mp = &dp->matrix_params; int32_t sign_huff_offset[MAX_CHANNELS]; int codebook_index [MAX_CHANNELS]; int lsb_bits [MAX_CHANNELS]; for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { ChannelParams *cp = &s->b[subblock_index].major_channel_params[ch]; int sign_shift; lsb_bits [ch] = cp->huff_lsbs - dp->quant_step_size[ch]; codebook_index [ch] = cp->codebook - 1; sign_huff_offset[ch] = cp->huff_offset; sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1); if (cp->codebook > 0) sign_huff_offset[ch] -= 7 << lsb_bits[ch]; /* Unsign if needed. */ if (sign_shift >= 0) sign_huff_offset[ch] -= 1 << sign_shift; } for (unsigned int i = 0; i < dp->blocksize; i++) { for (unsigned int mat = 0; mat < mp->count; mat++) { if (mp->lsb_bypass[mat]) { const int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat]; put_bits(pb, 1, bypassed_lsbs[i]); } } for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { int32_t *sample_buffer = dp->sample_buffer[ch]; int32_t sample = sample_buffer[i] >> dp->quant_step_size[ch]; sample -= sign_huff_offset[ch]; if (codebook_index[ch] >= 0) { int vlc = sample >> lsb_bits[ch]; put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1], ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]); sample &= ((1 << lsb_bits[ch]) - 1); } put_bits(pb, lsb_bits[ch], sample); } } } /** Writes the substream data to the bitstream. */ static uint8_t *write_substr(MLPEncodeContext *ctx, MLPSubstream *s, uint8_t *buf, int buf_size, int restart_frame, uint16_t *substream_data_len) { int32_t *lossless_check_data = &s->b[ctx->frame_index].lossless_check_data; unsigned int cur_subblock_index = s->major_cur_subblock_index; unsigned int num_subblocks = s->major_filter_state_subblock; RestartHeader *rh = &s->restart_header; int substr_restart_frame = restart_frame; uint8_t parity, checksum; PutBitContext pb; int params_changed; s->cur_restart_header = rh; init_put_bits(&pb, buf, buf_size); for (unsigned int subblock = 0; subblock <= num_subblocks; subblock++) { unsigned int subblock_index = cur_subblock_index++; params_changed = s->b[subblock_index].major_params_changed; if (substr_restart_frame || params_changed) { put_bits(&pb, 1, 1); if (substr_restart_frame) { put_bits(&pb, 1, 1); write_restart_header(ctx, s, &pb); rh->lossless_check_data = 0; } else { put_bits(&pb, 1, 0); } write_decoding_params(ctx, s, &pb, params_changed, subblock_index); } else { put_bits(&pb, 1, 0); } write_block_data(ctx, s, &pb, subblock_index); put_bits(&pb, 1, !substr_restart_frame); substr_restart_frame = 0; } put_bits(&pb, (-put_bits_count(&pb)) & 15, 0); rh->lossless_check_data ^= lossless_check_data[0]; if (ctx->last_frames == 0 && ctx->shorten_by) { if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) { put_bits(&pb, 16, END_OF_STREAM & 0xFFFF); put_bits(&pb, 16, (ctx->shorten_by & 0x1FFF) | 0xE000); } else { put_bits32(&pb, END_OF_STREAM); } } /* Data must be flushed for the checksum and parity to be correct; * notice that we already are word-aligned here. */ flush_put_bits(&pb); parity = ff_mlp_calculate_parity(buf, put_bytes_output(&pb)) ^ 0xa9; checksum = ff_mlp_checksum8 (buf, put_bytes_output(&pb)); put_bits(&pb, 8, parity ); put_bits(&pb, 8, checksum); flush_put_bits(&pb); substream_data_len[0] = put_bytes_output(&pb); buf += substream_data_len[0]; s->major_cur_subblock_index += s->major_filter_state_subblock + 1; s->major_filter_state_subblock = 0; return buf; } /** Writes the access unit and substream headers to the bitstream. */ static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header, uint8_t *substream_headers, unsigned int length, int restart_frame, uint16_t substream_data_len[MAX_SUBSTREAMS]) { uint16_t access_unit_header = 0; uint16_t substream_data_end = 0; uint16_t parity_nibble = 0; parity_nibble = ctx->input_timing; parity_nibble ^= length; for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) { uint16_t substr_hdr = 0; substream_data_end += substream_data_len[substr]; substr_hdr |= (0 << 15); /* extraword */ substr_hdr |= (!restart_frame << 14); /* !restart_frame */ substr_hdr |= (1 << 13); /* checkdata */ substr_hdr |= (0 << 12); /* ??? */ substr_hdr |= (substream_data_end / 2) & 0x0FFF; AV_WB16(substream_headers, substr_hdr); parity_nibble ^= *substream_headers++; parity_nibble ^= *substream_headers++; } parity_nibble ^= parity_nibble >> 8; parity_nibble ^= parity_nibble >> 4; parity_nibble &= 0xF; access_unit_header |= (parity_nibble ^ 0xF) << 12; access_unit_header |= length & 0xFFF; AV_WB16(frame_header , access_unit_header); AV_WB16(frame_header+2, ctx->input_timing ); } /** Writes an entire access unit to the bitstream. */ static int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf, int buf_size, int restart_frame) { uint16_t substream_data_len[MAX_SUBSTREAMS]; uint8_t *buf1, *buf0 = buf; int total_length; /* Frame header will be written at the end. */ buf += 4; buf_size -= 4; if (restart_frame) { write_major_sync(ctx, buf, buf_size); buf += 28; buf_size -= 28; } buf1 = buf; /* Substream headers will be written at the end. */ for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) { buf += 2; buf_size -= 2; } for (int substr = 0; substr < ctx->num_substreams; substr++) { MLPSubstream *s = &ctx->s[substr]; uint8_t *buf0 = buf; buf = write_substr(ctx, s, buf, buf_size, restart_frame, &substream_data_len[substr]); buf_size -= buf - buf0; } total_length = buf - buf0; write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len); return total_length; } /**************************************************************************** ****************** Functions that input data to context ******************** ****************************************************************************/ /** Inputs data from the samples passed by lavc into the context, shifts them * appropriately depending on the bit-depth, and calculates the * lossless_check_data that will be written to the restart header. */ static void input_data_internal(MLPEncodeContext *ctx, MLPSubstream *s, uint8_t **const samples, int nb_samples, int is24) { int32_t *lossless_check_data = &s->b[ctx->frame_index].lossless_check_data; RestartHeader *rh = &s->restart_header; int32_t temp_lossless_check_data = 0; uint32_t bits = 0; for (int i = 0; i < nb_samples; i++) { for (int ch = 0; ch <= rh->max_channel; ch++) { const int32_t *samples_32 = (const int32_t *)samples[ch]; const int16_t *samples_16 = (const int16_t *)samples[ch]; int32_t *sample_buffer = s->b[ctx->frame_index].inout_buffer[ch]; int32_t sample; sample = is24 ? samples_32[i] >> 8 : samples_16[i] * 256; bits = FFMAX(number_sbits(sample), bits); temp_lossless_check_data ^= (sample & 0x00ffffff) << ch; sample_buffer[i] = sample; } } for (int ch = 0; ch <= rh->max_channel; ch++) { for (int i = nb_samples; i < ctx->avctx->frame_size; i++) { int32_t *sample_buffer = s->b[ctx->frame_index].inout_buffer[ch]; sample_buffer[i] = 0; } } s->b[ctx->frame_index].max_output_bits = bits; lossless_check_data[0] = temp_lossless_check_data; } /** Wrapper function for inputting data in two different bit-depths. */ static void input_data(MLPEncodeContext *ctx, MLPSubstream *s, uint8_t **const samples, int nb_samples) { input_data_internal(ctx, s, samples, nb_samples, ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32P); } static void input_to_sample_buffer(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = &s->restart_header; for (unsigned int index = 0; index < ctx->number_of_frames; index++) { unsigned int cur_index = (ctx->frame_index + index + 1) % ctx->cur_restart_interval; DecodingParams *dp = &s->b[index+1].decoding_params; for (int ch = 0; ch <= rh->max_channel; ch++) { const int32_t *input_buffer = s->b[cur_index].inout_buffer[ch]; int32_t *sample_buffer = dp->sample_buffer[ch]; int off = 0; if (dp->blocksize < ctx->avctx->frame_size) { DecodingParams *dp = &s->b[index].decoding_params; int32_t *sample_buffer = dp->sample_buffer[ch]; for (unsigned int i = 0; i < dp->blocksize; i++) sample_buffer[i] = input_buffer[i]; off = dp->blocksize; } for (unsigned int i = 0; i < dp->blocksize; i++) sample_buffer[i] = input_buffer[i + off]; } } } /**************************************************************************** ********* Functions that analyze the data and set the parameters *********** ****************************************************************************/ /** Counts the number of trailing zeroes in a value */ static int number_trailing_zeroes(int32_t sample, unsigned int max, unsigned int def) { return sample ? FFMIN(max, ff_ctz(sample)) : def; } static void determine_output_shift(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; DecodingParams *dp1 = &s->b[1].decoding_params; int32_t sample_mask[MAX_CHANNELS]; memset(sample_mask, 0, sizeof(sample_mask)); for (int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; for (int ch = 0; ch <= rh->max_matrix_channel; ch++) { int32_t *sample_buffer = dp->sample_buffer[ch]; for (int i = 0; i < dp->blocksize; i++) sample_mask[ch] |= sample_buffer[i]; } } for (int ch = 0; ch <= rh->max_matrix_channel; ch++) dp1->output_shift[ch] = number_trailing_zeroes(sample_mask[ch], 7, 0); for (int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; for (int ch = 0; ch <= rh->max_matrix_channel; ch++) { int32_t *sample_buffer = dp->sample_buffer[ch]; const int shift = dp1->output_shift[ch]; for (int i = 0; i < dp->blocksize; i++) sample_buffer[i] >>= shift; } } } /** Determines how many bits are zero at the end of all samples so they can be * shifted out. */ static void determine_quant_step_size(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; DecodingParams *dp1 = &s->b[1].decoding_params; int32_t sample_mask[MAX_CHANNELS]; memset(sample_mask, 0, sizeof(sample_mask)); for (int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; for (int ch = 0; ch <= rh->max_channel; ch++) { int32_t *sample_buffer = dp->sample_buffer[ch]; for (int i = 0; i < dp->blocksize; i++) sample_mask[ch] |= sample_buffer[i]; } } for (int ch = 0; ch <= rh->max_channel; ch++) dp1->quant_step_size[ch] = number_trailing_zeroes(sample_mask[ch], 15, 0); } /** Determines the smallest number of bits needed to encode the filter * coefficients, and if it's possible to right-shift their values without * losing any precision. */ static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, const int32_t *fcoeff) { uint32_t coeff_mask = 0; int bits = 0, shift; for (int order = 0; order < fp->order; order++) { int32_t coeff = fcoeff[order]; bits = FFMAX(number_sbits(coeff), bits); coeff_mask |= coeff; } shift = FFMIN(7, coeff_mask ? ff_ctz(coeff_mask) : 0); fp->coeff_bits = FFMAX(1, bits - shift); fp->coeff_shift = FFMIN(shift, 16 - fp->coeff_bits); } /** Determines the best filter parameters for the given data and writes the * necessary information to the context. */ static void set_filter(MLPEncodeContext *ctx, MLPSubstream *s, int channel, int retry_filter) { ChannelParams *cp = &s->b[1].channel_params[channel]; DecodingParams *dp1 = &s->b[1].decoding_params; FilterParams *fp = &cp->filter_params[FIR]; if (retry_filter) dp1->max_order[channel]--; if (dp1->max_order[channel] == 0) { fp->order = 0; } else { int32_t *lpc_samples = ctx->lpc_sample_buffer; int32_t *fcoeff = cp->coeff[FIR]; int shift[MAX_LPC_ORDER]; int order; for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; int32_t *sample_buffer = dp->sample_buffer[channel]; for (unsigned int i = 0; i < dp->blocksize; i++) lpc_samples[i] = sample_buffer[i]; lpc_samples += dp->blocksize; } order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer, lpc_samples - ctx->lpc_sample_buffer, MLP_MIN_LPC_ORDER, dp1->max_order[channel], ctx->lpc_coeff_precision, s->coefs[channel], shift, ctx->lpc_type, ctx->lpc_passes, ctx->prediction_order, MLP_MIN_LPC_SHIFT, MLP_MAX_LPC_SHIFT, 0); fp->order = order; fp->shift = order ? shift[order-1] : 0; for (unsigned int i = 0; i < order; i++) fcoeff[i] = s->coefs[channel][order-1][i]; code_filter_coeffs(ctx, fp, fcoeff); } } /** Tries to determine a good prediction filter, and applies it to the samples * buffer if the filter is good enough. Sets the filter data to be cleared if * no good filter was found. */ static void determine_filters(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) set_filter(ctx, s, ch, 0); } static int estimate_coeff(MLPEncodeContext *ctx, MLPSubstream *s, MatrixParams *mp, int ch0, int ch1) { int32_t maxl = INT32_MIN, maxr = INT32_MIN, minl = INT32_MAX, minr = INT32_MAX; int64_t summ = 0, sums = 0, suml = 0, sumr = 0, enl = 0, enr = 0; const int shift = 14 - ctx->rematrix_precision; int32_t cf0, cf1, e[4], d[4], ml, mr; int i, count = 0; for (int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; const int32_t *ch[2]; ch[0] = dp->sample_buffer[ch0]; ch[1] = dp->sample_buffer[ch1]; for (int i = 0; i < dp->blocksize; i++) { int32_t lm = ch[0][i], rm = ch[1][i]; enl += FFABS(lm); enr += FFABS(rm); summ += FFABS(lm + rm); sums += FFABS(lm - rm); suml += lm; sumr += rm; maxl = FFMAX(maxl, lm); maxr = FFMAX(maxr, rm); minl = FFMIN(minl, lm); minr = FFMIN(minr, rm); } } summ -= FFABS(suml + sumr); sums -= FFABS(suml - sumr); ml = maxl - minl; mr = maxr - minr; if (!summ && !sums) return 0; if (!ml || !mr) return 0; if ((FFABS(ml) + FFABS(mr)) >= (1 << 24)) return 0; cf0 = (FFMIN(FFABS(mr), FFABS(ml)) * (1LL << 14)) / FFMAX(FFABS(ml), FFABS(mr)); cf0 = (cf0 >> shift) << shift; cf1 = -cf0; if (sums > summ) FFSWAP(int32_t, cf0, cf1); count = 1; i = enl < enr; mp->outch[0] = ch0 + i; d[!i] = cf0; d[ i] = 1 << 14; e[!i] = cf1; e[ i] = 1 << 14; mp->coeff[0][ch0] = av_clip_intp2(d[0], 15); mp->coeff[0][ch1] = av_clip_intp2(d[1], 15); mp->forco[0][ch0] = av_clip_intp2(e[0], 15); mp->forco[0][ch1] = av_clip_intp2(e[1], 15); return count; } /** Determines how many fractional bits are needed to encode matrix * coefficients. Also shifts the coefficients to fit within 2.14 bits. */ static void code_matrix_coeffs(MLPEncodeContext *ctx, MLPSubstream *s, DecodingParams *dp, unsigned int mat) { RestartHeader *rh = s->cur_restart_header; MatrixParams *mp = &dp->matrix_params; int32_t coeff_mask = 0; for (int ch = 0; ch <= rh->max_matrix_channel; ch++) coeff_mask |= mp->coeff[mat][ch]; mp->fbits[mat] = 14 - number_trailing_zeroes(coeff_mask, 14, 14); } /** Determines best coefficients to use for the lossless matrix. */ static void lossless_matrix_coeffs(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; DecodingParams *dp = &s->b[1].decoding_params; MatrixParams *mp = &dp->matrix_params; mp->count = 0; if (ctx->num_channels - 2 != 2) return; mp->count = estimate_coeff(ctx, s, mp, rh->min_channel, rh->max_channel); for (int mat = 0; mat < mp->count; mat++) code_matrix_coeffs(ctx, s, dp, mat); } /** Min and max values that can be encoded with each codebook. The values for * the third codebook take into account the fact that the sign shift for this * codebook is outside the coded value, so it has one more bit of precision. * It should actually be -7 -> 7, shifted down by 0.5. */ static const int8_t codebook_extremes[3][2] = { {-9, 8}, {-8, 7}, {-15, 14}, }; /** Determines the amount of bits needed to encode the samples using no * codebooks and a specified offset. */ static void no_codebook_bits_offset(MLPEncodeContext *ctx, DecodingParams *dp, int channel, int32_t offset, int32_t min, int32_t max, BestOffset *bo) { int32_t unsign = 0; int lsb_bits; min -= offset; max -= offset; lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1; lsb_bits += !!lsb_bits; if (lsb_bits > 0) unsign = 1U << (lsb_bits - 1); bo->offset = offset; bo->lsb_bits = lsb_bits; bo->bitcount = lsb_bits * dp->blocksize; bo->min = offset - unsign + 1; bo->max = offset + unsign; } /** Determines the least amount of bits needed to encode the samples using no * codebooks. */ static void no_codebook_bits(MLPEncodeContext *ctx, DecodingParams *dp, int channel, int32_t min, int32_t max, BestOffset *bo) { int32_t offset, unsign = 0; uint8_t lsb_bits; /* Set offset inside huffoffset's boundaries by adjusting extremes * so that more bits are used, thus shifting the offset. */ if (min < HUFF_OFFSET_MIN) max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1); if (max > HUFF_OFFSET_MAX) min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1); lsb_bits = FFMAX(number_sbits(min), number_sbits(max)); if (lsb_bits > 0) unsign = 1 << (lsb_bits - 1); /* If all samples are the same (lsb_bits == 0), offset must be * adjusted because of sign_shift. */ offset = min + (max - min) / 2 + !!lsb_bits; bo->offset = offset; bo->lsb_bits = lsb_bits; bo->bitcount = lsb_bits * dp->blocksize; bo->min = max - unsign + 1; bo->max = min + unsign; bo->min = FFMAX(bo->min, HUFF_OFFSET_MIN); bo->max = FFMIN(bo->max, HUFF_OFFSET_MAX); } /** Determines the least amount of bits needed to encode the samples using a * given codebook and a given offset. */ static inline void codebook_bits_offset(MLPEncodeContext *ctx, DecodingParams *dp, int channel, int codebook, int32_t sample_min, int32_t sample_max, int32_t offset, BestOffset *bo) { int32_t codebook_min = codebook_extremes[codebook][0]; int32_t codebook_max = codebook_extremes[codebook][1]; int32_t *sample_buffer = dp->sample_buffer[channel]; int codebook_offset = 7 + (2 - codebook); int32_t unsign_offset = offset; uint32_t bitcount = 0; int lsb_bits = 0; int offset_min = INT_MAX, offset_max = INT_MAX; int unsign, mask; sample_min -= offset; sample_max -= offset; while (sample_min < codebook_min || sample_max > codebook_max) { lsb_bits++; sample_min >>= 1; sample_max >>= 1; } unsign = 1 << lsb_bits; mask = unsign - 1; if (codebook == 2) { unsign_offset -= unsign; lsb_bits++; } for (int i = 0; i < dp->blocksize; i++) { int32_t sample = sample_buffer[i] >> dp->quant_step_size[channel]; int temp_min, temp_max; sample -= unsign_offset; temp_min = sample & mask; if (temp_min < offset_min) offset_min = temp_min; temp_max = unsign - temp_min - 1; if (temp_max < offset_max) offset_max = temp_max; sample >>= lsb_bits; bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1]; } bo->offset = offset; bo->lsb_bits = lsb_bits; bo->bitcount = lsb_bits * dp->blocksize + bitcount; bo->min = FFMAX(offset - offset_min, HUFF_OFFSET_MIN); bo->max = FFMIN(offset + offset_max, HUFF_OFFSET_MAX); } /** Determines the least amount of bits needed to encode the samples using a * given codebook. Searches for the best offset to minimize the bits. */ static inline void codebook_bits(MLPEncodeContext *ctx, DecodingParams *dp, int channel, int codebook, int offset, int32_t min, int32_t max, BestOffset *bo, int direction) { uint32_t previous_count = UINT32_MAX; int offset_min, offset_max; int is_greater = 0; offset_min = FFMAX(min, HUFF_OFFSET_MIN); offset_max = FFMIN(max, HUFF_OFFSET_MAX); while (offset <= offset_max && offset >= offset_min) { BestOffset temp_bo; codebook_bits_offset(ctx, dp, channel, codebook, min, max, offset, &temp_bo); if (temp_bo.bitcount < previous_count) { if (temp_bo.bitcount < bo->bitcount) *bo = temp_bo; is_greater = 0; } else if (++is_greater >= ctx->max_codebook_search) break; previous_count = temp_bo.bitcount; if (direction) { offset = temp_bo.max + 1; } else { offset = temp_bo.min - 1; } } } /** Determines the least amount of bits needed to encode the samples using * any or no codebook. */ static void determine_bits(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) { DecodingParams *dp = &s->b[index].decoding_params; for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { ChannelParams *cp = &s->b[index].channel_params[ch]; int32_t *sample_buffer = dp->sample_buffer[ch]; int32_t min = INT32_MAX, max = INT32_MIN; int no_filters_used = !cp->filter_params[FIR].order; int average = 0; int offset = 0; /* Determine extremes and average. */ for (int i = 0; i < dp->blocksize; i++) { int32_t sample = sample_buffer[i] >> dp->quant_step_size[ch]; if (sample < min) min = sample; if (sample > max) max = sample; average += sample; } average /= dp->blocksize; /* If filtering is used, we always set the offset to zero, otherwise * we search for the offset that minimizes the bitcount. */ if (no_filters_used) { no_codebook_bits(ctx, dp, ch, min, max, &s->b[index].best_offset[ch][0]); offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX); } else { no_codebook_bits_offset(ctx, dp, ch, offset, min, max, &s->b[index].best_offset[ch][0]); } for (int i = 1; i < NUM_CODEBOOKS; i++) { BestOffset temp_bo = { 0, UINT32_MAX, 0, 0, 0, }; int32_t offset_max; codebook_bits_offset(ctx, dp, ch, i - 1, min, max, offset, &temp_bo); if (no_filters_used) { offset_max = temp_bo.max; codebook_bits(ctx, dp, ch, i - 1, temp_bo.min - 1, min, max, &temp_bo, 0); codebook_bits(ctx, dp, ch, i - 1, offset_max + 1, min, max, &temp_bo, 1); } s->b[index].best_offset[ch][i] = temp_bo; } } } } /**************************************************************************** *************** Functions that process the data in some way **************** ****************************************************************************/ #define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1) #define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth)) #define MSB_MASK(bits) (-(int)(1u << (bits))) /** Applies the filter to the current samples, and saves the residual back * into the samples buffer. If the filter is too bad and overflows the * maximum amount of bits allowed (24), the samples buffer is left as is and * the function returns -1. */ static int apply_filter(MLPEncodeContext *ctx, MLPSubstream *s, int channel) { DecodingParams *dp = &s->b[1].decoding_params; ChannelParams *cp = &s->b[1].channel_params[channel]; FilterParams *fp[NUM_FILTERS] = { &cp->filter_params[FIR], &cp->filter_params[IIR], }; const uint8_t codebook = cp->codebook; int32_t mask = MSB_MASK(dp->quant_step_size[channel]); int32_t *sample_buffer = s->b[0].decoding_params.sample_buffer[channel]; unsigned int filter_shift = fp[FIR]->shift; int32_t *filter_state[NUM_FILTERS] = { ctx->filter_state[FIR], ctx->filter_state[IIR], }; int i, j = 1, k = 0; for (i = 0; i < 8; i++) { filter_state[FIR][i] = sample_buffer[i]; filter_state[IIR][i] = sample_buffer[i]; } while (1) { int32_t *sample_buffer = s->b[j].decoding_params.sample_buffer[channel]; unsigned int blocksize = s->b[j].decoding_params.blocksize; int32_t sample, residual; int64_t accum = 0; if (!blocksize) break; for (int filter = 0; filter < NUM_FILTERS; filter++) { int32_t *fcoeff = cp->coeff[filter]; for (unsigned int order = 0; order < fp[filter]->order; order++) accum += (int64_t)filter_state[filter][i - 1 - order] * fcoeff[order]; } sample = sample_buffer[k]; accum >>= filter_shift; residual = sample - (accum & mask); if ((codebook > 0) && (residual < SAMPLE_MIN(24) || residual > SAMPLE_MAX(24))) return -1; filter_state[FIR][i] = sample; filter_state[IIR][i] = residual; i++; k++; if (k >= blocksize) { k = 0; j++; if (j > ctx->cur_restart_interval) break; } } for (int l = 0, j = 0; j <= ctx->cur_restart_interval; j++) { int32_t *sample_buffer = s->b[j].decoding_params.sample_buffer[channel]; unsigned int blocksize = s->b[j].decoding_params.blocksize; for (int i = 0; i < blocksize; i++, l++) sample_buffer[i] = filter_state[IIR][l]; } return 0; } static void apply_filters(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { while (apply_filter(ctx, s, ch) < 0) { /* Filter is horribly wrong. Retry. */ set_filter(ctx, s, ch, 1); } } } /** Generates two noise channels worth of data. */ static void generate_2_noise_channels(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; uint32_t seed = rh->noisegen_seed; for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; int32_t *sample_buffer2 = dp->sample_buffer[ctx->num_channels-2]; int32_t *sample_buffer1 = dp->sample_buffer[ctx->num_channels-1]; for (unsigned int i = 0; i < dp->blocksize; i++) { uint16_t seed_shr7 = seed >> 7; sample_buffer2[i] = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift); sample_buffer1[i] = ((int8_t) seed_shr7) * (1 << rh->noise_shift); seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5); } } rh->noisegen_seed = seed & ((1 << 24)-1); } /** Rematrixes all channels using chosen coefficients. */ static void rematrix_channels(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; DecodingParams *dp1 = &s->b[1].decoding_params; MatrixParams *mp1 = &dp1->matrix_params; const int maxchan = rh->max_matrix_channel; int32_t orig_samples[MAX_NCHANNELS]; int32_t rematrix_samples[MAX_NCHANNELS]; uint8_t lsb_bypass[MAX_MATRICES] = { 0 }; for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) { DecodingParams *dp = &s->b[j].decoding_params; MatrixParams *mp = &dp->matrix_params; for (unsigned int i = 0; i < dp->blocksize; i++) { for (int ch = 0; ch <= maxchan; ch++) orig_samples[ch] = rematrix_samples[ch] = dp->sample_buffer[ch][i]; for (int mat = 0; mat < mp1->count; mat++) { unsigned int outch = mp1->outch[mat]; int64_t accum = 0; for (int ch = 0; ch <= maxchan; ch++) { int32_t sample = rematrix_samples[ch]; accum += (int64_t)sample * mp1->forco[mat][ch]; } rematrix_samples[outch] = accum >> 14; } for (int ch = 0; ch <= maxchan; ch++) dp->sample_buffer[ch][i] = rematrix_samples[ch]; for (unsigned int mat = 0; mat < mp1->count; mat++) { int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat]; unsigned int outch = mp1->outch[mat]; int64_t accum = 0; int8_t bit; for (int ch = 0; ch <= maxchan; ch++) { int32_t sample = rematrix_samples[ch]; accum += (int64_t)sample * mp1->coeff[mat][ch]; } rematrix_samples[outch] = accum >> 14; bit = rematrix_samples[outch] != orig_samples[outch]; bypassed_lsbs[i] = bit; lsb_bypass[mat] |= bit; } } } for (unsigned int mat = 0; mat < mp1->count; mat++) mp1->lsb_bypass[mat] = lsb_bypass[mat]; } /**************************************************************************** **** Functions that deal with determining the best parameters and output *** ****************************************************************************/ typedef struct PathCounter { char path[MAX_HEADER_INTERVAL + 2]; int cur_idx; uint32_t bitcount; } PathCounter; #define CODEBOOK_CHANGE_BITS 21 static void clear_path_counter(PathCounter *path_counter) { memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter)); } static int compare_best_offset(const BestOffset *prev, const BestOffset *cur) { return prev->lsb_bits != cur->lsb_bits; } static uint32_t best_codebook_path_cost(MLPEncodeContext *ctx, MLPSubstream *s, int channel, PathCounter *src, int cur_codebook) { int idx = src->cur_idx; const BestOffset *cur_bo = s->b[idx].best_offset[channel], *prev_bo = idx ? s->b[idx - 1].best_offset[channel] : restart_best_offset; uint32_t bitcount = src->bitcount; int prev_codebook = src->path[idx]; bitcount += cur_bo[cur_codebook].bitcount; if (prev_codebook != cur_codebook || compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook])) bitcount += CODEBOOK_CHANGE_BITS; return bitcount; } static void set_best_codebook(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; for (int channel = rh->min_channel; channel <= rh->max_channel; channel++) { const BestOffset *prev_bo = restart_best_offset; BestOffset *cur_bo; PathCounter path_counter[NUM_CODEBOOKS + 1]; unsigned int best_codebook; char *best_path; clear_path_counter(path_counter); for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) { uint32_t best_bitcount = UINT32_MAX; cur_bo = s->b[index].best_offset[channel]; for (unsigned int codebook = 0; codebook < NUM_CODEBOOKS; codebook++) { uint32_t prev_best_bitcount = UINT32_MAX; for (unsigned int last_best = 0; last_best < 2; last_best++) { PathCounter *dst_path = &path_counter[codebook]; PathCounter *src_path; uint32_t temp_bitcount; /* First test last path with same headers, * then with last best. */ if (last_best) { src_path = &path_counter[NUM_CODEBOOKS]; } else { if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook])) continue; else src_path = &path_counter[codebook]; } temp_bitcount = best_codebook_path_cost(ctx, s, channel, src_path, codebook); if (temp_bitcount < best_bitcount) { best_bitcount = temp_bitcount; best_codebook = codebook; } if (temp_bitcount < prev_best_bitcount) { prev_best_bitcount = temp_bitcount; if (src_path != dst_path) memcpy(dst_path, src_path, sizeof(PathCounter)); if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1) dst_path->path[++dst_path->cur_idx] = codebook; dst_path->bitcount = temp_bitcount; } } } prev_bo = cur_bo; memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter)); } best_path = path_counter[NUM_CODEBOOKS].path + 1; /* Update context. */ for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) { ChannelParams *cp = &s->b[index].channel_params[channel]; DecodingParams *dp = &s->b[index].decoding_params; best_codebook = *best_path++; cur_bo = &s->b[index].best_offset[channel][best_codebook]; cp->huff_offset = cur_bo->offset; cp->huff_lsbs = cur_bo->lsb_bits + dp->quant_step_size[channel]; cp->codebook = best_codebook; } } } /** Analyzes all collected bitcounts and selects the best parameters for each * individual access unit. * TODO This is just a stub! */ static void set_major_params(MLPEncodeContext *ctx, MLPSubstream *s) { RestartHeader *rh = s->cur_restart_header; uint8_t max_huff_lsbs = 0, max_output_bits = 0; int8_t max_shift = 0; for (int index = 0; index < s->b[ctx->restart_intervals-1].seq_size; index++) { memcpy(&s->b[index].major_decoding_params, &s->b[index].decoding_params, sizeof(DecodingParams)); for (int ch = 0; ch <= rh->max_matrix_channel; ch++) { int8_t shift = s->b[index].decoding_params.output_shift[ch]; max_shift = FFMAX(max_shift, shift); } for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) { uint8_t huff_lsbs = s->b[index].channel_params[ch].huff_lsbs; max_huff_lsbs = FFMAX(max_huff_lsbs, huff_lsbs); memcpy(&s->b[index].major_channel_params[ch], &s->b[index].channel_params[ch], sizeof(ChannelParams)); } } rh->max_huff_lsbs = max_huff_lsbs; rh->max_shift = max_shift; for (int index = 0; index < ctx->number_of_frames; index++) if (max_output_bits < s->b[index].max_output_bits) max_output_bits = s->b[index].max_output_bits; rh->max_output_bits = max_output_bits; s->cur_restart_header = &s->restart_header; for (int index = 0; index <= ctx->cur_restart_interval; index++) s->b[index].major_params_changed = compare_decoding_params(ctx, s, index); s->major_filter_state_subblock = 1; s->major_cur_subblock_index = 0; } static void analyze_sample_buffer(MLPEncodeContext *ctx, MLPSubstream *s) { s->cur_restart_header = &s->restart_header; /* Copy frame_size from frames 0...max to decoding_params 1...max + 1 * decoding_params[0] is for the filter state subblock. */ for (unsigned int index = 0; index < ctx->number_of_frames; index++) { DecodingParams *dp = &s->b[index+1].decoding_params; dp->blocksize = ctx->avctx->frame_size; } /* The official encoder seems to always encode a filter state subblock * even if there are no filters. TODO check if it is possible to skip * the filter state subblock for no filters. */ s->b[0].decoding_params.blocksize = 8; s->b[1].decoding_params.blocksize -= 8; input_to_sample_buffer (ctx, s); determine_output_shift (ctx, s); generate_2_noise_channels(ctx, s); lossless_matrix_coeffs (ctx, s); rematrix_channels (ctx, s); determine_quant_step_size(ctx, s); determine_filters (ctx, s); apply_filters (ctx, s); copy_restart_frame_params(ctx, s); determine_bits(ctx, s); set_best_codebook(ctx, s); } static void process_major_frame(MLPEncodeContext *ctx, MLPSubstream *s) { ctx->number_of_frames = ctx->major_number_of_frames; s->cur_restart_header = &s->restart_header; generate_2_noise_channels(ctx, s); rematrix_channels (ctx, s); apply_filters(ctx, s); } /****************************************************************************/ static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet) { MLPEncodeContext *ctx = avctx->priv_data; int bytes_written = 0; int channels = avctx->ch_layout.nb_channels; int restart_frame, ret; const uint8_t *data; if (!frame && !ctx->last_frames) ctx->last_frames = (ctx->afq.remaining_samples + avctx->frame_size - 1) / avctx->frame_size; if (!frame && !ctx->last_frames--) return 0; if ((ret = ff_alloc_packet(avctx, avpkt, 87500 * channels)) < 0) return ret; if (frame) { /* add current frame to queue */ if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0) return ret; } data = frame ? frame->data[0] : NULL; ctx->frame_index = avctx->frame_num % ctx->cur_restart_interval; if (avctx->frame_num < ctx->cur_restart_interval) { if (data) goto input_and_return; } restart_frame = !ctx->frame_index; if (restart_frame) { avpkt->flags |= AV_PKT_FLAG_KEY; for (int n = 0; n < ctx->num_substreams; n++) set_major_params(ctx, &ctx->s[n]); if (ctx->min_restart_interval != ctx->cur_restart_interval) process_major_frame(ctx, &ctx->s[0]); } bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame); ctx->output_timing += avctx->frame_size; ctx->input_timing += avctx->frame_size; input_and_return: if (frame) { ctx->shorten_by = avctx->frame_size - frame->nb_samples; ctx->next_major_frame_size += avctx->frame_size; ctx->next_major_number_of_frames++; } if (data) for (int n = 0; n < ctx->num_substreams; n++) input_data(ctx, &ctx->s[n], frame->extended_data, frame->nb_samples); restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval; if (!restart_frame) { for (unsigned int seq_index = 0; seq_index < ctx->restart_intervals; seq_index++) { unsigned int number_of_samples; ctx->number_of_frames = ctx->next_major_number_of_frames; ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1; number_of_samples = avctx->frame_size * ctx->number_of_frames; for (int n = 0; n < ctx->num_substreams; n++) { MLPSubstream *s = &ctx->s[n]; for (int i = 0; i < s->b[seq_index].seq_size; i++) { clear_channel_params(s->b[i].channel_params, channels); default_decoding_params(ctx, &s->b[i].decoding_params); } } if (number_of_samples > 0) { for (int n = 0; n < ctx->num_substreams; n++) analyze_sample_buffer(ctx, &ctx->s[n]); } } if (ctx->frame_index == (ctx->cur_restart_interval - 1)) { ctx->major_frame_size = ctx->next_major_frame_size; ctx->next_major_frame_size = 0; ctx->major_number_of_frames = ctx->next_major_number_of_frames; ctx->next_major_number_of_frames = 0; } } if (!frame && ctx->last_frames < ctx->cur_restart_interval - 1) avctx->frame_num++; if (bytes_written > 0) { ff_af_queue_remove(&ctx->afq, FFMIN(avctx->frame_size, ctx->afq.remaining_samples), &avpkt->pts, &avpkt->duration); av_shrink_packet(avpkt, bytes_written); *got_packet = 1; } else { *got_packet = 0; } return 0; } static av_cold int mlp_encode_close(AVCodecContext *avctx) { MLPEncodeContext *ctx = avctx->priv_data; ff_lpc_end(&ctx->lpc_ctx); ff_af_queue_close(&ctx->afq); return 0; } #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM #define OFFSET(x) offsetof(MLPEncodeContext, x) static const AVOption mlp_options[] = { { "max_interval", "Max number of frames between each new header", OFFSET(max_restart_interval), AV_OPT_TYPE_INT, {.i64 = 16 }, MIN_HEADER_INTERVAL, MAX_HEADER_INTERVAL, FLAGS }, { "lpc_coeff_precision", "LPC coefficient precision", OFFSET(lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, 15, FLAGS }, { "lpc_type", "LPC algorithm", OFFSET(lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_LEVINSON }, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_CHOLESKY, FLAGS, .unit = "lpc_type" }, { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, 0, 0, FLAGS, .unit = "lpc_type" }, { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, 0, 0, FLAGS, .unit = "lpc_type" }, { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", OFFSET(lpc_passes), AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS }, { "codebook_search", "Max number of codebook searches", OFFSET(max_codebook_search), AV_OPT_TYPE_INT, {.i64 = 3 }, 1, 100, FLAGS }, { "prediction_order", "Search method for selecting prediction order", OFFSET(prediction_order), AV_OPT_TYPE_INT, {.i64 = ORDER_METHOD_EST }, ORDER_METHOD_EST, ORDER_METHOD_SEARCH, FLAGS, .unit = "predm" }, { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, 0, 0, FLAGS, .unit = "predm" }, { "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, 0, 0, FLAGS, .unit = "predm" }, { "rematrix_precision", "Rematrix coefficient precision", OFFSET(rematrix_precision), AV_OPT_TYPE_INT, {.i64 = 1 }, 0, 14, FLAGS }, { NULL }, }; static const AVClass mlp_class = { .class_name = "mlpenc", .item_name = av_default_item_name, .option = mlp_options, .version = LIBAVUTIL_VERSION_INT, }; #if CONFIG_MLP_ENCODER const FFCodec ff_mlp_encoder = { .p.name ="mlp", CODEC_LONG_NAME("MLP (Meridian Lossless Packing)"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_MLP, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL, .priv_data_size = sizeof(MLPEncodeContext), .init = mlp_encode_init, FF_CODEC_ENCODE_CB(mlp_encode_frame), .close = mlp_encode_close, .p.priv_class = &mlp_class, .p.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE}, .p.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0}, CODEC_OLD_CHANNEL_LAYOUTS_ARRAY(ff_mlp_channel_layouts) .p.ch_layouts = ff_mlp_ch_layouts, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif #if CONFIG_TRUEHD_ENCODER const FFCodec ff_truehd_encoder = { .p.name ="truehd", CODEC_LONG_NAME("TrueHD"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_TRUEHD, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL, .priv_data_size = sizeof(MLPEncodeContext), .init = mlp_encode_init, FF_CODEC_ENCODE_CB(mlp_encode_frame), .close = mlp_encode_close, .p.priv_class = &mlp_class, .p.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE}, .p.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0}, CODEC_OLD_CHANNEL_LAYOUTS(AV_CH_LAYOUT_MONO, AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_2POINT1, AV_CH_LAYOUT_SURROUND, AV_CH_LAYOUT_3POINT1, AV_CH_LAYOUT_4POINT0, AV_CH_LAYOUT_4POINT1, AV_CH_LAYOUT_5POINT0, AV_CH_LAYOUT_5POINT1) .p.ch_layouts = (const AVChannelLayout[]) { AV_CHANNEL_LAYOUT_MONO, AV_CHANNEL_LAYOUT_STEREO, AV_CHANNEL_LAYOUT_2POINT1, AV_CHANNEL_LAYOUT_SURROUND, AV_CHANNEL_LAYOUT_3POINT1, AV_CHANNEL_LAYOUT_4POINT0, AV_CHANNEL_LAYOUT_4POINT1, AV_CHANNEL_LAYOUT_5POINT0, AV_CHANNEL_LAYOUT_5POINT1, { 0 } }, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif