/* * FFT/MDCT transform with SSE optimizations * Copyright (c) 2002 Fabrice Bellard. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "../dsputil.h" #include #ifdef HAVE_BUILTIN_VECTOR #include static const float p1p1p1m1[4] __attribute__((aligned(16))) = { 1.0, 1.0, 1.0, -1.0 }; static const float p1p1m1p1[4] __attribute__((aligned(16))) = { 1.0, 1.0, -1.0, 1.0 }; static const float p1p1m1m1[4] __attribute__((aligned(16))) = { 1.0, 1.0, -1.0, -1.0 }; #if 0 static void print_v4sf(const char *str, __m128 a) { float *p = (float *)&a; printf("%s: %f %f %f %f\n", str, p[0], p[1], p[2], p[3]); } #endif /* XXX: handle reverse case */ void ff_fft_calc_sse(FFTContext *s, FFTComplex *z) { int ln = s->nbits; int j, np, np2; int nblocks, nloops; register FFTComplex *p, *q; FFTComplex *cptr, *cptr1; int k; np = 1 << ln; { __m128 *r, a, b, a1, c1, c2; r = (__m128 *)&z[0]; c1 = *(__m128 *)p1p1m1m1; c2 = *(__m128 *)p1p1p1m1; if (s->inverse) c2 = *(__m128 *)p1p1m1p1; else c2 = *(__m128 *)p1p1p1m1; j = (np >> 2); do { a = r[0]; b = _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 0, 3, 2)); a = _mm_mul_ps(a, c1); /* do the pass 0 butterfly */ a = _mm_add_ps(a, b); a1 = r[1]; b = _mm_shuffle_ps(a1, a1, _MM_SHUFFLE(1, 0, 3, 2)); a1 = _mm_mul_ps(a1, c1); /* do the pass 0 butterfly */ b = _mm_add_ps(a1, b); /* multiply third by -i */ b = _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 3, 1, 0)); b = _mm_mul_ps(b, c2); /* do the pass 1 butterfly */ r[0] = _mm_add_ps(a, b); r[1] = _mm_sub_ps(a, b); r += 2; } while (--j != 0); } /* pass 2 .. ln-1 */ nblocks = np >> 3; nloops = 1 << 2; np2 = np >> 1; cptr1 = s->exptab1; do { p = z; q = z + nloops; j = nblocks; do { cptr = cptr1; k = nloops >> 1; do { __m128 a, b, c, t1, t2; a = *(__m128 *)p; b = *(__m128 *)q; /* complex mul */ c = *(__m128 *)cptr; /* cre*re cim*re */ t1 = _mm_mul_ps(c, _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 2, 0, 0))); c = *(__m128 *)(cptr + 2); /* -cim*im cre*im */ t2 = _mm_mul_ps(c, _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 3, 1, 1))); b = _mm_add_ps(t1, t2); /* butterfly */ *(__m128 *)p = _mm_add_ps(a, b); *(__m128 *)q = _mm_sub_ps(a, b); p += 2; q += 2; cptr += 4; } while (--k); p += nloops; q += nloops; } while (--j); cptr1 += nloops * 2; nblocks = nblocks >> 1; nloops = nloops << 1; } while (nblocks != 0); } #endif