/* * huffyuv codec for libavcodec * * Copyright (c) 2002-2003 Michael Niedermayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of * the algorithm used */ #include "common.h" #include "avcodec.h" #include "dsputil.h" #ifndef INT64_MAX #define INT64_MAX 9223372036854775807LL #endif #define VLC_BITS 11 typedef enum Predictor{ LEFT= 0, PLANE, MEDIAN, } Predictor; typedef struct HYuvContext{ AVCodecContext *avctx; Predictor predictor; GetBitContext gb; PutBitContext pb; int interlaced; int decorrelate; int bitstream_bpp; int version; int yuy2; //use yuy2 instead of 422P int bgr32; //use bgr32 instead of bgr24 int width, height; int flags; int picture_number; int last_slice_end; uint8_t __align8 temp[3][2500]; uint64_t stats[3][256]; uint8_t len[3][256]; uint32_t bits[3][256]; VLC vlc[3]; AVFrame picture; uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution DSPContext dsp; }HYuvContext; static inline void bswap_buf(uint32_t *dst, uint32_t *src, int w){ int i; for(i=0; i+8<=w; i+=8){ dst[i+0]= bswap_32(src[i+0]); dst[i+1]= bswap_32(src[i+1]); dst[i+2]= bswap_32(src[i+2]); dst[i+3]= bswap_32(src[i+3]); dst[i+4]= bswap_32(src[i+4]); dst[i+5]= bswap_32(src[i+5]); dst[i+6]= bswap_32(src[i+6]); dst[i+7]= bswap_32(src[i+7]); } for(;idsp.diff_bytes(dst+16, src+16, src+15, w-16); return src[w-1]; } } static void read_len_table(uint8_t *dst, GetBitContext *gb){ int i, val, repeat; for(i=0; i<256;){ repeat= get_bits(gb, 3); val = get_bits(gb, 5); if(repeat==0) repeat= get_bits(gb, 8); //printf("%d %d\n", val, repeat); while (repeat--) dst[i++] = val; } } static int generate_bits_table(uint32_t *dst, uint8_t *len_table){ int len, index; uint32_t bits=0; for(len=32; len>0; len--){ int bit= 1<<(32-len); for(index=0; index<256; index++){ if(len_table[index]==len){ if(bits & (bit-1)){ fprintf(stderr, "Error generating huffman table\n"); return -1; } dst[index]= bits>>(32-len); bits+= bit; } } } return 0; } static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){ uint64_t counts[2*size]; int up[2*size]; int offset, i, next; for(offset=1; ; offset<<=1){ for(i=0; i counts[i]){ if(min1 > counts[i]){ min2= min1; min2_i= min1_i; min1= counts[i]; min1_i= i; }else{ min2= counts[i]; min2_i= i; } } } if(min2==INT64_MAX) break; counts[next]= min1 + min2; counts[min1_i]= counts[min2_i]= INT64_MAX; up[min1_i]= up[min2_i]= next; up[next]= -1; } for(i=0; i 32) break; dst[i]= len; } if(i==size) break; } } static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){ GetBitContext gb; int i; init_get_bits(&gb, src, length*8); for(i=0; i<3; i++){ read_len_table(s->len[i], &gb); if(generate_bits_table(s->bits[i], s->len[i])<0){ return -1; } #if 0 for(j=0; j<256; j++){ printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j); } #endif init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4); } return 0; } static int read_old_huffman_tables(HYuvContext *s){ #if 0 GetBitContext gb; int i; init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8); read_len_table(s->len[0], &gb); init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8); read_len_table(s->len[1], &gb); for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i]; for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i]; if(s->bitstream_bpp >= 24){ memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t)); memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t)); } memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t)); memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t)); for(i=0; i<3; i++) init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4); return 0; #else fprintf(stderr, "v1 huffyuv is not supported \n"); return -1; #endif } static int decode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int width, height; s->avctx= avctx; s->flags= avctx->flags; dsputil_init(&s->dsp, avctx->dsp_mask); width= s->width= avctx->width; height= s->height= avctx->height; avctx->coded_frame= &s->picture; s->bgr32=1; assert(width && height); //if(avctx->extradata) // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size); if(avctx->extradata_size){ if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12) s->version=1; // do such files exist at all? else s->version=2; }else s->version=0; if(s->version==2){ int method; method= ((uint8_t*)avctx->extradata)[0]; s->decorrelate= method&64 ? 1 : 0; s->predictor= method&63; s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1]; if(s->bitstream_bpp==0) s->bitstream_bpp= avctx->bits_per_sample&~7; if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0) return -1; }else{ switch(avctx->bits_per_sample&7){ case 1: s->predictor= LEFT; s->decorrelate= 0; break; case 2: s->predictor= LEFT; s->decorrelate= 1; break; case 3: s->predictor= PLANE; s->decorrelate= avctx->bits_per_sample >= 24; break; case 4: s->predictor= MEDIAN; s->decorrelate= 0; break; default: s->predictor= LEFT; //OLD s->decorrelate= 0; break; } s->bitstream_bpp= avctx->bits_per_sample & ~7; if(read_old_huffman_tables(s) < 0) return -1; } s->interlaced= height > 288; switch(s->bitstream_bpp){ case 12: avctx->pix_fmt = PIX_FMT_YUV420P; break; case 16: if(s->yuy2){ avctx->pix_fmt = PIX_FMT_YUV422; }else{ avctx->pix_fmt = PIX_FMT_YUV422P; } break; case 24: case 32: if(s->bgr32){ avctx->pix_fmt = PIX_FMT_RGBA32; }else{ avctx->pix_fmt = PIX_FMT_BGR24; } break; default: assert(0); } // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced); return 0; } static void store_table(HYuvContext *s, uint8_t *len){ int i; int index= s->avctx->extradata_size; for(i=0; i<256;){ int cur=i; int val= len[i]; int repeat; for(; i<256 && len[i]==val; i++); repeat= i - cur; if(repeat>7){ ((uint8_t*)s->avctx->extradata)[index++]= val; ((uint8_t*)s->avctx->extradata)[index++]= repeat; }else{ ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5); } } s->avctx->extradata_size= index; } static int encode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i, j, width, height; s->avctx= avctx; s->flags= avctx->flags; dsputil_init(&s->dsp, avctx->dsp_mask); width= s->width= avctx->width; height= s->height= avctx->height; assert(width && height); avctx->extradata= av_mallocz(1024*10); avctx->stats_out= av_mallocz(1024*10); s->version=2; avctx->coded_frame= &s->picture; switch(avctx->pix_fmt){ case PIX_FMT_YUV420P: if(avctx->strict_std_compliance>=0){ fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n"); return -1; } s->bitstream_bpp= 12; break; case PIX_FMT_YUV422P: s->bitstream_bpp= 16; break; default: fprintf(stderr, "format not supported\n"); return -1; } avctx->bits_per_sample= s->bitstream_bpp; s->decorrelate= s->bitstream_bpp >= 24; s->predictor= avctx->prediction_method; ((uint8_t*)avctx->extradata)[0]= s->predictor; ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp; ((uint8_t*)avctx->extradata)[2]= ((uint8_t*)avctx->extradata)[3]= 0; s->avctx->extradata_size= 4; if(avctx->stats_in){ char *p= avctx->stats_in; for(i=0; i<3; i++) for(j=0; j<256; j++) s->stats[i][j]= 1; for(;;){ for(i=0; i<3; i++){ char *next; for(j=0; j<256; j++){ s->stats[i][j]+= strtol(p, &next, 0); if(next==p) return -1; p=next; } } if(p[0]==0 || p[1]==0 || p[2]==0) break; } }else{ for(i=0; i<3; i++) for(j=0; j<256; j++){ int d= FFMIN(j, 256-j); s->stats[i][j]= 100000000/(d+1); } } for(i=0; i<3; i++){ generate_len_table(s->len[i], s->stats[i], 256); if(generate_bits_table(s->bits[i], s->len[i])<0){ return -1; } store_table(s, s->len[i]); } for(i=0; i<3; i++) for(j=0; j<256; j++) s->stats[i][j]= 0; s->interlaced= height > 288; // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced); s->picture_number=0; return 0; } static void decode_422_bitstream(HYuvContext *s, int count){ int i; count/=2; for(i=0; itemp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); } } static void decode_gray_bitstream(HYuvContext *s, int count){ int i; count/=2; for(i=0; itemp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); } } static void encode_422_bitstream(HYuvContext *s, int count){ int i; count/=2; if(s->flags&CODEC_FLAG_PASS1){ for(i=0; istats[0][ s->temp[0][2*i ] ]++; s->stats[1][ s->temp[1][ i ] ]++; s->stats[0][ s->temp[0][2*i+1] ]++; s->stats[2][ s->temp[2][ i ] ]++; } }else{ for(i=0; ipb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]); put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]); put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]); put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]); } } } static void encode_gray_bitstream(HYuvContext *s, int count){ int i; count/=2; if(s->flags&CODEC_FLAG_PASS1){ for(i=0; istats[0][ s->temp[0][2*i ] ]++; s->stats[0][ s->temp[0][2*i+1] ]++; } }else{ for(i=0; ipb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]); put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]); } } } static void decode_bgr_bitstream(HYuvContext *s, int count){ int i; if(s->decorrelate){ if(s->bitstream_bpp==24){ for(i=0; itemp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1]; s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1]; } }else{ for(i=0; itemp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1]; s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1]; get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?! } } }else{ if(s->bitstream_bpp==24){ for(i=0; itemp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); } }else{ for(i=0; itemp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?! } } } } static void draw_slice(HYuvContext *s, int y){ int h, cy; UINT8 *src_ptr[3]; if(s->avctx->draw_horiz_band==NULL) return; h= y - s->last_slice_end; y -= h; if(s->bitstream_bpp==12){ cy= y>>1; }else{ cy= y; } src_ptr[0] = s->picture.data[0] + s->picture.linesize[0]*y; src_ptr[1] = s->picture.data[1] + s->picture.linesize[1]*cy; src_ptr[2] = s->picture.data[2] + s->picture.linesize[2]*cy; emms_c(); s->avctx->draw_horiz_band(s->avctx, src_ptr, s->picture.linesize[0], y, s->width, h); s->last_slice_end= y + h; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){ HYuvContext *s = avctx->priv_data; const int width= s->width; const int width2= s->width>>1; const int height= s->height; int fake_ystride, fake_ustride, fake_vstride; AVFrame * const p= &s->picture; AVFrame *picture = data; *data_size = 0; /* no supplementary picture */ if (buf_size == 0) return 0; bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4); init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8); p->reference= 0; if(avctx->get_buffer(avctx, p) < 0){ fprintf(stderr, "get_buffer() failed\n"); return -1; } fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0]; fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1]; fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2]; s->last_slice_end= 0; if(s->bitstream_bpp<24){ int y, cy; int lefty, leftu, leftv; int lefttopy, lefttopu, lefttopv; if(s->yuy2){ p->data[0][3]= get_bits(&s->gb, 8); p->data[0][2]= get_bits(&s->gb, 8); p->data[0][1]= get_bits(&s->gb, 8); p->data[0][0]= get_bits(&s->gb, 8); fprintf(stderr, "YUY2 output isnt implemenetd yet\n"); return -1; }else{ leftv= p->data[2][0]= get_bits(&s->gb, 8); lefty= p->data[0][1]= get_bits(&s->gb, 8); leftu= p->data[1][0]= get_bits(&s->gb, 8); p->data[0][0]= get_bits(&s->gb, 8); switch(s->predictor){ case LEFT: case PLANE: decode_422_bitstream(s, width-2); lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu); leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv); } for(cy=y=1; yheight; y++,cy++){ uint8_t *ydst, *udst, *vdst; if(s->bitstream_bpp==12){ decode_gray_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; lefty= add_left_prediction(ydst, s->temp[0], width, lefty); if(s->predictor == PLANE){ if(y>s->interlaced) s->dsp.add_bytes(ydst, ydst - fake_ystride, width); } y++; if(y>=s->height) break; } draw_slice(s, y); ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; decode_422_bitstream(s, width); lefty= add_left_prediction(ydst, s->temp[0], width, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(udst, s->temp[1], width2, leftu); leftv= add_left_prediction(vdst, s->temp[2], width2, leftv); } if(s->predictor == PLANE){ if(cy>s->interlaced){ s->dsp.add_bytes(ydst, ydst - fake_ystride, width); if(!(s->flags&CODEC_FLAG_GRAY)){ s->dsp.add_bytes(udst, udst - fake_ustride, width2); s->dsp.add_bytes(vdst, vdst - fake_vstride, width2); } } } } draw_slice(s, height); break; case MEDIAN: /* first line except first 2 pixels is left predicted */ decode_422_bitstream(s, width-2); lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu); leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv); } cy=y=1; /* second line is left predicted for interlaced case */ if(s->interlaced){ decode_422_bitstream(s, width); lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu); leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv); } y++; cy++; } /* next 4 pixels are left predicted too */ decode_422_bitstream(s, 4); lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu); leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv); } /* next line except the first 4 pixels is median predicted */ lefttopy= p->data[0][3]; decode_422_bitstream(s, width-4); add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy); if(!(s->flags&CODEC_FLAG_GRAY)){ lefttopu= p->data[1][1]; lefttopv= p->data[2][1]; add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu); add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv); } y++; cy++; for(; ybitstream_bpp==12){ while(2*cy > y){ decode_gray_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); y++; } if(y>=height) break; } draw_slice(s, y); decode_422_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); if(!(s->flags&CODEC_FLAG_GRAY)){ add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu); add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv); } } draw_slice(s, height); break; } } }else{ int y; int leftr, leftg, leftb; const int last_line= (height-1)*p->linesize[0]; if(s->bitstream_bpp==32){ p->data[0][last_line+3]= get_bits(&s->gb, 8); leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8); leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8); leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8); }else{ leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8); leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8); leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8); skip_bits(&s->gb, 8); } if(s->bgr32){ switch(s->predictor){ case LEFT: case PLANE: decode_bgr_bitstream(s, width-1); add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb); for(y=s->height-2; y>=0; y--){ //yes its stored upside down decode_bgr_bitstream(s, width); add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb); if(s->predictor == PLANE){ if((y&s->interlaced)==0){ s->dsp.add_bytes(p->data[0] + p->linesize[0]*y, p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride); } } } draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order break; default: fprintf(stderr, "prediction type not supported!\n"); } }else{ fprintf(stderr, "BGR24 output isnt implemenetd yet\n"); return -1; } } emms_c(); *picture= *p; avctx->release_buffer(avctx, p); *data_size = sizeof(AVFrame); return (get_bits_count(&s->gb)+7)>>3; } static int decode_end(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; for(i=0; i<3; i++){ free_vlc(&s->vlc[i]); } if(avctx->get_buffer == avcodec_default_get_buffer){ for(i=0; i<4; i++){ av_freep(&s->picture.base[i]); s->picture.data[i]= NULL; } av_freep(&s->picture.opaque); } return 0; } static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){ HYuvContext *s = avctx->priv_data; AVFrame *pict = data; const int width= s->width; const int width2= s->width>>1; const int height= s->height; const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0]; const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1]; const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2]; AVFrame * const p= &s->picture; int i, size; init_put_bits(&s->pb, buf, buf_size, NULL, NULL); *p = *pict; p->pict_type= FF_I_TYPE; p->key_frame= 1; if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){ int lefty, leftu, leftv, y, cy; put_bits(&s->pb, 8, leftv= p->data[2][0]); put_bits(&s->pb, 8, lefty= p->data[0][1]); put_bits(&s->pb, 8, leftu= p->data[1][0]); put_bits(&s->pb, 8, p->data[0][0]); lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty); leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu); leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv); encode_422_bitstream(s, width-2); if(s->predictor==MEDIAN){ int lefttopy, lefttopu, lefttopv; cy=y=1; if(s->interlaced){ lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty); leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu); leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv); encode_422_bitstream(s, width); y++; cy++; } lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty); leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu); leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv); encode_422_bitstream(s, 4); lefttopy= p->data[0][3]; lefttopu= p->data[1][1]; lefttopv= p->data[2][1]; sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy); sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu); sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv); encode_422_bitstream(s, width-4); y++; cy++; for(; ybitstream_bpp==12){ while(2*cy > y){ ydst= p->data[0] + p->linesize[0]*y; sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy); encode_gray_bitstream(s, width); y++; } if(y>=height) break; } ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy); sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu); sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv); encode_422_bitstream(s, width); } }else{ for(cy=y=1; ybitstream_bpp==12){ ydst= p->data[0] + p->linesize[0]*y; if(s->predictor == PLANE && s->interlaced < y){ s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); }else{ lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty); } encode_gray_bitstream(s, width); y++; if(y>=height) break; } ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; if(s->predictor == PLANE && s->interlaced < cy){ s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2); s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2); lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu); leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv); }else{ lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty); leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu); leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv); } encode_422_bitstream(s, width); } } }else{ fprintf(stderr, "Format not supported!\n"); } emms_c(); size= (get_bit_count(&s->pb)+31)/32; if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){ int j; char *p= avctx->stats_out; for(i=0; i<3; i++){ for(j=0; j<256; j++){ sprintf(p, "%Ld ", s->stats[i][j]); p+= strlen(p); s->stats[i][j]= 0; } sprintf(p, "\n"); p++; } }else{ flush_put_bits(&s->pb); bswap_buf((uint32_t*)buf, (uint32_t*)buf, size); } s->picture_number++; return size*4; } static int encode_end(AVCodecContext *avctx) { // HYuvContext *s = avctx->priv_data; av_freep(&avctx->extradata); av_freep(&avctx->stats_out); return 0; } AVCodec huffyuv_decoder = { "huffyuv", CODEC_TYPE_VIDEO, CODEC_ID_HUFFYUV, sizeof(HYuvContext), decode_init, NULL, decode_end, decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND, NULL }; AVCodec huffyuv_encoder = { "huffyuv", CODEC_TYPE_VIDEO, CODEC_ID_HUFFYUV, sizeof(HYuvContext), encode_init, encode_frame, encode_end, };