/* * HEVC video decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2013 Seppo Tomperi * Copyright (C) 2013 Wassim Hamidouche * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/common.h" #include "libavutil/internal.h" #include "cabac_functions.h" #include "golomb.h" #include "hevc.h" #define LUMA 0 #define CB 1 #define CR 2 static const uint8_t tctable[54] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53 }; static const uint8_t betatable[52] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51 }; static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset) { static const int qp_c[] = { 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37 }; int qp, qp_i, offset, idxt; // slice qp offset is not used for deblocking if (c_idx == 1) offset = s->ps.pps->cb_qp_offset; else offset = s->ps.pps->cr_qp_offset; qp_i = av_clip(qp_y + offset, 0, 57); if (qp_i < 30) qp = qp_i; else if (qp_i > 43) qp = qp_i - 6; else qp = qp_c[qp_i - 30]; idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53); return tctable[idxt]; } static int get_qPy_pred(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size) { HEVCLocalContext *lc = &s->HEVClc; int ctb_size_mask = (1 << s->ps.sps->log2_ctb_size) - 1; int MinCuQpDeltaSizeMask = (1 << (s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1; int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask); int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask); int min_cb_width = s->ps.sps->min_cb_width; int min_cb_height = s->ps.sps->min_cb_height; int x_cb = xQgBase >> s->ps.sps->log2_min_cb_size; int y_cb = yQgBase >> s->ps.sps->log2_min_cb_size; int availableA = (xBase & ctb_size_mask) && (xQgBase & ctb_size_mask); int availableB = (yBase & ctb_size_mask) && (yQgBase & ctb_size_mask); int qPy_pred, qPy_a, qPy_b; // qPy_pred if (lc->first_qp_group || (!xQgBase && !yQgBase)) { lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded; qPy_pred = s->sh.slice_qp; } else { qPy_pred = lc->qp_y; if (log2_cb_size < s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) { static const int offsetX[8][8] = { { -1, 1, 3, 1, 7, 1, 3, 1 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 1, 3, 1, 3, 1, 3, 1, 3 }, { 2, 2, 2, 2, 2, 2, 2, 2 }, { 3, 5, 7, 5, 3, 5, 7, 5 }, { 4, 4, 4, 4, 4, 4, 4, 4 }, { 5, 7, 5, 7, 5, 7, 5, 7 }, { 6, 6, 6, 6, 6, 6, 6, 6 } }; static const int offsetY[8][8] = { { 7, 0, 1, 2, 3, 4, 5, 6 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 1, 0, 3, 2, 5, 4, 7, 6 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 3, 0, 1, 2, 7, 4, 5, 6 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 1, 0, 3, 2, 5, 4, 7, 6 }, { 0, 1, 2, 3, 4, 5, 6, 7 } }; int xC0b = (xC - (xC & ctb_size_mask)) >> s->ps.sps->log2_min_cb_size; int yC0b = (yC - (yC & ctb_size_mask)) >> s->ps.sps->log2_min_cb_size; int idxX = (xQgBase & ctb_size_mask) >> s->ps.sps->log2_min_cb_size; int idxY = (yQgBase & ctb_size_mask) >> s->ps.sps->log2_min_cb_size; int idx_mask = ctb_size_mask >> s->ps.sps->log2_min_cb_size; int x, y; x = FFMIN(xC0b + offsetX[idxX][idxY], min_cb_width - 1); y = FFMIN(yC0b + (offsetY[idxX][idxY] & idx_mask), min_cb_height - 1); if (xC0b == (lc->start_of_tiles_x >> s->ps.sps->log2_min_cb_size) && offsetX[idxX][idxY] == -1) { x = (lc->end_of_tiles_x >> s->ps.sps->log2_min_cb_size) - 1; y = yC0b - 1; } qPy_pred = s->qp_y_tab[y * min_cb_width + x]; } } // qPy_a if (availableA == 0) qPy_a = qPy_pred; else qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width]; // qPy_b if (availableB == 0) qPy_b = qPy_pred; else qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width]; return (qPy_a + qPy_b + 1) >> 1; } void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size) { int qp_y = get_qPy_pred(s, xC, yC, xBase, yBase, log2_cb_size); if (s->HEVClc.tu.cu_qp_delta != 0) { int off = s->ps.sps->qp_bd_offset; s->HEVClc.qp_y = FFUMOD(qp_y + s->HEVClc.tu.cu_qp_delta + 52 + 2 * off, 52 + off) - off; } else s->HEVClc.qp_y = qp_y; } static int get_qPy(HEVCContext *s, int xC, int yC) { int log2_min_cb_size = s->ps.sps->log2_min_cb_size; int x = xC >> log2_min_cb_size; int y = yC >> log2_min_cb_size; return s->qp_y_tab[x + y * s->ps.sps->min_cb_width]; } static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height, int stride) { int i; for (i = 0; i < height; i++) { memcpy(dst, src, width); dst += stride; src += stride; } } #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)]) static void sao_filter_CTB(HEVCContext *s, int x, int y) { // TODO: This should be easily parallelizable // TODO: skip CBs when (cu_transquant_bypass_flag || (pcm_loop_filter_disable_flag && pcm_flag)) int c_idx = 0; int class = 1, class_index; int edges[4]; // 0 left 1 top 2 right 3 bottom SAOParams *sao[4]; int classes[4]; int x_shift = 0, y_shift = 0; int x_ctb = x >> s->ps.sps->log2_ctb_size; int y_ctb = y >> s->ps.sps->log2_ctb_size; int ctb_addr_rs = y_ctb * s->ps.sps->ctb_width + x_ctb; int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs]; // flags indicating unfilterable edges uint8_t vert_edge[] = { 0, 0, 0, 0 }; uint8_t horiz_edge[] = { 0, 0, 0, 0 }; uint8_t diag_edge[] = { 0, 0, 0, 0 }; uint8_t lfase[3]; // current, above, left uint8_t no_tile_filter = s->ps.pps->tiles_enabled_flag && !s->ps.pps->loop_filter_across_tiles_enabled_flag; uint8_t left_tile_edge = 0, up_tile_edge = 0; sao[0] = &CTB(s->sao, x_ctb, y_ctb); edges[0] = x_ctb == 0; edges[1] = y_ctb == 0; edges[2] = x_ctb == s->ps.sps->ctb_width - 1; edges[3] = y_ctb == s->ps.sps->ctb_height - 1; lfase[0] = CTB(s->filter_slice_edges, x_ctb, y_ctb); classes[0] = 0; if (!edges[0]) { left_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]]; sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb); vert_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge; vert_edge[2] = vert_edge[0]; lfase[2] = CTB(s->filter_slice_edges, x_ctb - 1, y_ctb); classes[class] = 2; class++; x_shift = 8; } if (!edges[1]) { up_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]]; sao[class] = &CTB(s->sao, x_ctb, y_ctb - 1); horiz_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge; horiz_edge[1] = horiz_edge[0]; lfase[1] = CTB(s->filter_slice_edges, x_ctb, y_ctb - 1); classes[class] = 1; class++; y_shift = 4; if (!edges[0]) { classes[class] = 3; sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb - 1); class++; // Tile check here is done current CTB row/col, not above/left like you'd expect, //but that is because the tile boundary always extends through the whole pic vert_edge[1] = (!lfase[1] && CTB(s->tab_slice_address, x_ctb, y_ctb - 1) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge; vert_edge[3] = vert_edge[1]; horiz_edge[2] = (!lfase[2] && CTB(s->tab_slice_address, x_ctb - 1, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || up_tile_edge; horiz_edge[3] = horiz_edge[2]; diag_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge; diag_edge[3] = diag_edge[0]; // Does left CTB comes after above CTB? if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) > CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) { diag_edge[2] = !lfase[2] || left_tile_edge || up_tile_edge; diag_edge[1] = diag_edge[2]; } else if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) < CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) { diag_edge[1] = !lfase[1] || left_tile_edge || up_tile_edge; diag_edge[2] = diag_edge[1]; } else { // Same slice, only consider tiles diag_edge[2] = left_tile_edge || up_tile_edge; diag_edge[1] = diag_edge[2]; } } } for (c_idx = 0; c_idx < 3; c_idx++) { int chroma = c_idx ? 1 : 0; int x0 = x >> chroma; int y0 = y >> chroma; int stride = s->frame->linesize[c_idx]; int ctb_size = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->hshift[c_idx]; int width = FFMIN(ctb_size, (s->ps.sps->width >> s->ps.sps->hshift[c_idx]) - x0); int height = FFMIN(ctb_size, (s->ps.sps->height >> s->ps.sps->vshift[c_idx]) - y0); uint8_t *src = &s->frame->data[c_idx][y0 * stride + (x0 << s->ps.sps->pixel_shift)]; uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride + (x0 << s->ps.sps->pixel_shift)]; int offset = (y_shift >> chroma) * stride + ((x_shift >> chroma) << s->ps.sps->pixel_shift); copy_CTB(dst - offset, src - offset, (edges[2] ? width + (x_shift >> chroma) : width) << s->ps.sps->pixel_shift, (edges[3] ? height + (y_shift >> chroma) : height), stride); for (class_index = 0; class_index < class; class_index++) { switch (sao[class_index]->type_idx[c_idx]) { case SAO_BAND: s->hevcdsp.sao_band_filter[classes[class_index]](dst, src, stride, sao[class_index], edges, width, height, c_idx); break; case SAO_EDGE: s->hevcdsp.sao_edge_filter[classes[class_index]](dst, src, stride, sao[class_index], edges, width, height, c_idx, vert_edge[classes[class_index]], horiz_edge[classes[class_index]], diag_edge[classes[class_index]]); break; } } } } static int get_pcm(HEVCContext *s, int x, int y) { int log2_min_pu_size = s->ps.sps->log2_min_pu_size; int x_pu, y_pu; if (x < 0 || y < 0) return 2; x_pu = x >> log2_min_pu_size; y_pu = y >> log2_min_pu_size; if (x_pu >= s->ps.sps->min_pu_width || y_pu >= s->ps.sps->min_pu_height) return 2; return s->is_pcm[y_pu * s->ps.sps->min_pu_width + x_pu]; } #define TC_CALC(qp, bs) \ tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \ (tc_offset >> 1 << 1), \ 0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)] static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0) { uint8_t *src; int x, y, x_end, y_end, chroma; int c_tc[2], tc[2], beta; uint8_t no_p[2] = { 0 }; uint8_t no_q[2] = { 0 }; int log2_ctb_size = s->ps.sps->log2_ctb_size; int ctb_size = 1 << log2_ctb_size; int ctb = (x0 >> log2_ctb_size) + (y0 >> log2_ctb_size) * s->ps.sps->ctb_width; int cur_tc_offset = s->deblock[ctb].tc_offset; int cur_beta_offset = s->deblock[ctb].beta_offset; int tc_offset, left_tc_offset, beta_offset, left_beta_offset; int pcmf = (s->ps.sps->pcm_enabled_flag && s->ps.sps->pcm.loop_filter_disable_flag) || s->ps.pps->transquant_bypass_enable_flag; if (x0) { left_tc_offset = s->deblock[ctb - 1].tc_offset; left_beta_offset = s->deblock[ctb - 1].beta_offset; } x_end = x0 + ctb_size; if (x_end > s->ps.sps->width) x_end = s->ps.sps->width; y_end = y0 + ctb_size; if (y_end > s->ps.sps->height) y_end = s->ps.sps->height; tc_offset = cur_tc_offset; beta_offset = cur_beta_offset; // vertical filtering luma for (y = y0; y < y_end; y += 8) { for (x = x0 ? x0 : 8; x < x_end; x += 8) { const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width]; const int bs1 = s->vertical_bs[(x >> 3) + ((y + 4) >> 2) * s->bs_width]; if (bs0 || bs1) { const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1; beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)]; tc[0] = bs0 ? TC_CALC(qp, bs0) : 0; tc[1] = bs1 ? TC_CALC(qp, bs1) : 0; src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x - 1, y); no_p[1] = get_pcm(s, x - 1, y + 4); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x, y + 4); s->hevcdsp.hevc_v_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } else s->hevcdsp.hevc_v_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } } } // vertical filtering chroma for (chroma = 1; chroma <= 2; chroma++) { for (y = y0; y < y_end; y += 16) { for (x = x0 ? x0 : 16; x < x_end; x += 16) { const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width]; const int bs1 = s->vertical_bs[(x >> 3) + ((y + 8) >> 2) * s->bs_width]; if ((bs0 == 2) || (bs1 == 2)) { const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1; const int qp1 = (get_qPy(s, x - 1, y + 8) + get_qPy(s, x, y + 8) + 1) >> 1; c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0; c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0; src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->ps.sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x - 1, y); no_p[1] = get_pcm(s, x - 1, y + 8); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x, y + 8); s->hevcdsp.hevc_v_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } else s->hevcdsp.hevc_v_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } } } } // horizontal filtering luma if (x_end != s->ps.sps->width) x_end -= 8; for (y = y0 ? y0 : 8; y < y_end; y += 8) { for (x = x0 ? x0 - 8 : 0; x < x_end; x += 8) { const int bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2]; const int bs1 = s->horizontal_bs[(x + 4 + y * s->bs_width) >> 2]; if (bs0 || bs1) { const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1; tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset; beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset; beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)]; tc[0] = bs0 ? TC_CALC(qp, bs0) : 0; tc[1] = bs1 ? TC_CALC(qp, bs1) : 0; src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x, y - 1); no_p[1] = get_pcm(s, x + 4, y - 1); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x + 4, y); s->hevcdsp.hevc_h_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } else s->hevcdsp.hevc_h_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } } } // horizontal filtering chroma for (chroma = 1; chroma <= 2; chroma++) { for (y = y0 ? y0 : 16; y < y_end; y += 16) { for (x = x0 - 8; x < x_end; x += 16) { int bs0, bs1; // to make sure no memory access over boundary when x = -8 // TODO: simplify with row based deblocking if (x < 0) { bs0 = 0; bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2]; } else if (x >= x_end - 8) { bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2]; bs1 = 0; } else { bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2]; bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2]; } if ((bs0 == 2) || (bs1 == 2)) { const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0; const int qp1 = bs1 == 2 ? (get_qPy(s, x + 8, y - 1) + get_qPy(s, x + 8, y) + 1) >> 1 : 0; tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset; c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0; c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0; src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->ps.sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x, y - 1); no_p[1] = get_pcm(s, x + 8, y - 1); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x + 8, y); s->hevcdsp.hevc_h_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } else s->hevcdsp.hevc_h_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } } } } } static int boundary_strength(HEVCContext *s, MvField *curr, uint8_t curr_cbf_luma, MvField *neigh, uint8_t neigh_cbf_luma, RefPicList *neigh_refPicList, int tu_border) { int mvs = curr->pred_flag[0] + curr->pred_flag[1]; if (tu_border) { if (curr->is_intra || neigh->is_intra) return 2; if (curr_cbf_luma || neigh_cbf_luma) return 1; } if (mvs == neigh->pred_flag[0] + neigh->pred_flag[1]) { if (mvs == 2) { // same L0 and L1 if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] && s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] && neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) { if ((abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 || abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) && (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 || abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4)) return 1; else return 0; } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] && neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) { if (abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 || abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) return 1; else return 0; } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] && neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) { if (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 || abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4) return 1; else return 0; } else { return 1; } } else { // 1 MV Mv A, B; int ref_A, ref_B; if (curr->pred_flag[0]) { A = curr->mv[0]; ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]]; } else { A = curr->mv[1]; ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]]; } if (neigh->pred_flag[0]) { B = neigh->mv[0]; ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]]; } else { B = neigh->mv[1]; ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]]; } if (ref_A == ref_B) { if (abs(A.x - B.x) >= 4 || abs(A.y - B.y) >= 4) return 1; else return 0; } else return 1; } } return 1; } void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size) { HEVCLocalContext *lc = &s->HEVClc; MvField *tab_mvf = s->ref->tab_mvf; int log2_min_pu_size = s->ps.sps->log2_min_pu_size; int log2_min_tu_size = s->ps.sps->log2_min_tb_size; int min_pu_width = s->ps.sps->min_pu_width; int min_tu_width = s->ps.sps->min_tb_width; int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width + (x0 >> log2_min_pu_size)].is_intra; int boundary_upper, boundary_left; int i, j, bs; boundary_upper = y0 > 0 && !(y0 & 7); if (boundary_upper && ((!s->sh.slice_loop_filter_across_slices_enabled_flag && lc->boundary_flags & BOUNDARY_UPPER_SLICE && (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0) || (!s->ps.pps->loop_filter_across_tiles_enabled_flag && lc->boundary_flags & BOUNDARY_UPPER_TILE && (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0))) boundary_upper = 0; if (boundary_upper) { RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ? ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) : s->ref->refPicList; int yp_pu = (y0 - 1) >> log2_min_pu_size; int yq_pu = y0 >> log2_min_pu_size; int yp_tu = (y0 - 1) >> log2_min_tu_size; int yq_tu = y0 >> log2_min_tu_size; for (i = 0; i < (1 << log2_trafo_size); i += 4) { int x_pu = (x0 + i) >> log2_min_pu_size; int x_tu = (x0 + i) >> log2_min_tu_size; MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu]; MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu]; uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu]; uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu]; bs = boundary_strength(s, curr, curr_cbf_luma, top, top_cbf_luma, rpl_top, 1); if (bs) s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs; } } // bs for TU internal horizontal PU boundaries if (log2_trafo_size > s->ps.sps->log2_min_pu_size && !is_intra) { RefPicList *rpl = s->ref->refPicList; for (j = 8; j < (1 << log2_trafo_size); j += 8) { int yp_pu = (y0 + j - 1) >> log2_min_pu_size; int yq_pu = (y0 + j) >> log2_min_pu_size; int yp_tu = (y0 + j - 1) >> log2_min_tu_size; int yq_tu = (y0 + j) >> log2_min_tu_size; for (i = 0; i < (1 << log2_trafo_size); i += 4) { int x_pu = (x0 + i) >> log2_min_pu_size; int x_tu = (x0 + i) >> log2_min_tu_size; MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu]; MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu]; uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu]; uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu]; bs = boundary_strength(s, curr, curr_cbf_luma, top, top_cbf_luma, rpl, 0); if (bs) s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs; } } } // bs for vertical TU boundaries boundary_left = x0 > 0 && !(x0 & 7); if (boundary_left && ((!s->sh.slice_loop_filter_across_slices_enabled_flag && lc->boundary_flags & BOUNDARY_LEFT_SLICE && (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0) || (!s->ps.pps->loop_filter_across_tiles_enabled_flag && lc->boundary_flags & BOUNDARY_LEFT_TILE && (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0))) boundary_left = 0; if (boundary_left) { RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ? ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) : s->ref->refPicList; int xp_pu = (x0 - 1) >> log2_min_pu_size; int xq_pu = x0 >> log2_min_pu_size; int xp_tu = (x0 - 1) >> log2_min_tu_size; int xq_tu = x0 >> log2_min_tu_size; for (i = 0; i < (1 << log2_trafo_size); i += 4) { int y_pu = (y0 + i) >> log2_min_pu_size; int y_tu = (y0 + i) >> log2_min_tu_size; MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu]; MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu]; uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu]; uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu]; bs = boundary_strength(s, curr, curr_cbf_luma, left, left_cbf_luma, rpl_left, 1); if (bs) s->vertical_bs[(x0 >> 3) + ((y0 + i) >> 2) * s->bs_width] = bs; } } // bs for TU internal vertical PU boundaries if (log2_trafo_size > log2_min_pu_size && !is_intra) { RefPicList *rpl = s->ref->refPicList; for (j = 0; j < (1 << log2_trafo_size); j += 4) { int y_pu = (y0 + j) >> log2_min_pu_size; int y_tu = (y0 + j) >> log2_min_tu_size; for (i = 8; i < (1 << log2_trafo_size); i += 8) { int xp_pu = (x0 + i - 1) >> log2_min_pu_size; int xq_pu = (x0 + i) >> log2_min_pu_size; int xp_tu = (x0 + i - 1) >> log2_min_tu_size; int xq_tu = (x0 + i) >> log2_min_tu_size; MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu]; MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu]; uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu]; uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu]; bs = boundary_strength(s, curr, curr_cbf_luma, left, left_cbf_luma, rpl, 0); if (bs) s->vertical_bs[((x0 + i) >> 3) + ((y0 + j) >> 2) * s->bs_width] = bs; } } } } #undef LUMA #undef CB #undef CR void ff_hevc_hls_filter(HEVCContext *s, int x, int y) { deblocking_filter_CTB(s, x, y); if (s->ps.sps->sao_enabled) sao_filter_CTB(s, x, y); } void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size) { if (y_ctb && x_ctb) ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size); if (y_ctb && x_ctb >= s->ps.sps->width - ctb_size) { ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size); ff_thread_report_progress(&s->ref->tf, y_ctb - ctb_size, 0); } if (x_ctb && y_ctb >= s->ps.sps->height - ctb_size) ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb); }