/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/crc.h" #include "libavutil/float_dsp.h" #include "libavutil/mem_internal.h" #include "libavutil/tx.h" #include "avcodec.h" #include "bytestream.h" #include "codec_internal.h" #include "decode.h" #include "get_bits.h" #include "hca_data.h" #define HCA_MASK 0x7f7f7f7f #define MAX_CHANNELS 16 typedef struct ChannelContext { DECLARE_ALIGNED(32, float, base)[128]; DECLARE_ALIGNED(32, float, factors)[128]; DECLARE_ALIGNED(32, float, imdct_in)[128]; DECLARE_ALIGNED(32, float, imdct_out)[128]; DECLARE_ALIGNED(32, float, imdct_prev)[128]; int8_t scale_factors[128]; uint8_t scale[128]; int8_t intensity[8]; int8_t *hfr_scale; unsigned count; int chan_type; } ChannelContext; typedef struct HCAContext { const AVCRC *crc_table; ChannelContext ch[MAX_CHANNELS]; uint8_t ath[128]; uint8_t cipher[256]; uint64_t key; uint16_t subkey; int ath_type; int ciph_type; unsigned hfr_group_count; uint8_t track_count; uint8_t channel_config; uint8_t total_band_count; uint8_t base_band_count; uint8_t stereo_band_count; uint8_t bands_per_hfr_group; // Set during init() and freed on close(). Untouched on flush() av_tx_fn tx_fn; AVTXContext *tx_ctx; AVFloatDSPContext *fdsp; } HCAContext; static void cipher_init56_create_table(uint8_t *r, uint8_t key) { const int mul = ((key & 1) << 3) | 5; const int add = (key & 0xE) | 1; key >>= 4; for (int i = 0; i < 16; i++) { key = (key * mul + add) & 0xF; r[i] = key; } } static void cipher_init56(uint8_t *cipher, uint64_t keycode) { uint8_t base[256], base_r[16], base_c[16], kc[8], seed[16]; /* 56bit keycode encryption (given as a uint64_t number, but upper 8b aren't used) */ /* keycode = keycode - 1 */ if (keycode != 0) keycode--; /* init keycode table */ for (int r = 0; r < (8-1); r++) { kc[r] = keycode & 0xFF; keycode = keycode >> 8; } /* init seed table */ seed[ 0] = kc[1]; seed[ 1] = kc[1] ^ kc[6]; seed[ 2] = kc[2] ^ kc[3]; seed[ 3] = kc[2]; seed[ 4] = kc[2] ^ kc[1]; seed[ 5] = kc[3] ^ kc[4]; seed[ 6] = kc[3]; seed[ 7] = kc[3] ^ kc[2]; seed[ 8] = kc[4] ^ kc[5]; seed[ 9] = kc[4]; seed[10] = kc[4] ^ kc[3]; seed[11] = kc[5] ^ kc[6]; seed[12] = kc[5]; seed[13] = kc[5] ^ kc[4]; seed[14] = kc[6] ^ kc[1]; seed[15] = kc[6]; /* init base table */ cipher_init56_create_table(base_r, kc[0]); for (int r = 0; r < 16; r++) { uint8_t nb; cipher_init56_create_table(base_c, seed[r]); nb = base_r[r] << 4; for (int c = 0; c < 16; c++) base[r*16 + c] = nb | base_c[c]; /* combine nibbles */ } /* final shuffle table */ { unsigned x = 0; unsigned pos = 1; for (int i = 0; i < 256; i++) { x = (x + 17) & 0xFF; if (base[x] != 0 && base[x] != 0xFF) cipher[pos++] = base[x]; } cipher[0] = 0; cipher[0xFF] = 0xFF; } } static void cipher_init(uint8_t *cipher, int type, uint64_t keycode, uint16_t subkey) { switch (type) { case 56: if (keycode) { if (subkey) keycode = keycode * (((uint64_t)subkey<<16u)|((uint16_t)~subkey+2u)); cipher_init56(cipher, keycode); } break; case 0: for (int i = 0; i < 256; i++) cipher[i] = i; break; } } static void ath_init1(uint8_t *ath, int sample_rate) { unsigned int index; unsigned int acc = 0; for (int i = 0; i < 128; i++) { acc += sample_rate; index = acc >> 13; if (index >= 654) { memset(ath+i, 0xFF, (128 - i)); break; } ath[i] = ath_base_curve[index]; } } static int ath_init(uint8_t *ath, int type, int sample_rate) { switch (type) { case 0: /* nothing to do */ break; case 1: ath_init1(ath, sample_rate); break; default: return AVERROR_INVALIDDATA; } return 0; } static inline unsigned ceil2(unsigned a, unsigned b) { return (b > 0) ? (a / b + ((a % b) ? 1 : 0)) : 0; } static av_cold void decode_flush(AVCodecContext *avctx) { HCAContext *c = avctx->priv_data; memset(c, 0, offsetof(HCAContext, tx_fn)); } static int init_hca(AVCodecContext *avctx, const uint8_t *extradata, const int extradata_size) { HCAContext *c = avctx->priv_data; GetByteContext gb0, *const gb = &gb0; int8_t r[16] = { 0 }; unsigned b, chunk; int version, ret; decode_flush(avctx); if (extradata_size < 36) return AVERROR_INVALIDDATA; bytestream2_init(gb, extradata, extradata_size); bytestream2_skipu(gb, 4); version = bytestream2_get_be16(gb); bytestream2_skipu(gb, 2); c->ath_type = version >= 0x200 ? 0 : 1; if ((bytestream2_get_be32u(gb) & HCA_MASK) != MKBETAG('f', 'm', 't', 0)) return AVERROR_INVALIDDATA; bytestream2_skipu(gb, 4); bytestream2_skipu(gb, 4); bytestream2_skipu(gb, 4); chunk = bytestream2_get_be32u(gb) & HCA_MASK; if (chunk == MKBETAG('c', 'o', 'm', 'p')) { bytestream2_skipu(gb, 2); bytestream2_skipu(gb, 1); bytestream2_skipu(gb, 1); c->track_count = bytestream2_get_byteu(gb); c->channel_config = bytestream2_get_byteu(gb); c->total_band_count = bytestream2_get_byteu(gb); c->base_band_count = bytestream2_get_byteu(gb); c->stereo_band_count = bytestream2_get_byte (gb); c->bands_per_hfr_group = bytestream2_get_byte (gb); } else if (chunk == MKBETAG('d', 'e', 'c', 0)) { bytestream2_skipu(gb, 2); bytestream2_skipu(gb, 1); bytestream2_skipu(gb, 1); c->total_band_count = bytestream2_get_byteu(gb) + 1; c->base_band_count = bytestream2_get_byteu(gb) + 1; c->track_count = bytestream2_peek_byteu(gb) >> 4; c->channel_config = bytestream2_get_byteu(gb) & 0xF; if (!bytestream2_get_byteu(gb)) c->base_band_count = c->total_band_count; c->stereo_band_count = c->total_band_count - c->base_band_count; c->bands_per_hfr_group = 0; } else return AVERROR_INVALIDDATA; if (c->total_band_count > FF_ARRAY_ELEMS(c->ch->imdct_in)) return AVERROR_INVALIDDATA; while (bytestream2_get_bytes_left(gb) >= 4) { chunk = bytestream2_get_be32u(gb) & HCA_MASK; if (chunk == MKBETAG('v', 'b', 'r', 0)) { bytestream2_skip(gb, 2 + 2); } else if (chunk == MKBETAG('a', 't', 'h', 0)) { c->ath_type = bytestream2_get_be16(gb); } else if (chunk == MKBETAG('r', 'v', 'a', 0)) { bytestream2_skip(gb, 4); } else if (chunk == MKBETAG('c', 'o', 'm', 'm')) { bytestream2_skip(gb, bytestream2_get_byte(gb) * 8); } else if (chunk == MKBETAG('c', 'i', 'p', 'h')) { c->ciph_type = bytestream2_get_be16(gb); } else if (chunk == MKBETAG('l', 'o', 'o', 'p')) { bytestream2_skip(gb, 4 + 4 + 2 + 2); } else if (chunk == MKBETAG('p', 'a', 'd', 0)) { break; } else { break; } } if (bytestream2_get_bytes_left(gb) >= 10) { bytestream2_skip(gb, bytestream2_get_bytes_left(gb) - 10); c->key = bytestream2_get_be64u(gb); c->subkey = bytestream2_get_be16u(gb); } cipher_init(c->cipher, c->ciph_type, c->key, c->subkey); ret = ath_init(c->ath, c->ath_type, avctx->sample_rate); if (ret < 0) return ret; if (!c->track_count) c->track_count = 1; b = avctx->ch_layout.nb_channels / c->track_count; if (c->stereo_band_count && b > 1) { int8_t *x = r; for (int i = 0; i < c->track_count; i++, x+=b) { switch (b) { case 2: case 3: x[0] = 1; x[1] = 2; break; case 4: x[0]=1; x[1] = 2; if (c->channel_config == 0) { x[2]=1; x[3]=2; } break; case 5: x[0]=1; x[1] = 2; if (c->channel_config <= 2) { x[3]=1; x[4]=2; } break; case 6: case 7: x[0] = 1; x[1] = 2; x[4] = 1; x[5] = 2; break; case 8: x[0] = 1; x[1] = 2; x[4] = 1; x[5] = 2; x[6] = 1; x[7] = 2; break; } } } if (c->total_band_count < c->base_band_count) return AVERROR_INVALIDDATA; c->hfr_group_count = ceil2(c->total_band_count - (c->base_band_count + c->stereo_band_count), c->bands_per_hfr_group); if (c->base_band_count + c->stereo_band_count + (unsigned long)c->hfr_group_count > 128ULL) return AVERROR_INVALIDDATA; for (int i = 0; i < avctx->ch_layout.nb_channels; i++) { c->ch[i].chan_type = r[i]; c->ch[i].count = c->base_band_count + ((r[i] != 2) ? c->stereo_band_count : 0); c->ch[i].hfr_scale = &c->ch[i].scale_factors[c->base_band_count + c->stereo_band_count]; if (c->ch[i].count > 128) return AVERROR_INVALIDDATA; } // Done last to signal init() finished c->crc_table = av_crc_get_table(AV_CRC_16_ANSI); return 0; } static av_cold int decode_init(AVCodecContext *avctx) { HCAContext *c = avctx->priv_data; float scale = 1.f / 8.f; int ret; avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; if (avctx->ch_layout.nb_channels <= 0 || avctx->ch_layout.nb_channels > FF_ARRAY_ELEMS(c->ch)) return AVERROR(EINVAL); c->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!c->fdsp) return AVERROR(ENOMEM); ret = av_tx_init(&c->tx_ctx, &c->tx_fn, AV_TX_FLOAT_MDCT, 1, 128, &scale, 0); if (ret < 0) return ret; if (avctx->extradata_size != 0 && avctx->extradata_size < 36) return AVERROR_INVALIDDATA; if (!avctx->extradata_size) return 0; return init_hca(avctx, avctx->extradata, avctx->extradata_size); } static void run_imdct(HCAContext *c, ChannelContext *ch, int index, float *out) { c->tx_fn(c->tx_ctx, ch->imdct_out, ch->imdct_in, sizeof(float)); c->fdsp->vector_fmul_window(out, ch->imdct_prev + (128 >> 1), ch->imdct_out, window, 128 >> 1); memcpy(ch->imdct_prev, ch->imdct_out, 128 * sizeof(float)); } static void apply_intensity_stereo(HCAContext *s, ChannelContext *ch1, ChannelContext *ch2, int index, unsigned band_count, unsigned base_band_count, unsigned stereo_band_count) { float ratio_l = intensity_ratio_table[ch2->intensity[index]]; float ratio_r = ratio_l - 2.0f; float *c1 = &ch1->imdct_in[base_band_count]; float *c2 = &ch2->imdct_in[base_band_count]; if (ch1->chan_type != 1 || !stereo_band_count) return; for (int i = 0; i < band_count; i++) { c2[i] = c1[i] * ratio_r; c1[i] *= ratio_l; } } static void reconstruct_hfr(HCAContext *s, ChannelContext *ch, unsigned hfr_group_count, unsigned bands_per_hfr_group, unsigned start_band, unsigned total_band_count) { if (ch->chan_type == 2 || !bands_per_hfr_group) return; for (int i = 0, k = start_band, l = start_band - 1; i < hfr_group_count; i++){ for (int j = 0; j < bands_per_hfr_group && k < total_band_count && l >= 0; j++, k++, l--){ ch->imdct_in[k] = scale_conversion_table[ scale_conv_bias + av_clip_intp2(ch->hfr_scale[i] - ch->scale_factors[l], 6) ] * ch->imdct_in[l]; } } ch->imdct_in[127] = 0; } static void dequantize_coefficients(HCAContext *c, ChannelContext *ch, GetBitContext *gb) { const float *base = ch->base; float *factors = ch->factors; float *out = ch->imdct_in; for (int i = 0; i < ch->count; i++) { unsigned scale = ch->scale[i]; int nb_bits = max_bits_table[scale]; int value = get_bitsz(gb, nb_bits); float factor; if (scale > 7) { value = (1 - ((value & 1) << 1)) * (value >> 1); if (!value) skip_bits_long(gb, -1); factor = value; } else { value += scale << 4; skip_bits_long(gb, quant_spectrum_bits[value] - nb_bits); factor = quant_spectrum_value[value]; } factors[i] = factor; } memset(factors + ch->count, 0, 512 - ch->count * sizeof(*factors)); c->fdsp->vector_fmul(out, factors, base, 128); } static void unpack(HCAContext *c, ChannelContext *ch, GetBitContext *gb, unsigned hfr_group_count, int packed_noise_level, const uint8_t *ath) { int delta_bits = get_bits(gb, 3); if (delta_bits > 5) { for (int i = 0; i < ch->count; i++) ch->scale_factors[i] = get_bits(gb, 6); } else if (delta_bits) { int factor = get_bits(gb, 6); int max_value = (1 << delta_bits) - 1; int half_max = max_value >> 1; ch->scale_factors[0] = factor; for (int i = 1; i < ch->count; i++){ int delta = get_bits(gb, delta_bits); if (delta == max_value) { factor = get_bits(gb, 6); } else { factor += delta - half_max; } factor = av_clip_uintp2(factor, 6); ch->scale_factors[i] = factor; } } else { memset(ch->scale_factors, 0, 128); } if (ch->chan_type == 2){ ch->intensity[0] = get_bits(gb, 4); if (ch->intensity[0] < 15) { for (int i = 1; i < 8; i++) ch->intensity[i] = get_bits(gb, 4); } } else { for (int i = 0; i < hfr_group_count; i++) ch->hfr_scale[i] = get_bits(gb, 6); } for (int i = 0; i < ch->count; i++) { int scale = ch->scale_factors[i]; if (scale) { scale = c->ath[i] + ((packed_noise_level + i) >> 8) - ((scale * 5) >> 1) + 2; scale = scale_table[av_clip(scale, 0, 58)]; } ch->scale[i] = scale; } memset(ch->scale + ch->count, 0, sizeof(ch->scale) - ch->count); for (int i = 0; i < ch->count; i++) ch->base[i] = dequantizer_scaling_table[ch->scale_factors[i]] * quant_step_size[ch->scale[i]]; } static int decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt) { HCAContext *c = avctx->priv_data; int ch, offset = 0, ret, packed_noise_level; GetBitContext gb0, *const gb = &gb0; float **samples; if (avpkt->size <= 8) return AVERROR_INVALIDDATA; if (AV_RN16(avpkt->data) != 0xFFFF) { if ((AV_RL32(avpkt->data)) != MKTAG('H','C','A',0)) { return AVERROR_INVALIDDATA; } else if (AV_RB16(avpkt->data + 6) <= avpkt->size) { ret = init_hca(avctx, avpkt->data, AV_RB16(avpkt->data + 6)); if (ret < 0) return ret; offset = AV_RB16(avpkt->data + 6); if (offset == avpkt->size) return avpkt->size; } else { return AVERROR_INVALIDDATA; } } if (!c->crc_table) return AVERROR_INVALIDDATA; if (c->key || c->subkey) { uint8_t *data, *cipher = c->cipher; if ((ret = av_packet_make_writable(avpkt)) < 0) return ret; data = avpkt->data; for (int n = 0; n < avpkt->size; n++) data[n] = cipher[data[n]]; } if (avctx->err_recognition & AV_EF_CRCCHECK) { if (av_crc(c->crc_table, 0, avpkt->data + offset, avpkt->size - offset)) return AVERROR_INVALIDDATA; } if ((ret = init_get_bits8(gb, avpkt->data + offset, avpkt->size - offset)) < 0) return ret; if (get_bits(gb, 16) != 0xFFFF) return AVERROR_INVALIDDATA; frame->nb_samples = 1024; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; samples = (float **)frame->extended_data; packed_noise_level = (get_bits(gb, 9) << 8) - get_bits(gb, 7); for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) unpack(c, &c->ch[ch], gb, c->hfr_group_count, packed_noise_level, c->ath); for (int i = 0; i < 8; i++) { for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) dequantize_coefficients(c, &c->ch[ch], gb); for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) reconstruct_hfr(c, &c->ch[ch], c->hfr_group_count, c->bands_per_hfr_group, c->stereo_band_count + c->base_band_count, c->total_band_count); for (ch = 0; ch < avctx->ch_layout.nb_channels - 1; ch++) apply_intensity_stereo(c, &c->ch[ch], &c->ch[ch+1], i, c->total_band_count - c->base_band_count, c->base_band_count, c->stereo_band_count); for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) run_imdct(c, &c->ch[ch], i, samples[ch] + i * 128); } *got_frame_ptr = 1; return avpkt->size; } static av_cold int decode_close(AVCodecContext *avctx) { HCAContext *c = avctx->priv_data; av_freep(&c->fdsp); av_tx_uninit(&c->tx_ctx); return 0; } const FFCodec ff_hca_decoder = { .p.name = "hca", CODEC_LONG_NAME("CRI HCA"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_HCA, .priv_data_size = sizeof(HCAContext), .init = decode_init, FF_CODEC_DECODE_CB(decode_frame), .flush = decode_flush, .close = decode_close, .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, .p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, };