/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #ifndef AVCODEC_H264_H #define AVCODEC_H264_H #include "libavutil/intreadwrite.h" #include "dsputil.h" #include "cabac.h" #include "mpegvideo.h" #include "h264dsp.h" #include "h264pred.h" #include "rectangle.h" #define interlaced_dct interlaced_dct_is_a_bad_name #define mb_intra mb_intra_is_not_initialized_see_mb_type #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 #define COEFF_TOKEN_VLC_BITS 8 #define TOTAL_ZEROS_VLC_BITS 9 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 #define RUN_VLC_BITS 3 #define RUN7_VLC_BITS 6 #define MAX_SPS_COUNT 32 #define MAX_PPS_COUNT 256 #define MAX_MMCO_COUNT 66 #define MAX_DELAYED_PIC_COUNT 16 /* Compiling in interlaced support reduces the speed * of progressive decoding by about 2%. */ #define ALLOW_INTERLACE #define FMO 0 /** * The maximum number of slices supported by the decoder. * must be a power of 2 */ #define MAX_SLICES 16 #ifdef ALLOW_INTERLACE #define MB_MBAFF h->mb_mbaff #define MB_FIELD h->mb_field_decoding_flag #define FRAME_MBAFF h->mb_aff_frame #define FIELD_PICTURE (s->picture_structure != PICT_FRAME) #define LEFT_MBS 2 #define LTOP 0 #define LBOT 1 #define LEFT(i) (i) #else #define MB_MBAFF 0 #define MB_FIELD 0 #define FRAME_MBAFF 0 #define FIELD_PICTURE 0 #undef IS_INTERLACED #define IS_INTERLACED(mb_type) 0 #define LEFT_MBS 1 #define LTOP 0 #define LBOT 0 #define LEFT(i) 0 #endif #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE) #ifndef CABAC #define CABAC h->pps.cabac #endif #define CHROMA444 (h->sps.chroma_format_idc == 3) #define EXTENDED_SAR 255 #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit #define MB_TYPE_8x8DCT 0x01000000 #define IS_REF0(a) ((a) & MB_TYPE_REF0) #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT) /** * Value of Picture.reference when Picture is not a reference picture, but * is held for delayed output. */ #define DELAYED_PIC_REF 4 #define QP_MAX_NUM (51 + 2*6) // The maximum supported qp /* NAL unit types */ enum { NAL_SLICE=1, NAL_DPA, NAL_DPB, NAL_DPC, NAL_IDR_SLICE, NAL_SEI, NAL_SPS, NAL_PPS, NAL_AUD, NAL_END_SEQUENCE, NAL_END_STREAM, NAL_FILLER_DATA, NAL_SPS_EXT, NAL_AUXILIARY_SLICE=19 }; /** * SEI message types */ typedef enum { SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1) SEI_TYPE_PIC_TIMING = 1, ///< picture timing SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync) } SEI_Type; /** * pic_struct in picture timing SEI message */ typedef enum { SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling } SEI_PicStructType; /** * Sequence parameter set */ typedef struct SPS{ int profile_idc; int level_idc; int chroma_format_idc; int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 int poc_type; ///< pic_order_cnt_type int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 int delta_pic_order_always_zero_flag; int offset_for_non_ref_pic; int offset_for_top_to_bottom_field; int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle int ref_frame_count; ///< num_ref_frames int gaps_in_frame_num_allowed_flag; int mb_width; ///< pic_width_in_mbs_minus1 + 1 int mb_height; ///< pic_height_in_map_units_minus1 + 1 int frame_mbs_only_flag; int mb_aff; ///b4_stride int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff int mb_uvlinesize; int emu_edge_width; int emu_edge_height; SPS sps; ///< current sps /** * current pps */ PPS pps; //FIXME move to Picture perhaps? (->no) do we need that? uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]; //FIXME should these be moved down? uint32_t dequant8_buffer[6][QP_MAX_NUM+1][64]; uint32_t (*dequant4_coeff[6])[16]; uint32_t (*dequant8_coeff[6])[64]; int slice_num; uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 int slice_type; int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) int slice_type_fixed; //interlacing specific flags int mb_aff_frame; int mb_field_decoding_flag; int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4]; //Weighted pred stuff int use_weight; int use_weight_chroma; int luma_log2_weight_denom; int chroma_log2_weight_denom; //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss int luma_weight[48][2][2]; int chroma_weight[48][2][2][2]; int implicit_weight[48][48][2]; int direct_spatial_mv_pred; int col_parity; int col_fieldoff; int dist_scale_factor[16]; int dist_scale_factor_field[2][32]; int map_col_to_list0[2][16+32]; int map_col_to_list0_field[2][2][16+32]; /** * num_ref_idx_l0/1_active_minus1 + 1 */ unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode unsigned int list_count; uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. Reordered version of default_ref_list according to picture reordering in slice header */ int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 //data partitioning GetBitContext intra_gb; GetBitContext inter_gb; GetBitContext *intra_gb_ptr; GetBitContext *inter_gb_ptr; DECLARE_ALIGNED(16, DCTELEM, mb)[16*48*2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space. DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[3][16*2]; DCTELEM mb_padding[256*2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb /** * Cabac */ CABACContext cabac; uint8_t cabac_state[1024]; /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */ uint16_t *cbp_table; int cbp; int top_cbp; int left_cbp; /* chroma_pred_mode for i4x4 or i16x16, else 0 */ uint8_t *chroma_pred_mode_table; int last_qscale_diff; uint8_t (*mvd_table[2])[2]; DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2]; uint8_t *direct_table; uint8_t direct_cache[5*8]; uint8_t zigzag_scan[16]; uint8_t zigzag_scan8x8[64]; uint8_t zigzag_scan8x8_cavlc[64]; uint8_t field_scan[16]; uint8_t field_scan8x8[64]; uint8_t field_scan8x8_cavlc[64]; const uint8_t *zigzag_scan_q0; const uint8_t *zigzag_scan8x8_q0; const uint8_t *zigzag_scan8x8_cavlc_q0; const uint8_t *field_scan_q0; const uint8_t *field_scan8x8_q0; const uint8_t *field_scan8x8_cavlc_q0; int x264_build; int mb_xy; int is_complex; //deblock int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0 int slice_alpha_c0_offset; int slice_beta_offset; //============================================================= //Things below are not used in the MB or more inner code int nal_ref_idc; int nal_unit_type; uint8_t *rbsp_buffer[2]; unsigned int rbsp_buffer_size[2]; /** * Used to parse AVC variant of h264 */ int is_avc; ///< this flag is != 0 if codec is avc1 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) int got_first; ///< this flag is != 0 if we've parsed a frame SPS *sps_buffers[MAX_SPS_COUNT]; PPS *pps_buffers[MAX_PPS_COUNT]; int dequant_coeff_pps; ///< reinit tables when pps changes uint16_t *slice_table_base; //POC stuff int poc_lsb; int poc_msb; int delta_poc_bottom; int delta_poc[2]; int frame_num; int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 int frame_num_offset; ///< for POC type 2 int prev_frame_num_offset; ///< for POC type 2 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 /** * frame_num for frames or 2*frame_num+1 for field pics. */ int curr_pic_num; /** * max_frame_num or 2*max_frame_num for field pics. */ int max_pic_num; int redundant_pic_count; Picture *short_ref[32]; Picture *long_ref[32]; Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size? Picture *next_output_pic; int outputed_poc; int next_outputed_poc; /** * memory management control operations buffer. */ MMCO mmco[MAX_MMCO_COUNT]; int mmco_index; int long_ref_count; ///< number of actual long term references int short_ref_count; ///< number of actual short term references int cabac_init_idc; /** * @name Members for slice based multithreading * @{ */ struct H264Context *thread_context[MAX_THREADS]; /** * current slice number, used to initalize slice_num of each thread/context */ int current_slice; /** * Max number of threads / contexts. * This is equal to AVCodecContext.thread_count unless * multithreaded decoding is impossible, in which case it is * reduced to 1. */ int max_contexts; /** * 1 if the single thread fallback warning has already been * displayed, 0 otherwise. */ int single_decode_warning; int last_slice_type; /** @} */ /** * pic_struct in picture timing SEI message */ SEI_PicStructType sei_pic_struct; /** * Complement sei_pic_struct * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames. * However, soft telecined frames may have these values. * This is used in an attempt to flag soft telecine progressive. */ int prev_interlaced_frame; /** * Bit set of clock types for fields/frames in picture timing SEI message. * For each found ct_type, appropriate bit is set (e.g., bit 1 for * interlaced). */ int sei_ct_type; /** * dpb_output_delay in picture timing SEI message, see H.264 C.2.2 */ int sei_dpb_output_delay; /** * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2 */ int sei_cpb_removal_delay; /** * recovery_frame_cnt from SEI message * * Set to -1 if no recovery point SEI message found or to number of frames * before playback synchronizes. Frames having recovery point are key * frames. */ int sei_recovery_frame_cnt; int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag // Timestamp stuff int sei_buffering_period_present; ///< Buffering period SEI flag int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs }H264Context; extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM+1]; ///< One chroma qp table for each supported bit depth (8, 9, 10). /** * Decode SEI */ int ff_h264_decode_sei(H264Context *h); /** * Decode SPS */ int ff_h264_decode_seq_parameter_set(H264Context *h); /** * compute profile from sps */ int ff_h264_get_profile(SPS *sps); /** * Decode PPS */ int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length); /** * Decode a network abstraction layer unit. * @param consumed is the number of bytes used as input * @param length is the length of the array * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing? * @return decoded bytes, might be src+1 if no escapes */ const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length); /** * Free any data that may have been allocated in the H264 context like SPS, PPS etc. */ av_cold void ff_h264_free_context(H264Context *h); /** * Reconstruct bitstream slice_type. */ int ff_h264_get_slice_type(const H264Context *h); /** * Allocate tables. * needs width/height */ int ff_h264_alloc_tables(H264Context *h); /** * Fill the default_ref_list. */ int ff_h264_fill_default_ref_list(H264Context *h); int ff_h264_decode_ref_pic_list_reordering(H264Context *h); void ff_h264_fill_mbaff_ref_list(H264Context *h); void ff_h264_remove_all_refs(H264Context *h); /** * Execute the reference picture marking (memory management control operations). */ int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count); int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb); void ff_generate_sliding_window_mmcos(H264Context *h); /** * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h); /** * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode); void ff_h264_hl_decode_mb(H264Context *h); int ff_h264_frame_start(H264Context *h); int ff_h264_decode_extradata(H264Context *h); av_cold int ff_h264_decode_init(AVCodecContext *avctx); av_cold int ff_h264_decode_end(AVCodecContext *avctx); av_cold void ff_h264_decode_init_vlc(void); /** * Decode a macroblock * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ int ff_h264_decode_mb_cavlc(H264Context *h); /** * Decode a CABAC coded macroblock * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ int ff_h264_decode_mb_cabac(H264Context *h); void ff_h264_init_cabac_states(H264Context *h); void ff_h264_direct_dist_scale_factor(H264Context * const h); void ff_h264_direct_ref_list_init(H264Context * const h); void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type); void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); /** * Reset SEI values at the beginning of the frame. * * @param h H.264 context. */ void ff_h264_reset_sei(H264Context *h); /* o-o o-o / / / o-o o-o ,---' o-o o-o / / / o-o o-o */ /* Scan8 organization: * 0 1 2 3 4 5 6 7 * 0 DY y y y y y * 1 y Y Y Y Y * 2 y Y Y Y Y * 3 y Y Y Y Y * 4 y Y Y Y Y * 5 DU u u u u u * 6 u U U U U * 7 u U U U U * 8 u U U U U * 9 u U U U U * 10 DV v v v v v * 11 v V V V V * 12 v V V V V * 13 v V V V V * 14 v V V V V * DY/DU/DV are for luma/chroma DC. */ #define LUMA_DC_BLOCK_INDEX 48 #define CHROMA_DC_BLOCK_INDEX 49 //This table must be here because scan8[constant] must be known at compiletime static const uint8_t scan8[16*3 + 3]={ 4+ 1*8, 5+ 1*8, 4+ 2*8, 5+ 2*8, 6+ 1*8, 7+ 1*8, 6+ 2*8, 7+ 2*8, 4+ 3*8, 5+ 3*8, 4+ 4*8, 5+ 4*8, 6+ 3*8, 7+ 3*8, 6+ 4*8, 7+ 4*8, 4+ 6*8, 5+ 6*8, 4+ 7*8, 5+ 7*8, 6+ 6*8, 7+ 6*8, 6+ 7*8, 7+ 7*8, 4+ 8*8, 5+ 8*8, 4+ 9*8, 5+ 9*8, 6+ 8*8, 7+ 8*8, 6+ 9*8, 7+ 9*8, 4+11*8, 5+11*8, 4+12*8, 5+12*8, 6+11*8, 7+11*8, 6+12*8, 7+12*8, 4+13*8, 5+13*8, 4+14*8, 5+14*8, 6+13*8, 7+13*8, 6+14*8, 7+14*8, 0+ 0*8, 0+ 5*8, 0+10*8 }; static av_always_inline uint32_t pack16to32(int a, int b){ #if HAVE_BIGENDIAN return (b&0xFFFF) + (a<<16); #else return (a&0xFFFF) + (b<<16); #endif } static av_always_inline uint16_t pack8to16(int a, int b){ #if HAVE_BIGENDIAN return (b&0xFF) + (a<<8); #else return (a&0xFF) + (b<<8); #endif } /** * gets the chroma qp. */ static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale){ return h->pps.chroma_qp_table[t][qscale]; } static av_always_inline void pred_pskip_motion(H264Context * const h); static void fill_decode_neighbors(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS]; static const uint8_t left_block_options[4][32]={ {0,1,2,3,7,10,8,11,3+0*4, 3+1*4, 3+2*4, 3+3*4, 1+4*4, 1+8*4, 1+5*4, 1+9*4}, {2,2,3,3,8,11,8,11,3+2*4, 3+2*4, 3+3*4, 3+3*4, 1+5*4, 1+9*4, 1+5*4, 1+9*4}, {0,0,1,1,7,10,7,10,3+0*4, 3+0*4, 3+1*4, 3+1*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4}, {0,2,0,2,7,10,7,10,3+0*4, 3+2*4, 3+0*4, 3+2*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4} }; h->topleft_partition= -1; top_xy = mb_xy - (s->mb_stride << MB_FIELD); /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ topleft_xy = top_xy - 1; topright_xy= top_xy + 1; left_xy[LBOT] = left_xy[LTOP] = mb_xy-1; h->left_block = left_block_options[0]; if(FRAME_MBAFF){ const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if(s->mb_y&1){ if (left_mb_field_flag != curr_mb_field_flag) { left_xy[LBOT] = left_xy[LTOP] = mb_xy - s->mb_stride - 1; if (curr_mb_field_flag) { left_xy[LBOT] += s->mb_stride; h->left_block = left_block_options[3]; } else { topleft_xy += s->mb_stride; // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition h->topleft_partition = 0; h->left_block = left_block_options[1]; } } }else{ if(curr_mb_field_flag){ topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1); topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1); top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); } if (left_mb_field_flag != curr_mb_field_flag) { if (curr_mb_field_flag) { left_xy[LBOT] += s->mb_stride; h->left_block = left_block_options[3]; } else { h->left_block = left_block_options[2]; } } } } h->topleft_mb_xy = topleft_xy; h->top_mb_xy = top_xy; h->topright_mb_xy= topright_xy; h->left_mb_xy[LTOP] = left_xy[LTOP]; h->left_mb_xy[LBOT] = left_xy[LBOT]; //FIXME do we need all in the context? h->topleft_type = s->current_picture.mb_type[topleft_xy] ; h->top_type = s->current_picture.mb_type[top_xy] ; h->topright_type= s->current_picture.mb_type[topright_xy]; h->left_type[LTOP] = s->current_picture.mb_type[left_xy[LTOP]] ; h->left_type[LBOT] = s->current_picture.mb_type[left_xy[LBOT]] ; if(FMO){ if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0; if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; if(h->slice_table[left_xy[LTOP] ] != h->slice_num) h->left_type[LTOP] = h->left_type[LBOT] = 0; }else{ if(h->slice_table[topleft_xy ] != h->slice_num){ h->topleft_type = 0; if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; if(h->slice_table[left_xy[LTOP] ] != h->slice_num) h->left_type[LTOP] = h->left_type[LBOT] = 0; } } if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0; } static void fill_decode_caches(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS]; int topleft_type, top_type, topright_type, left_type[LEFT_MBS]; const uint8_t * left_block= h->left_block; int i; uint8_t *nnz; uint8_t *nnz_cache; topleft_xy = h->topleft_mb_xy; top_xy = h->top_mb_xy; topright_xy = h->topright_mb_xy; left_xy[LTOP] = h->left_mb_xy[LTOP]; left_xy[LBOT] = h->left_mb_xy[LBOT]; topleft_type = h->topleft_type; top_type = h->top_type; topright_type = h->topright_type; left_type[LTOP]= h->left_type[LTOP]; left_type[LBOT]= h->left_type[LBOT]; if(!IS_SKIP(mb_type)){ if(IS_INTRA(mb_type)){ int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; h->topleft_samples_available= h->top_samples_available= h->left_samples_available= 0xFFFF; h->topright_samples_available= 0xEEEA; if(!(top_type & type_mask)){ h->topleft_samples_available= 0xB3FF; h->top_samples_available= 0x33FF; h->topright_samples_available= 0x26EA; } if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])){ if(IS_INTERLACED(mb_type)){ if(!(left_type[LTOP] & type_mask)){ h->topleft_samples_available&= 0xDFFF; h->left_samples_available&= 0x5FFF; } if(!(left_type[LBOT] & type_mask)){ h->topleft_samples_available&= 0xFF5F; h->left_samples_available&= 0xFF5F; } }else{ int left_typei = s->current_picture.mb_type[left_xy[LTOP] + s->mb_stride]; assert(left_xy[LTOP] == left_xy[LBOT]); if(!((left_typei & type_mask) && (left_type[LTOP] & type_mask))){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } }else{ if(!(left_type[LTOP] & type_mask)){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } if(!(topleft_type & type_mask)) h->topleft_samples_available&= 0x7FFF; if(!(topright_type & type_mask)) h->topright_samples_available&= 0xFBFF; if(IS_INTRA4x4(mb_type)){ if(IS_INTRA4x4(top_type)){ AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]); }else{ h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask); } for(i=0; i<2; i++){ if(IS_INTRA4x4(left_type[LEFT(i)])){ int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]]; h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]]; h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]]; }else{ h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[LEFT(i)] & type_mask); } } } } /* 0 . T T. T T T T 1 L . .L . . . . 2 L . .L . . . . 3 . T TL . . . . 4 L . .L . . . . 5 L . .. . . . . */ //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec) nnz_cache = h->non_zero_count_cache; if(top_type){ nnz = h->non_zero_count[top_xy]; AV_COPY32(&nnz_cache[4+8* 0], &nnz[4*3]); if(CHROMA444){ AV_COPY32(&nnz_cache[4+8* 5], &nnz[4* 7]); AV_COPY32(&nnz_cache[4+8*10], &nnz[4*11]); }else{ AV_COPY32(&nnz_cache[4+8* 5], &nnz[4* 5]); AV_COPY32(&nnz_cache[4+8*10], &nnz[4* 9]); } }else{ uint32_t top_empty = CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040; AV_WN32A(&nnz_cache[4+8* 0], top_empty); AV_WN32A(&nnz_cache[4+8* 5], top_empty); AV_WN32A(&nnz_cache[4+8*10], top_empty); } for (i=0; i<2; i++) { if(left_type[LEFT(i)]){ nnz = h->non_zero_count[left_xy[LEFT(i)]]; nnz_cache[3+8* 1 + 2*8*i]= nnz[left_block[8+0+2*i]]; nnz_cache[3+8* 2 + 2*8*i]= nnz[left_block[8+1+2*i]]; if(CHROMA444){ nnz_cache[3+8* 6 + 2*8*i]= nnz[left_block[8+0+2*i]+4*4]; nnz_cache[3+8* 7 + 2*8*i]= nnz[left_block[8+1+2*i]+4*4]; nnz_cache[3+8*11 + 2*8*i]= nnz[left_block[8+0+2*i]+8*4]; nnz_cache[3+8*12 + 2*8*i]= nnz[left_block[8+1+2*i]+8*4]; }else{ nnz_cache[3+8* 6 + 8*i]= nnz[left_block[8+4+2*i]]; nnz_cache[3+8*11 + 8*i]= nnz[left_block[8+5+2*i]]; } }else{ nnz_cache[3+8* 1 + 2*8*i]= nnz_cache[3+8* 2 + 2*8*i]= nnz_cache[3+8* 6 + 2*8*i]= nnz_cache[3+8* 7 + 2*8*i]= nnz_cache[3+8*11 + 2*8*i]= nnz_cache[3+8*12 + 2*8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64; } } if( CABAC ) { // top_cbp if(top_type) { h->top_cbp = h->cbp_table[top_xy]; } else { h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F; } // left_cbp if (left_type[LTOP]) { h->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) | ((h->cbp_table[left_xy[LTOP]]>>(left_block[0]&(~1)))&2) | (((h->cbp_table[left_xy[LBOT]]>>(left_block[2]&(~1)))&2) << 2); } else { h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F; } } } if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){ int list; int b_stride = h->b_stride; for(list=0; listlist_count; list++){ int8_t *ref_cache = &h->ref_cache[list][scan8[0]]; int8_t *ref = s->current_picture.ref_index[list]; int16_t (*mv_cache)[2] = &h->mv_cache[list][scan8[0]]; int16_t (*mv)[2] = s->current_picture.motion_val[list]; if(!USES_LIST(mb_type, list)){ continue; } assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)); if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride; AV_COPY128(mv_cache[0 - 1*8], mv[b_xy + 0]); ref_cache[0 - 1*8]= ref_cache[1 - 1*8]= ref[4*top_xy + 2]; ref_cache[2 - 1*8]= ref_cache[3 - 1*8]= ref[4*top_xy + 3]; }else{ AV_ZERO128(mv_cache[0 - 1*8]); AV_WN32A(&ref_cache[0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101); } if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){ for(i=0; i<2; i++){ int cache_idx = -1 + i*2*8; if(USES_LIST(left_type[LEFT(i)], list)){ const int b_xy= h->mb2b_xy[left_xy[LEFT(i)]] + 3; const int b8_xy= 4*left_xy[LEFT(i)] + 1; AV_COPY32(mv_cache[cache_idx ], mv[b_xy + b_stride*left_block[0+i*2]]); AV_COPY32(mv_cache[cache_idx+8], mv[b_xy + b_stride*left_block[1+i*2]]); ref_cache[cache_idx ]= ref[b8_xy + (left_block[0+i*2]&~1)]; ref_cache[cache_idx+8]= ref[b8_xy + (left_block[1+i*2]&~1)]; }else{ AV_ZERO32(mv_cache[cache_idx ]); AV_ZERO32(mv_cache[cache_idx+8]); ref_cache[cache_idx ]= ref_cache[cache_idx+8]= (left_type[LEFT(i)]) ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } }else{ if(USES_LIST(left_type[LTOP], list)){ const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3; const int b8_xy= 4*left_xy[LTOP] + 1; AV_COPY32(mv_cache[-1], mv[b_xy + b_stride*left_block[0]]); ref_cache[-1]= ref[b8_xy + (left_block[0]&~1)]; }else{ AV_ZERO32(mv_cache[-1]); ref_cache[-1]= left_type[LTOP] ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if(USES_LIST(topright_type, list)){ const int b_xy= h->mb2b_xy[topright_xy] + 3*b_stride; AV_COPY32(mv_cache[4 - 1*8], mv[b_xy]); ref_cache[4 - 1*8]= ref[4*topright_xy + 2]; }else{ AV_ZERO32(mv_cache[4 - 1*8]); ref_cache[4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(ref_cache[4 - 1*8] < 0){ if(USES_LIST(topleft_type, list)){ const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride + (h->topleft_partition & 2*b_stride); const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2); AV_COPY32(mv_cache[-1 - 1*8], mv[b_xy]); ref_cache[-1 - 1*8]= ref[b8_xy]; }else{ AV_ZERO32(mv_cache[-1 - 1*8]); ref_cache[-1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF) continue; if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))){ uint8_t (*mvd_cache)[2] = &h->mvd_cache[list][scan8[0]]; uint8_t (*mvd)[2] = h->mvd_table[list]; ref_cache[2+8*0] = ref_cache[2+8*2] = PART_NOT_AVAILABLE; AV_ZERO32(mv_cache[2+8*0]); AV_ZERO32(mv_cache[2+8*2]); if( CABAC ) { if(USES_LIST(top_type, list)){ const int b_xy= h->mb2br_xy[top_xy]; AV_COPY64(mvd_cache[0 - 1*8], mvd[b_xy + 0]); }else{ AV_ZERO64(mvd_cache[0 - 1*8]); } if(USES_LIST(left_type[LTOP], list)){ const int b_xy= h->mb2br_xy[left_xy[LTOP]] + 6; AV_COPY16(mvd_cache[-1 + 0*8], mvd[b_xy - left_block[0]]); AV_COPY16(mvd_cache[-1 + 1*8], mvd[b_xy - left_block[1]]); }else{ AV_ZERO16(mvd_cache[-1 + 0*8]); AV_ZERO16(mvd_cache[-1 + 1*8]); } if(USES_LIST(left_type[LBOT], list)){ const int b_xy= h->mb2br_xy[left_xy[LBOT]] + 6; AV_COPY16(mvd_cache[-1 + 2*8], mvd[b_xy - left_block[2]]); AV_COPY16(mvd_cache[-1 + 3*8], mvd[b_xy - left_block[3]]); }else{ AV_ZERO16(mvd_cache[-1 + 2*8]); AV_ZERO16(mvd_cache[-1 + 3*8]); } AV_ZERO16(mvd_cache[2+8*0]); AV_ZERO16(mvd_cache[2+8*2]); if(h->slice_type_nos == AV_PICTURE_TYPE_B){ uint8_t *direct_cache = &h->direct_cache[scan8[0]]; uint8_t *direct_table = h->direct_table; fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16>>1, 1); if(IS_DIRECT(top_type)){ AV_WN32A(&direct_cache[-1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1)); }else if(IS_8X8(top_type)){ int b8_xy = 4*top_xy; direct_cache[0 - 1*8]= direct_table[b8_xy + 2]; direct_cache[2 - 1*8]= direct_table[b8_xy + 3]; }else{ AV_WN32A(&direct_cache[-1*8], 0x01010101*(MB_TYPE_16x16>>1)); } if(IS_DIRECT(left_type[LTOP])) direct_cache[-1 + 0*8]= MB_TYPE_DIRECT2>>1; else if(IS_8X8(left_type[LTOP])) direct_cache[-1 + 0*8]= direct_table[4*left_xy[LTOP] + 1 + (left_block[0]&~1)]; else direct_cache[-1 + 0*8]= MB_TYPE_16x16>>1; if(IS_DIRECT(left_type[LBOT])) direct_cache[-1 + 2*8]= MB_TYPE_DIRECT2>>1; else if(IS_8X8(left_type[LBOT])) direct_cache[-1 + 2*8]= direct_table[4*left_xy[LBOT] + 1 + (left_block[2]&~1)]; else direct_cache[-1 + 2*8]= MB_TYPE_16x16>>1; } } } if(FRAME_MBAFF){ #define MAP_MVS\ MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ MAP_F2F(scan8[0] - 1 + 0*8, left_type[LTOP])\ MAP_F2F(scan8[0] - 1 + 1*8, left_type[LTOP])\ MAP_F2F(scan8[0] - 1 + 2*8, left_type[LBOT])\ MAP_F2F(scan8[0] - 1 + 3*8, left_type[LBOT]) if(MB_FIELD){ #define MAP_F2F(idx, mb_type)\ if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] <<= 1;\ h->mv_cache[list][idx][1] /= 2;\ h->mvd_cache[list][idx][1] >>=1;\ } MAP_MVS #undef MAP_F2F }else{ #define MAP_F2F(idx, mb_type)\ if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] >>= 1;\ h->mv_cache[list][idx][1] <<= 1;\ h->mvd_cache[list][idx][1] <<= 1;\ } MAP_MVS #undef MAP_F2F } } } } h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]); } /** * gets the predicted intra4x4 prediction mode. */ static av_always_inline int pred_intra_mode(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->intra4x4_pred_mode_cache[index8 - 1]; const int top = h->intra4x4_pred_mode_cache[index8 - 8]; const int min= FFMIN(left, top); tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min); if(min<0) return DC_PRED; else return min; } static av_always_inline void write_back_intra_pred_mode(H264Context *h){ int8_t *i4x4= h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy]; int8_t *i4x4_cache= h->intra4x4_pred_mode_cache; AV_COPY32(i4x4, i4x4_cache + 4 + 8*4); i4x4[4]= i4x4_cache[7+8*3]; i4x4[5]= i4x4_cache[7+8*2]; i4x4[6]= i4x4_cache[7+8*1]; } static av_always_inline void write_back_non_zero_count(H264Context *h){ const int mb_xy= h->mb_xy; uint8_t *nnz = h->non_zero_count[mb_xy]; uint8_t *nnz_cache = h->non_zero_count_cache; AV_COPY32(&nnz[ 0], &nnz_cache[4+8* 1]); AV_COPY32(&nnz[ 4], &nnz_cache[4+8* 2]); AV_COPY32(&nnz[ 8], &nnz_cache[4+8* 3]); AV_COPY32(&nnz[12], &nnz_cache[4+8* 4]); AV_COPY32(&nnz[16], &nnz_cache[4+8* 6]); AV_COPY32(&nnz[20], &nnz_cache[4+8* 7]); AV_COPY32(&nnz[32], &nnz_cache[4+8*11]); AV_COPY32(&nnz[36], &nnz_cache[4+8*12]); if(CHROMA444){ AV_COPY32(&nnz[24], &nnz_cache[4+8* 8]); AV_COPY32(&nnz[28], &nnz_cache[4+8* 9]); AV_COPY32(&nnz[40], &nnz_cache[4+8*13]); AV_COPY32(&nnz[44], &nnz_cache[4+8*14]); } } static av_always_inline void write_back_motion_list(H264Context *h, MpegEncContext * const s, int b_stride, int b_xy, int b8_xy, int mb_type, int list ) { int16_t (*mv_dst)[2] = &s->current_picture.motion_val[list][b_xy]; int16_t (*mv_src)[2] = &h->mv_cache[list][scan8[0]]; AV_COPY128(mv_dst + 0*b_stride, mv_src + 8*0); AV_COPY128(mv_dst + 1*b_stride, mv_src + 8*1); AV_COPY128(mv_dst + 2*b_stride, mv_src + 8*2); AV_COPY128(mv_dst + 3*b_stride, mv_src + 8*3); if( CABAC ) { uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]]; uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]]; if(IS_SKIP(mb_type)) AV_ZERO128(mvd_dst); else{ AV_COPY64(mvd_dst, mvd_src + 8*3); AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0); AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1); AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2); } } { int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; int8_t *ref_cache = h->ref_cache[list]; ref_index[0+0*2]= ref_cache[scan8[0]]; ref_index[1+0*2]= ref_cache[scan8[4]]; ref_index[0+1*2]= ref_cache[scan8[8]]; ref_index[1+1*2]= ref_cache[scan8[12]]; } } static av_always_inline void write_back_motion(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int b_stride = h->b_stride; const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy const int b8_xy= 4*h->mb_xy; if(USES_LIST(mb_type, 0)){ write_back_motion_list(h, s, b_stride, b_xy, b8_xy, mb_type, 0); }else{ fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1); } if(USES_LIST(mb_type, 1)){ write_back_motion_list(h, s, b_stride, b_xy, b8_xy, mb_type, 1); } if(h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC){ if(IS_8X8(mb_type)){ uint8_t *direct_table = &h->direct_table[4*h->mb_xy]; direct_table[1] = h->sub_mb_type[1]>>1; direct_table[2] = h->sub_mb_type[2]>>1; direct_table[3] = h->sub_mb_type[3]>>1; } } } static av_always_inline int get_dct8x8_allowed(H264Context *h){ if(h->sps.direct_8x8_inference_flag) return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL)); else return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL)); } /** * decodes a P_SKIP or B_SKIP macroblock */ static void av_unused decode_mb_skip(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= h->mb_xy; int mb_type=0; memset(h->non_zero_count[mb_xy], 0, 48); if(MB_FIELD) mb_type|= MB_TYPE_INTERLACED; if( h->slice_type_nos == AV_PICTURE_TYPE_B ) { // just for fill_caches. pred_direct_motion will set the real mb_type mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; if(h->direct_spatial_mv_pred){ fill_decode_neighbors(h, mb_type); fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ... } ff_h264_pred_direct_motion(h, &mb_type); mb_type|= MB_TYPE_SKIP; } else { mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; fill_decode_neighbors(h, mb_type); pred_pskip_motion(h); } write_back_motion(h, mb_type); s->current_picture.mb_type[mb_xy]= mb_type; s->current_picture.qscale_table[mb_xy]= s->qscale; h->slice_table[ mb_xy ]= h->slice_num; h->prev_mb_skipped= 1; } #include "h264_mvpred.h" //For pred_pskip_motion() #endif /* AVCODEC_H264_H */