/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /** * @file h264.c * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #include "common.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h264data.h" #include "golomb.h" #undef NDEBUG #include #define interlaced_dct interlaced_dct_is_a_bad_name #define mb_intra mb_intra_isnt_initalized_see_mb_type #define LUMA_DC_BLOCK_INDEX 25 #define CHROMA_DC_BLOCK_INDEX 26 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 #define COEFF_TOKEN_VLC_BITS 8 #define TOTAL_ZEROS_VLC_BITS 9 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 #define RUN_VLC_BITS 3 #define RUN7_VLC_BITS 6 #define MAX_SPS_COUNT 32 #define MAX_PPS_COUNT 256 #define MAX_MMCO_COUNT 66 /** * Sequence parameter set */ typedef struct SPS{ int profile_idc; int level_idc; int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 int poc_type; ///< pic_order_cnt_type int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 int delta_pic_order_always_zero_flag; int offset_for_non_ref_pic; int offset_for_top_to_bottom_field; int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle int ref_frame_count; ///< num_ref_frames int gaps_in_frame_num_allowed_flag; int mb_width; ///< frame_width_in_mbs_minus1 + 1 int mb_height; ///< frame_height_in_mbs_minus1 + 1 int frame_mbs_only_flag; int mb_aff; ///no) do we need that? int slice_num; uint8_t *slice_table_base; uint8_t *slice_table; ///< slice_table_base + mb_stride + 1 int slice_type; int slice_type_fixed; //interlacing specific flags int mb_field_decoding_flag; int sub_mb_type[4]; //POC stuff int poc_lsb; int poc_msb; int delta_poc_bottom; int delta_poc[2]; int frame_num; int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 int frame_num_offset; ///< for POC type 2 int prev_frame_num_offset; ///< for POC type 2 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 /** * frame_num for frames or 2*frame_num for field pics. */ int curr_pic_num; /** * max_frame_num or 2*max_frame_num for field pics. */ int max_pic_num; //Weighted pred stuff int luma_log2_weight_denom; int chroma_log2_weight_denom; int luma_weight[2][16]; int luma_offset[2][16]; int chroma_weight[2][16][2]; int chroma_offset[2][16][2]; //deblock int disable_deblocking_filter_idc; int slice_alpha_c0_offset_div2; int slice_beta_offset_div2; int redundant_pic_count; int direct_spatial_mv_pred; /** * num_ref_idx_l0/1_active_minus1 + 1 */ int ref_count[2];// FIXME split for AFF Picture *short_ref[16]; Picture *long_ref[16]; Picture default_ref_list[2][32]; Picture ref_list[2][32]; //FIXME size? Picture field_ref_list[2][32]; //FIXME size? /** * memory management control operations buffer. */ MMCO mmco[MAX_MMCO_COUNT]; int mmco_index; int long_ref_count; ///< number of actual long term references int short_ref_count; ///< number of actual short term references //data partitioning GetBitContext intra_gb; GetBitContext inter_gb; GetBitContext *intra_gb_ptr; GetBitContext *inter_gb_ptr; DCTELEM mb[16*24] __align8; }H264Context; static VLC coeff_token_vlc[4]; static VLC chroma_dc_coeff_token_vlc; static VLC total_zeros_vlc[15]; static VLC chroma_dc_total_zeros_vlc[3]; static VLC run_vlc[6]; static VLC run7_vlc; static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp); static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc); static inline uint32_t pack16to32(int a, int b){ #ifdef WORDS_BIGENDIAN return (b&0xFFFF) + (a<<16); #else return (a&0xFFFF) + (b<<16); #endif } /** * fill a rectangle. * @param h height of the recatangle, should be a constant * @param w width of the recatangle, should be a constant * @param size the size of val (1 or 4), should be a constant */ static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined uint8_t *p= (uint8_t*)vp; assert(size==1 || size==4); w *= size; stride *= size; //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it if(w==2 && h==2){ *(uint16_t*)(p + 0)= *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101; }else if(w==2 && h==4){ *(uint16_t*)(p + 0*stride)= *(uint16_t*)(p + 1*stride)= *(uint16_t*)(p + 2*stride)= *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101; }else if(w==4 && h==1){ *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101; }else if(w==4 && h==2){ *(uint32_t*)(p + 0*stride)= *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101; }else if(w==4 && h==4){ *(uint32_t*)(p + 0*stride)= *(uint32_t*)(p + 1*stride)= *(uint32_t*)(p + 2*stride)= *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101; }else if(w==8 && h==1){ *(uint32_t*)(p + 0)= *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101; }else if(w==8 && h==2){ *(uint32_t*)(p + 0 + 0*stride)= *(uint32_t*)(p + 4 + 0*stride)= *(uint32_t*)(p + 0 + 1*stride)= *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101; }else if(w==8 && h==4){ *(uint64_t*)(p + 0*stride)= *(uint64_t*)(p + 1*stride)= *(uint64_t*)(p + 2*stride)= *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL; }else if(w==16 && h==2){ *(uint64_t*)(p + 0+0*stride)= *(uint64_t*)(p + 8+0*stride)= *(uint64_t*)(p + 0+1*stride)= *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL; }else if(w==16 && h==4){ *(uint64_t*)(p + 0+0*stride)= *(uint64_t*)(p + 8+0*stride)= *(uint64_t*)(p + 0+1*stride)= *(uint64_t*)(p + 8+1*stride)= *(uint64_t*)(p + 0+2*stride)= *(uint64_t*)(p + 8+2*stride)= *(uint64_t*)(p + 0+3*stride)= *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL; }else assert(0); } static inline void fill_caches(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int topleft_xy, top_xy, topright_xy, left_xy[2]; int topleft_type, top_type, topright_type, left_type[2]; int left_block[4]; int i; //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it if(h->sps.mb_aff){ //FIXME topleft_xy = 0; /* avoid warning */ top_xy = 0; /* avoid warning */ topright_xy = 0; /* avoid warning */ }else{ topleft_xy = mb_xy-1 - s->mb_stride; top_xy = mb_xy - s->mb_stride; topright_xy= mb_xy+1 - s->mb_stride; left_xy[0] = mb_xy-1; left_xy[1] = mb_xy-1; left_block[0]= 0; left_block[1]= 1; left_block[2]= 2; left_block[3]= 3; } topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0; top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0; topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0; left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; if(IS_INTRA(mb_type)){ h->topleft_samples_available= h->top_samples_available= h->left_samples_available= 0xFFFF; h->topright_samples_available= 0xEEEA; if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){ h->topleft_samples_available= 0xB3FF; h->top_samples_available= 0x33FF; h->topright_samples_available= 0x26EA; } for(i=0; i<2; i++){ if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred)) h->topleft_samples_available&= 0x7FFF; if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred)) h->topright_samples_available&= 0xFBFF; if(IS_INTRA4x4(mb_type)){ if(IS_INTRA4x4(top_type)){ h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4]; h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5]; h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6]; h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3]; }else{ int pred; if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred)) pred= 2; else{ pred= -1; } h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode_cache[7+8*0]= pred; } for(i=0; i<2; i++){ if(IS_INTRA4x4(left_type[i])){ h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]]; h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]]; }else{ int pred; if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred)) pred= 2; else{ pred= -1; } h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred; } } } } /* 0 . T T. T T T T 1 L . .L . . . . 2 L . .L . . . . 3 . T TL . . . . 4 L . .L . . . . 5 L . .. . . . . */ //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec) if(top_type){ h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0]; h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1]; h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2]; h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3]; h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7]; h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8]; h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10]; h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11]; }else{ h->non_zero_count_cache[4+8*0]= h->non_zero_count_cache[5+8*0]= h->non_zero_count_cache[6+8*0]= h->non_zero_count_cache[7+8*0]= h->non_zero_count_cache[1+8*0]= h->non_zero_count_cache[2+8*0]= h->non_zero_count_cache[1+8*3]= h->non_zero_count_cache[2+8*3]= 64; } if(left_type[0]){ h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6]; h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5]; h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12]; }else{ h->non_zero_count_cache[3+8*1]= h->non_zero_count_cache[3+8*2]= h->non_zero_count_cache[0+8*1]= h->non_zero_count_cache[0+8*4]= 64; } if(left_type[1]){ h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4]; h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3]; h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8]; h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11]; }else{ h->non_zero_count_cache[3+8*3]= h->non_zero_count_cache[3+8*4]= h->non_zero_count_cache[0+8*2]= h->non_zero_count_cache[0+8*5]= 64; } #if 1 if(IS_INTER(mb_type)){ int list; for(list=0; list<2; list++){ if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){ /*if(!h->mv_cache_clean[list]){ memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all? memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t)); h->mv_cache_clean[list]= 1; }*/ continue; //FIXME direct mode ... } h->mv_cache_clean[list]= 0; if(IS_INTER(topleft_type)){ const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; }else{ *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0; h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(IS_INTER(top_type)){ const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0]; *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1]; *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2]; *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3]; h->ref_cache[list][scan8[0] + 0 - 1*8]= h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0]; h->ref_cache[list][scan8[0] + 2 - 1*8]= h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0; *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101; } if(IS_INTER(topright_type)){ const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0; h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } //FIXME unify cleanup or sth if(IS_INTER(left_type[0])){ const int b_xy= h->mb2b_xy[left_xy[0]] + 3; const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1; *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]; *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]]; h->ref_cache[list][scan8[0] - 1 + 0*8]= h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0; h->ref_cache[list][scan8[0] - 1 + 0*8]= h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(IS_INTER(left_type[1])){ const int b_xy= h->mb2b_xy[left_xy[1]] + 3; const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1; *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]]; *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]]; h->ref_cache[list][scan8[0] - 1 + 2*8]= h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0; h->ref_cache[list][scan8[0] - 1 + 2*8]= h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE; } h->ref_cache[list][scan8[5 ]+1] = h->ref_cache[list][scan8[7 ]+1] = h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewher else) h->ref_cache[list][scan8[4 ]] = h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE; *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]= *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]= *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else) *(uint32_t*)h->mv_cache [list][scan8[4 ]]= *(uint32_t*)h->mv_cache [list][scan8[12]]= 0; } //FIXME } #endif } static inline void write_back_intra_pred_mode(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1]; h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2]; h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3]; h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4]; h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4]; h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4]; h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4]; } /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ static inline int check_intra4x4_pred_mode(H264Context *h){ MpegEncContext * const s = &h->s; static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0}; static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED}; int i; if(!(h->top_samples_available&0x8000)){ for(i=0; i<4; i++){ int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ]; if(status<0){ fprintf(stderr, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + i]= status; } } } if(!(h->left_samples_available&0x8000)){ for(i=0; i<4; i++){ int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ]; if(status<0){ fprintf(stderr, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status; } } } return 0; } //FIXME cleanup like next /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ static inline int check_intra_pred_mode(H264Context *h, int mode){ MpegEncContext * const s = &h->s; static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1}; static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8}; if(!(h->top_samples_available&0x8000)){ mode= top[ mode ]; if(mode<0){ fprintf(stderr, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } if(!(h->left_samples_available&0x8000)){ mode= left[ mode ]; if(mode<0){ fprintf(stderr, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } return mode; } /** * gets the predicted intra4x4 prediction mode. */ static inline int pred_intra_mode(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->intra4x4_pred_mode_cache[index8 - 1]; const int top = h->intra4x4_pred_mode_cache[index8 - 8]; const int min= FFMIN(left, top); tprintf("mode:%d %d min:%d\n", left ,top, min); if(min<0) return DC_PRED; else return min; } static inline void write_back_non_zero_count(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4]; h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4]; h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4]; h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4]; h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3]; h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2]; h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1]; h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2]; h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2]; h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1]; h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5]; h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5]; h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4]; } /** * gets the predicted number of non zero coefficients. * @param n block index */ static inline int pred_non_zero_count(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->non_zero_count_cache[index8 - 1]; const int top = h->non_zero_count_cache[index8 - 8]; int i= left + top; if(i<64) i= (i+1)>>1; tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31); return i&31; } static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){ const int topright_ref= h->ref_cache[list][ i - 8 + part_width ]; if(topright_ref != PART_NOT_AVAILABLE){ *C= h->mv_cache[list][ i - 8 + part_width ]; return topright_ref; }else{ tprintf("topright MV not available\n"); *C= h->mv_cache[list][ i - 8 - 1 ]; return h->ref_cache[list][ i - 8 - 1 ]; } } /** * gets the predicted MV. * @param n the block index * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4) * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){ const int index8= scan8[n]; const int top_ref= h->ref_cache[list][ index8 - 8 ]; const int left_ref= h->ref_cache[list][ index8 - 1 ]; const int16_t * const A= h->mv_cache[list][ index8 - 1 ]; const int16_t * const B= h->mv_cache[list][ index8 - 8 ]; const int16_t * C; int diagonal_ref, match_count; assert(part_width==1 || part_width==2 || part_width==4); /* mv_cache B . . A T T T T U . . L . . , . U . . L . . . . U . . L . . , . . . . L . . . . */ diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width); match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref); if(match_count > 1){ //most common *mx= mid_pred(A[0], B[0], C[0]); *my= mid_pred(A[1], B[1], C[1]); }else if(match_count==1){ if(left_ref==ref){ *mx= A[0]; *my= A[1]; }else if(top_ref==ref){ *mx= B[0]; *my= B[1]; }else{ *mx= C[0]; *my= C[1]; } }else{ if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){ *mx= A[0]; *my= A[1]; }else{ *mx= mid_pred(A[0], B[0], C[0]); *my= mid_pred(A[1], B[1], C[1]); } } tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list); } /** * gets the directionally predicted 16x8 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ if(n==0){ const int top_ref= h->ref_cache[list][ scan8[0] - 8 ]; const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ]; tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list); if(top_ref == ref){ *mx= B[0]; *my= B[1]; return; } }else{ const int left_ref= h->ref_cache[list][ scan8[8] - 1 ]; const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ]; tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); if(left_ref == ref){ *mx= A[0]; *my= A[1]; return; } } //RARE pred_motion(h, n, 4, list, ref, mx, my); } /** * gets the directionally predicted 8x16 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ if(n==0){ const int left_ref= h->ref_cache[list][ scan8[0] - 1 ]; const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ]; tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); if(left_ref == ref){ *mx= A[0]; *my= A[1]; return; } }else{ const int16_t * C; int diagonal_ref; diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2); tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list); if(diagonal_ref == ref){ *mx= C[0]; *my= C[1]; return; } } //RARE pred_motion(h, n, 2, list, ref, mx, my); } static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){ const int top_ref = h->ref_cache[0][ scan8[0] - 8 ]; const int left_ref= h->ref_cache[0][ scan8[0] - 1 ]; tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y); if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0) || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){ *mx = *my = 0; return; } pred_motion(h, 0, 4, 0, 0, mx, my); return; } static inline void write_back_motion(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride; int list; for(list=0; list<2; list++){ int y; if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){ if(1){ //FIXME skip or never read if mb_type doesnt use it for(y=0; y<4; y++){ *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0; } for(y=0; y<2; y++){ *(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101; } } continue; //FIXME direct mode ... } for(y=0; y<4; y++){ *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]; *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]; } for(y=0; y<2; y++){ s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y]; s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y]; } } } /** * Decodes a network abstraction layer unit. * @param consumed is the number of bytes used as input * @param length is the length of the array * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing? * @returns decoded bytes, might be src+1 if no escapes */ static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){ int i, si, di; uint8_t *dst; // src[0]&0x80; //forbidden bit h->nal_ref_idc= src[0]>>5; h->nal_unit_type= src[0]&0x1F; src++; length--; #if 0 for(i=0; i0 && src[i-1]==0) i--; if(i+2=length-1){ //no escaped 0 *dst_length= length; *consumed= length+1; //+1 for the header return src; } h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length); dst= h->rbsp_buffer; //printf("deoding esc\n"); si=di=0; while(si=0); assert(dst_length>0); dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type; if(length==0) return 1; escape_count= 0; for(i=0; i0 && src[i-1]==0) i--; if(i+2 dst_length) return -1; //this should be damn rare (hopefully) h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count); temp= h->rbsp_buffer; //printf("encoding esc\n"); si= 0; di= 0; while(si < length){ if(si+2>=1; } return 0; } /** * idct tranforms the 16 dc values and dequantize them. * @param qp quantization parameter */ static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){ const int qmul= dequant_coeff[qp][0]; #define stride 16 int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; //memset(block, 64, 2*256); //return; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2; block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2; block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2; } } /** * dct tranforms the 16 dc values. * @param qp quantization parameter ??? FIXME */ static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){ // const int qmul= dequant_coeff[qp][0]; int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= (z0 + z3)>>1; block[stride*2 +offset]= (z1 + z2)>>1; block[stride*8 +offset]= (z1 - z2)>>1; block[stride*10+offset]= (z0 - z3)>>1; } } #undef xStride #undef stride static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){ const int qmul= dequant_coeff[qp][0]; const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1; block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1; block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1; block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1; } static void chroma_dc_dct_c(DCTELEM *block){ const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= (a+c); block[stride*0 + xStride*1]= (e+b); block[stride*1 + xStride*0]= (a-c); block[stride*1 + xStride*1]= (e-b); } /** * gets the chroma qp. */ static inline int get_chroma_qp(H264Context *h, int qscale){ return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)]; } /** * */ static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){ int i; uint8_t *cm = cropTbl + MAX_NEG_CROP; block[0] += 32; #if 1 for(i=0; i<4; i++){ const int z0= block[i + 4*0] + block[i + 4*2]; const int z1= block[i + 4*0] - block[i + 4*2]; const int z2= (block[i + 4*1]>>1) - block[i + 4*3]; const int z3= block[i + 4*1] + (block[i + 4*3]>>1); block[i + 4*0]= z0 + z3; block[i + 4*1]= z1 + z2; block[i + 4*2]= z1 - z2; block[i + 4*3]= z0 - z3; } for(i=0; i<4; i++){ const int z0= block[0 + 4*i] + block[2 + 4*i]; const int z1= block[0 + 4*i] - block[2 + 4*i]; const int z2= (block[1 + 4*i]>>1) - block[3 + 4*i]; const int z3= block[1 + 4*i] + (block[3 + 4*i]>>1); dst[0 + i*stride]= cm[ dst[0 + i*stride] + ((z0 + z3) >> 6) ]; dst[1 + i*stride]= cm[ dst[1 + i*stride] + ((z1 + z2) >> 6) ]; dst[2 + i*stride]= cm[ dst[2 + i*stride] + ((z1 - z2) >> 6) ]; dst[3 + i*stride]= cm[ dst[3 + i*stride] + ((z0 - z3) >> 6) ]; } #else for(i=0; i<4; i++){ const int z0= block[0 + 4*i] + block[2 + 4*i]; const int z1= block[0 + 4*i] - block[2 + 4*i]; const int z2= (block[1 + 4*i]>>1) - block[3 + 4*i]; const int z3= block[1 + 4*i] + (block[3 + 4*i]>>1); block[0 + 4*i]= z0 + z3; block[1 + 4*i]= z1 + z2; block[2 + 4*i]= z1 - z2; block[3 + 4*i]= z0 - z3; } for(i=0; i<4; i++){ const int z0= block[i + 4*0] + block[i + 4*2]; const int z1= block[i + 4*0] - block[i + 4*2]; const int z2= (block[i + 4*1]>>1) - block[i + 4*3]; const int z3= block[i + 4*1] + (block[i + 4*3]>>1); dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ]; dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ]; dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ]; dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ]; } #endif } static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){ int i; //FIXME try int temp instead of block for(i=0; i<4; i++){ const int d0= src1[0 + i*stride] - src2[0 + i*stride]; const int d1= src1[1 + i*stride] - src2[1 + i*stride]; const int d2= src1[2 + i*stride] - src2[2 + i*stride]; const int d3= src1[3 + i*stride] - src2[3 + i*stride]; const int z0= d0 + d3; const int z3= d0 - d3; const int z1= d1 + d2; const int z2= d1 - d2; block[0 + 4*i]= z0 + z1; block[1 + 4*i]= 2*z3 + z2; block[2 + 4*i]= z0 - z1; block[3 + 4*i]= z3 - 2*z2; } for(i=0; i<4; i++){ const int z0= block[0*4 + i] + block[3*4 + i]; const int z3= block[0*4 + i] - block[3*4 + i]; const int z1= block[1*4 + i] + block[2*4 + i]; const int z2= block[1*4 + i] - block[2*4 + i]; block[0*4 + i]= z0 + z1; block[1*4 + i]= 2*z3 + z2; block[2*4 + i]= z0 - z1; block[3*4 + i]= z3 - 2*z2; } } //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away) static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){ int i; const int * const quant_table= quant_coeff[qscale]; const int bias= intra ? (1<dc_threshold2){ if(level>0){ level= (dc_bias + level)>>(QUANT_SHIFT-2); block[0]= level; }else{ level= (dc_bias - level)>>(QUANT_SHIFT-2); block[0]= -level; } // last_non_zero = i; }else{ block[0]=0; } }else{ const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6; const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1; const unsigned int dc_threshold2= (dc_threshold1<<1); int level= block[0]*quant_table[0]; if(((unsigned)(level+dc_threshold1))>dc_threshold2){ if(level>0){ level= (dc_bias + level)>>(QUANT_SHIFT+1); block[0]= level; }else{ level= (dc_bias - level)>>(QUANT_SHIFT+1); block[0]= -level; } // last_non_zero = i; }else{ block[0]=0; } } last_non_zero= 0; i=1; }else{ last_non_zero= -1; i=0; } for(; i<16; i++){ const int j= scantable[i]; int level= block[j]*quant_table[j]; // if( bias+level >= (1<<(QMAT_SHIFT - 3)) // || bias-level >= (1<<(QMAT_SHIFT - 3))){ if(((unsigned)(level+threshold1))>threshold2){ if(level>0){ level= (bias + level)>>QUANT_SHIFT; block[j]= level; }else{ level= (bias - level)>>QUANT_SHIFT; block[j]= -level; } last_non_zero = i; }else{ block[j]=0; } } return last_non_zero; } static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){ const uint32_t a= ((uint32_t*)(src-stride))[0]; ((uint32_t*)(src+0*stride))[0]= a; ((uint32_t*)(src+1*stride))[0]= a; ((uint32_t*)(src+2*stride))[0]= a; ((uint32_t*)(src+3*stride))[0]= a; } static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){ ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101; ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101; ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101; ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101; } static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){ const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3; ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; } static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){ const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2; ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; } static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){ const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2; ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; } static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){ ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U; } #define LOAD_TOP_RIGHT_EDGE\ const int t4= topright[0];\ const int t5= topright[1];\ const int t6= topright[2];\ const int t7= topright[3];\ #define LOAD_LEFT_EDGE\ const int l0= src[-1+0*stride];\ const int l1= src[-1+1*stride];\ const int l2= src[-1+2*stride];\ const int l3= src[-1+3*stride];\ #define LOAD_TOP_EDGE\ const int t0= src[ 0-1*stride];\ const int t1= src[ 1-1*stride];\ const int t2= src[ 2-1*stride];\ const int t3= src[ 3-1*stride];\ static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){ const int lt= src[-1-1*stride]; LOAD_TOP_EDGE LOAD_LEFT_EDGE src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; src[0+2*stride]= src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; src[0+1*stride]= src[1+2*stride]= src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; src[0+0*stride]= src[1+1*stride]= src[2+2*stride]= src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; src[1+0*stride]= src[2+1*stride]= src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2; src[2+0*stride]= src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2; } static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_TOP_EDGE LOAD_TOP_RIGHT_EDGE // LOAD_LEFT_EDGE src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2; src[1+0*stride]= src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2; src[2+0*stride]= src[1+1*stride]= src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2; src[3+0*stride]= src[2+1*stride]= src[1+2*stride]= src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2; src[3+1*stride]= src[2+2*stride]= src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2; src[3+2*stride]= src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2; src[3+3*stride]=(t6 + 3*t7 + 2)>>2; } static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){ const int lt= src[-1-1*stride]; LOAD_TOP_EDGE LOAD_LEFT_EDGE const __attribute__((unused)) int unu= l3; src[0+0*stride]= src[1+2*stride]=(lt + t0 + 1)>>1; src[1+0*stride]= src[2+2*stride]=(t0 + t1 + 1)>>1; src[2+0*stride]= src[3+2*stride]=(t1 + t2 + 1)>>1; src[3+0*stride]=(t2 + t3 + 1)>>1; src[0+1*stride]= src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2; src[1+1*stride]= src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2; src[2+1*stride]= src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2; src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2; src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2; } static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_TOP_EDGE LOAD_TOP_RIGHT_EDGE const __attribute__((unused)) int unu= t7; src[0+0*stride]=(t0 + t1 + 1)>>1; src[1+0*stride]= src[0+2*stride]=(t1 + t2 + 1)>>1; src[2+0*stride]= src[1+2*stride]=(t2 + t3 + 1)>>1; src[3+0*stride]= src[2+2*stride]=(t3 + t4+ 1)>>1; src[3+2*stride]=(t4 + t5+ 1)>>1; src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[1+1*stride]= src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2; src[2+1*stride]= src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2; src[3+1*stride]= src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2; src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2; } static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_LEFT_EDGE src[0+0*stride]=(l0 + l1 + 1)>>1; src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2; src[2+0*stride]= src[0+1*stride]=(l1 + l2 + 1)>>1; src[3+0*stride]= src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2; src[2+1*stride]= src[0+2*stride]=(l2 + l3 + 1)>>1; src[3+1*stride]= src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2; src[3+2*stride]= src[1+3*stride]= src[0+3*stride]= src[2+2*stride]= src[2+3*stride]= src[3+3*stride]=l3; } static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){ const int lt= src[-1-1*stride]; LOAD_TOP_EDGE LOAD_LEFT_EDGE const __attribute__((unused)) int unu= t3; src[0+0*stride]= src[2+1*stride]=(lt + l0 + 1)>>1; src[1+0*stride]= src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2; src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2; src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[0+1*stride]= src[2+2*stride]=(l0 + l1 + 1)>>1; src[1+1*stride]= src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2; src[0+2*stride]= src[2+3*stride]=(l1 + l2+ 1)>>1; src[1+2*stride]= src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2; src[0+3*stride]=(l2 + l3 + 1)>>1; src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2; } static void pred16x16_vertical_c(uint8_t *src, int stride){ int i; const uint32_t a= ((uint32_t*)(src-stride))[0]; const uint32_t b= ((uint32_t*)(src-stride))[1]; const uint32_t c= ((uint32_t*)(src-stride))[2]; const uint32_t d= ((uint32_t*)(src-stride))[3]; for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= a; ((uint32_t*)(src+i*stride))[1]= b; ((uint32_t*)(src+i*stride))[2]= c; ((uint32_t*)(src+i*stride))[3]= d; } } static void pred16x16_horizontal_c(uint8_t *src, int stride){ int i; for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101; } } static void pred16x16_dc_c(uint8_t *src, int stride){ int i, dc=0; for(i=0;i<16; i++){ dc+= src[-1+i*stride]; } for(i=0;i<16; i++){ dc+= src[i-stride]; } dc= 0x01010101*((dc + 16)>>5); for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= dc; } } static void pred16x16_left_dc_c(uint8_t *src, int stride){ int i, dc=0; for(i=0;i<16; i++){ dc+= src[-1+i*stride]; } dc= 0x01010101*((dc + 8)>>4); for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= dc; } } static void pred16x16_top_dc_c(uint8_t *src, int stride){ int i, dc=0; for(i=0;i<16; i++){ dc+= src[i-stride]; } dc= 0x01010101*((dc + 8)>>4); for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= dc; } } static void pred16x16_128_dc_c(uint8_t *src, int stride){ int i; for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U; } } static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){ int i, j, k; int a; uint8_t *cm = cropTbl + MAX_NEG_CROP; const uint8_t * const src0 = src+7-stride; const uint8_t *src1 = src+8*stride-1; const uint8_t *src2 = src1-2*stride; // == src+6*stride-1; int H = src0[1] - src0[-1]; int V = src1[0] - src2[ 0]; for(k=2; k<=8; ++k) { src1 += stride; src2 -= stride; H += k*(src0[k] - src0[-k]); V += k*(src1[0] - src2[ 0]); } if(svq3){ H = ( 5*(H/4) ) / 16; V = ( 5*(V/4) ) / 16; /* required for 100% accuracy */ i = H; H = V; V = i; }else{ H = ( 5*H+32 ) >> 6; V = ( 5*V+32 ) >> 6; } a = 16*(src1[0] + src2[16] + 1) - 7*(V+H); for(j=16; j>0; --j) { int b = a; a += V; for(i=-16; i<0; i+=4) { src[16+i] = cm[ (b ) >> 5 ]; src[17+i] = cm[ (b+ H) >> 5 ]; src[18+i] = cm[ (b+2*H) >> 5 ]; src[19+i] = cm[ (b+3*H) >> 5 ]; b += 4*H; } src += stride; } } static void pred16x16_plane_c(uint8_t *src, int stride){ pred16x16_plane_compat_c(src, stride, 0); } static void pred8x8_vertical_c(uint8_t *src, int stride){ int i; const uint32_t a= ((uint32_t*)(src-stride))[0]; const uint32_t b= ((uint32_t*)(src-stride))[1]; for(i=0; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= a; ((uint32_t*)(src+i*stride))[1]= b; } } static void pred8x8_horizontal_c(uint8_t *src, int stride){ int i; for(i=0; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101; } } static void pred8x8_128_dc_c(uint8_t *src, int stride){ int i; for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U; } } static void pred8x8_left_dc_c(uint8_t *src, int stride){ int i; int dc0, dc2; dc0=dc2=0; for(i=0;i<4; i++){ dc0+= src[-1+i*stride]; dc2+= src[-1+(i+4)*stride]; } dc0= 0x01010101*((dc0 + 2)>>2); dc2= 0x01010101*((dc2 + 2)>>2); for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= dc0; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= dc2; } } static void pred8x8_top_dc_c(uint8_t *src, int stride){ int i; int dc0, dc1; dc0=dc1=0; for(i=0;i<4; i++){ dc0+= src[i-stride]; dc1+= src[4+i-stride]; } dc0= 0x01010101*((dc0 + 2)>>2); dc1= 0x01010101*((dc1 + 2)>>2); for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= dc0; ((uint32_t*)(src+i*stride))[1]= dc1; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= dc0; ((uint32_t*)(src+i*stride))[1]= dc1; } } static void pred8x8_dc_c(uint8_t *src, int stride){ int i; int dc0, dc1, dc2, dc3; dc0=dc1=dc2=0; for(i=0;i<4; i++){ dc0+= src[-1+i*stride] + src[i-stride]; dc1+= src[4+i-stride]; dc2+= src[-1+(i+4)*stride]; } dc3= 0x01010101*((dc1 + dc2 + 4)>>3); dc0= 0x01010101*((dc0 + 4)>>3); dc1= 0x01010101*((dc1 + 2)>>2); dc2= 0x01010101*((dc2 + 2)>>2); for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= dc0; ((uint32_t*)(src+i*stride))[1]= dc1; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= dc2; ((uint32_t*)(src+i*stride))[1]= dc3; } } static void pred8x8_plane_c(uint8_t *src, int stride){ int j, k; int a; uint8_t *cm = cropTbl + MAX_NEG_CROP; const uint8_t * const src0 = src+3-stride; const uint8_t *src1 = src+4*stride-1; const uint8_t *src2 = src1-2*stride; // == src+2*stride-1; int H = src0[1] - src0[-1]; int V = src1[0] - src2[ 0]; for(k=2; k<=4; ++k) { src1 += stride; src2 -= stride; H += k*(src0[k] - src0[-k]); V += k*(src1[0] - src2[ 0]); } H = ( 17*H+16 ) >> 5; V = ( 17*V+16 ) >> 5; a = 16*(src1[0] + src2[8]+1) - 3*(V+H); for(j=8; j>0; --j) { int b = a; a += V; src[0] = cm[ (b ) >> 5 ]; src[1] = cm[ (b+ H) >> 5 ]; src[2] = cm[ (b+2*H) >> 5 ]; src[3] = cm[ (b+3*H) >> 5 ]; src[4] = cm[ (b+4*H) >> 5 ]; src[5] = cm[ (b+5*H) >> 5 ]; src[6] = cm[ (b+6*H) >> 5 ]; src[7] = cm[ (b+7*H) >> 5 ]; src += stride; } } static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){ MpegEncContext * const s = &h->s; const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8; const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8; const int luma_xy= (mx&3) + ((my&3)<<2); uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize; uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize; uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize; int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it int extra_height= extra_width; int emu=0; const int full_mx= mx>>2; const int full_my= my>>2; assert(pic->data[0]); if(mx&7) extra_width -= 3; if(my&7) extra_height -= 3; if( full_mx < 0-extra_width || full_my < 0-extra_height || full_mx + 16/*FIXME*/ > s->width + extra_width || full_my + 16/*FIXME*/ > s->height + extra_height){ ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height); src_y= s->edge_emu_buffer + 2 + 2*s->linesize; emu=1; } qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps? if(!square){ qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize); } if(s->flags&CODEC_FLAG_GRAY) return; if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1); src_cb= s->edge_emu_buffer; } chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7); if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1); src_cr= s->edge_emu_buffer; } chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7); } static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, int list0, int list1){ MpegEncContext * const s = &h->s; qpel_mc_func *qpix_op= qpix_put; h264_chroma_mc_func chroma_op= chroma_put; dest_y += 2*x_offset + 2*y_offset*s-> linesize; dest_cb += x_offset + y_offset*s->uvlinesize; dest_cr += x_offset + y_offset*s->uvlinesize; x_offset += 8*s->mb_x; y_offset += 8*s->mb_y; if(list0){ Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ]; mc_dir_part(h, ref, n, square, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op); qpix_op= qpix_avg; chroma_op= chroma_avg; } if(list1){ Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ]; mc_dir_part(h, ref, n, square, chroma_height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op); } } static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put), qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; const int mb_type= s->current_picture.mb_type[mb_xy]; assert(IS_INTER(mb_type)); if(IS_16X16(mb_type)){ mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); }else if(IS_16X8(mb_type)){ mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4, qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); }else if(IS_8X16(mb_type)){ mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); }else{ int i; assert(IS_8X8(mb_type)); for(i=0; i<4; i++){ const int sub_mb_type= h->sub_mb_type[i]; const int n= 4*i; int x_offset= (i&1)<<2; int y_offset= (i&2)<<1; if(IS_SUB_8X8(sub_mb_type)){ mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else if(IS_SUB_8X4(sub_mb_type)){ mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2, qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else if(IS_SUB_4X8(sub_mb_type)){ mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else{ int j; assert(IS_SUB_4X4(sub_mb_type)); for(j=0; j<4; j++){ int sub_x_offset= x_offset + 2*(j&1); int sub_y_offset= y_offset + (j&2); mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); } } } } } static void decode_init_vlc(H264Context *h){ static int done = 0; if (!done) { int i; done = 1; init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, &chroma_dc_coeff_token_len [0], 1, 1, &chroma_dc_coeff_token_bits[0], 1, 1); for(i=0; i<4; i++){ init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, &coeff_token_len [i][0], 1, 1, &coeff_token_bits[i][0], 1, 1); } for(i=0; i<3; i++){ init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4, &chroma_dc_total_zeros_len [i][0], 1, 1, &chroma_dc_total_zeros_bits[i][0], 1, 1); } for(i=0; i<15; i++){ init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, &total_zeros_len [i][0], 1, 1, &total_zeros_bits[i][0], 1, 1); } for(i=0; i<6; i++){ init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, &run_len [i][0], 1, 1, &run_bits[i][0], 1, 1); } init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, &run_len [6][0], 1, 1, &run_bits[6][0], 1, 1); } } /** * Sets the intra prediction function pointers. */ static void init_pred_ptrs(H264Context *h){ // MpegEncContext * const s = &h->s; h->pred4x4[VERT_PRED ]= pred4x4_vertical_c; h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c; h->pred4x4[DC_PRED ]= pred4x4_dc_c; h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c; h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c; h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c; h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c; h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c; h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c; h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c; h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c; h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c; h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c; h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c; h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c; h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c; h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c; h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c; h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c; h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c; h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c; h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c; h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c; h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c; h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c; h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c; } static void free_tables(H264Context *h){ av_freep(&h->intra4x4_pred_mode); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table= NULL; av_freep(&h->mb2b_xy); av_freep(&h->mb2b8_xy); } /** * allocates tables. * needs widzh/height */ static int alloc_tables(H264Context *h){ MpegEncContext * const s = &h->s; const int big_mb_num= s->mb_stride * (s->mb_height+1); int x,y; CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t)) CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t)) CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t)) memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t)); h->slice_table= h->slice_table_base + s->mb_stride + 1; CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint16_t)); CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t)); for(y=0; ymb_height; y++){ for(x=0; xmb_width; x++){ const int mb_xy= x + y*s->mb_stride; const int b_xy = 4*x + 4*y*h->b_stride; const int b8_xy= 2*x + 2*y*h->b8_stride; h->mb2b_xy [mb_xy]= b_xy; h->mb2b8_xy[mb_xy]= b8_xy; } } return 0; fail: free_tables(h); return -1; } static void common_init(H264Context *h){ MpegEncContext * const s = &h->s; s->width = s->avctx->width; s->height = s->avctx->height; s->codec_id= s->avctx->codec->id; init_pred_ptrs(h); s->decode=1; //FIXME } static int decode_init(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; MpegEncContext * const s = &h->s; s->avctx = avctx; common_init(h); s->out_format = FMT_H264; s->workaround_bugs= avctx->workaround_bugs; // set defaults s->progressive_sequence=1; // s->decode_mb= ff_h263_decode_mb; s->low_delay= 1; avctx->pix_fmt= PIX_FMT_YUV420P; decode_init_vlc(h); return 0; } static void frame_start(H264Context *h){ MpegEncContext * const s = &h->s; int i; MPV_frame_start(s, s->avctx); ff_er_frame_start(s); h->mmco_index=0; assert(s->linesize && s->uvlinesize); for(i=0; i<16; i++){ h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3); h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3); } for(i=0; i<4; i++){ h->block_offset[16+i]= h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3); } // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1; } static void hl_decode_mb(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_x= s->mb_x; const int mb_y= s->mb_y; const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_type= s->current_picture.mb_type[mb_xy]; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize /*dct_offset*/; int i; if(!s->decode) return; if(s->mb_skiped){ } dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16; dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; if (h->mb_field_decoding_flag) { linesize = s->linesize * 2; uvlinesize = s->uvlinesize * 2; if(mb_y&1){ //FIXME move out of this func? dest_y -= s->linesize*15; dest_cb-= s->linesize*7; dest_cr-= s->linesize*7; } } else { linesize = s->linesize; uvlinesize = s->uvlinesize; // dct_offset = s->linesize * 16; } if(IS_INTRA(mb_type)){ if(!(s->flags&CODEC_FLAG_GRAY)){ h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize); h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize); } if(IS_INTRA4x4(mb_type)){ if(!s->encoding){ for(i=0; i<16; i++){ uint8_t * const ptr= dest_y + h->block_offset[i]; uint8_t *topright= ptr + 4 - linesize; const int topright_avail= (h->topright_samples_available<intra4x4_pred_mode_cache[ scan8[i] ]; int tr; if(!topright_avail){ tr= ptr[3 - linesize]*0x01010101; topright= (uint8_t*) &tr; } h->pred4x4[ dir ](ptr, topright, linesize); if(h->non_zero_count_cache[ scan8[i] ]){ if(s->codec_id == CODEC_ID_H264) h264_add_idct_c(ptr, h->mb + i*16, linesize); else svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0); } } } }else{ h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize); if(s->codec_id == CODEC_ID_H264) h264_luma_dc_dequant_idct_c(h->mb, s->qscale); else svq3_luma_dc_dequant_idct_c(h->mb, s->qscale); } }else if(s->codec_id == CODEC_ID_H264){ hl_motion(h, dest_y, dest_cb, dest_cr, s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab); } if(!IS_INTRA4x4(mb_type)){ if(s->codec_id == CODEC_ID_H264){ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below uint8_t * const ptr= dest_y + h->block_offset[i]; h264_add_idct_c(ptr, h->mb + i*16, linesize); } } }else{ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below uint8_t * const ptr= dest_y + h->block_offset[i]; svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0); } } } } if(!(s->flags&CODEC_FLAG_GRAY)){ chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp); chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp); if(s->codec_id == CODEC_ID_H264){ for(i=16; i<16+4; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest_cb + h->block_offset[i]; h264_add_idct_c(ptr, h->mb + i*16, uvlinesize); } } for(i=20; i<20+4; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest_cr + h->block_offset[i]; h264_add_idct_c(ptr, h->mb + i*16, uvlinesize); } } }else{ for(i=16; i<16+4; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest_cb + h->block_offset[i]; svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2); } } for(i=20; i<20+4; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest_cr + h->block_offset[i]; svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2); } } } } } static void decode_mb_cabac(H264Context *h){ // MpegEncContext * const s = &h->s; } /** * fills the default_ref_list. */ static int fill_default_ref_list(H264Context *h){ MpegEncContext * const s = &h->s; int i; Picture sorted_short_ref[16]; if(h->slice_type==B_TYPE){ int out_i; int limit= -1; for(out_i=0; out_ishort_ref_count; out_i++){ int best_i=-1; int best_poc=-1; for(i=0; ishort_ref_count; i++){ const int poc= h->short_ref[i]->poc; if(poc > limit && poc < best_poc){ best_poc= poc; best_i= i; } } assert(best_i != -1); limit= best_poc; sorted_short_ref[out_i]= *h->short_ref[best_i]; } } if(s->picture_structure == PICT_FRAME){ if(h->slice_type==B_TYPE){ const int current_poc= s->current_picture_ptr->poc; int list; for(list=0; list<2; list++){ int index=0; for(i=0; ishort_ref_count && index < h->ref_count[list]; i++){ const int i2= list ? h->short_ref_count - i - 1 : i; const int poc= sorted_short_ref[i2].poc; if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){ h->default_ref_list[list][index ]= sorted_short_ref[i2]; h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num; } } for(i=0; ilong_ref_count && index < h->ref_count[ list ]; i++){ if(h->long_ref[i]->reference != 3) continue; h->default_ref_list[ list ][index ]= *h->long_ref[i]; h->default_ref_list[ list ][index++].pic_id= i;; } if(h->long_ref_count > 1 && h->short_ref_count==0){ Picture temp= h->default_ref_list[1][0]; h->default_ref_list[1][0] = h->default_ref_list[1][1]; h->default_ref_list[1][0] = temp; } if(index < h->ref_count[ list ]) memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index)); } }else{ int index=0; for(i=0; ishort_ref_count && index < h->ref_count[0]; i++){ if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit h->default_ref_list[0][index ]= *h->short_ref[i]; h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num; } for(i=0; ilong_ref_count && index < h->ref_count[0]; i++){ if(h->long_ref[i]->reference != 3) continue; h->default_ref_list[0][index ]= *h->long_ref[i]; h->default_ref_list[0][index++].pic_id= i;; } if(index < h->ref_count[0]) memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index)); } }else{ //FIELD if(h->slice_type==B_TYPE){ }else{ //FIXME second field balh } } return 0; } static int decode_ref_pic_list_reordering(H264Context *h){ MpegEncContext * const s = &h->s; int list; if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func for(list=0; list<2; list++){ memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]); if(get_bits1(&s->gb)){ int pred= h->curr_pic_num; int index; for(index=0; ; index++){ int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb); int pic_id; int i; if(index >= h->ref_count[list]){ fprintf(stderr, "reference count overflow\n"); return -1; } if(reordering_of_pic_nums_idc<3){ if(reordering_of_pic_nums_idc<2){ const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1; if(abs_diff_pic_num >= h->max_pic_num){ fprintf(stderr, "abs_diff_pic_num overflow\n"); return -1; } if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num; else pred+= abs_diff_pic_num; pred &= h->max_pic_num - 1; for(i= h->ref_count[list]-1; i>=index; i--){ if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0) break; } }else{ pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx for(i= h->ref_count[list]-1; i>=index; i--){ if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1) break; } } if(i < index){ fprintf(stderr, "reference picture missing during reorder\n"); memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME }else if(i > index){ Picture tmp= h->ref_list[list][i]; for(; i>index; i--){ h->ref_list[list][i]= h->ref_list[list][i-1]; } h->ref_list[list][index]= tmp; } }else if(reordering_of_pic_nums_idc==3) break; else{ fprintf(stderr, "illegal reordering_of_pic_nums_idc\n"); return -1; } } } if(h->slice_type!=B_TYPE) break; } return 0; } static int pred_weight_table(H264Context *h){ MpegEncContext * const s = &h->s; int list, i; h->luma_log2_weight_denom= get_ue_golomb(&s->gb); h->chroma_log2_weight_denom= get_ue_golomb(&s->gb); for(list=0; list<2; list++){ for(i=0; iref_count[list]; i++){ int luma_weight_flag, chroma_weight_flag; luma_weight_flag= get_bits1(&s->gb); if(luma_weight_flag){ h->luma_weight[list][i]= get_se_golomb(&s->gb); h->luma_offset[list][i]= get_se_golomb(&s->gb); } chroma_weight_flag= get_bits1(&s->gb); if(chroma_weight_flag){ int j; for(j=0; j<2; j++){ h->chroma_weight[list][i][j]= get_se_golomb(&s->gb); h->chroma_offset[list][i][j]= get_se_golomb(&s->gb); } } } if(h->slice_type != B_TYPE) break; } return 0; } /** * instantaneos decoder refresh. */ static void idr(H264Context *h){ int i; for(i=0; ilong_ref_count; i++){ h->long_ref[i]->reference=0; h->long_ref[i]= NULL; } h->long_ref_count=0; for(i=0; ishort_ref_count; i++){ h->short_ref[i]->reference=0; h->short_ref[i]= NULL; } h->short_ref_count=0; } /** * * @return the removed picture or NULL if an error occures */ static Picture * remove_short(H264Context *h, int frame_num){ MpegEncContext * const s = &h->s; int i; if(s->avctx->debug&FF_DEBUG_MMCO) printf("remove short %d count %d\n", frame_num, h->short_ref_count); for(i=0; ishort_ref_count; i++){ Picture *pic= h->short_ref[i]; if(s->avctx->debug&FF_DEBUG_MMCO) printf("%d %d %p\n", i, pic->frame_num, pic); if(pic->frame_num == frame_num){ h->short_ref[i]= NULL; memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*)); h->short_ref_count--; return pic; } } return NULL; } /** * * @return the removed picture or NULL if an error occures */ static Picture * remove_long(H264Context *h, int i){ Picture *pic; if(i >= h->long_ref_count) return NULL; pic= h->long_ref[i]; if(pic==NULL) return NULL; h->long_ref[i]= NULL; memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*)); h->long_ref_count--; return pic; } /** * Executes the reference picture marking (memory management control operations). */ static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){ MpegEncContext * const s = &h->s; int i; int current_is_long=0; Picture *pic; if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0) printf("no mmco here\n"); for(i=0; iavctx->debug&FF_DEBUG_MMCO) printf("mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index); switch(mmco[i].opcode){ case MMCO_SHORT2UNUSED: pic= remove_short(h, mmco[i].short_frame_num); if(pic==NULL) return -1; pic->reference= 0; break; case MMCO_SHORT2LONG: pic= remove_long(h, mmco[i].long_index); if(pic) pic->reference=0; h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num); h->long_ref[ mmco[i].long_index ]->long_ref=1; break; case MMCO_LONG2UNUSED: pic= remove_long(h, mmco[i].long_index); if(pic==NULL) return -1; pic->reference= 0; break; case MMCO_LONG: pic= remove_long(h, mmco[i].long_index); if(pic) pic->reference=0; h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr; h->long_ref[ mmco[i].long_index ]->long_ref=1; h->long_ref_count++; current_is_long=1; break; case MMCO_SET_MAX_LONG: assert(mmco[i].long_index <= 16); while(mmco[i].long_index < h->long_ref_count){ pic= remove_long(h, mmco[i].long_index); pic->reference=0; } while(mmco[i].long_index > h->long_ref_count){ h->long_ref[ h->long_ref_count++ ]= NULL; } break; case MMCO_RESET: while(h->short_ref_count){ pic= remove_short(h, h->short_ref[0]->frame_num); pic->reference=0; } while(h->long_ref_count){ pic= remove_long(h, h->long_ref_count-1); pic->reference=0; } break; default: assert(0); } } if(!current_is_long){ pic= remove_short(h, s->current_picture_ptr->frame_num); if(pic){ pic->reference=0; fprintf(stderr, "illegal short term buffer state detected\n"); } if(h->short_ref_count) memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*)); h->short_ref[0]= s->current_picture_ptr; h->short_ref[0]->long_ref=0; h->short_ref_count++; } return 0; } static int decode_ref_pic_marking(H264Context *h){ MpegEncContext * const s = &h->s; int i; if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields s->broken_link= get_bits1(&s->gb) -1; h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx if(h->mmco[0].long_index == -1) h->mmco_index= 0; else{ h->mmco[0].opcode= MMCO_LONG; h->mmco_index= 1; } }else{ if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag for(i= h->mmco_index; igb);; h->mmco[i].opcode= opcode; if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){ h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<sps.log2_max_frame_num)-1); //FIXME fields /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){ fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco); return -1; }*/ } if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){ h->mmco[i].long_index= get_ue_golomb(&s->gb); if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){ fprintf(stderr, "illegal long ref in memory management control operation %d\n", opcode); return -1; } } if(opcode > MMCO_LONG){ fprintf(stderr, "illegal memory management control operation %d\n", opcode); return -1; } } h->mmco_index= i; }else{ assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count); if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields h->mmco[0].opcode= MMCO_SHORT2UNUSED; h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num; h->mmco_index= 1; }else h->mmco_index= 0; } } return 0; } static int init_poc(H264Context *h){ MpegEncContext * const s = &h->s; const int max_frame_num= 1<sps.log2_max_frame_num; int field_poc[2]; if(h->nal_unit_type == NAL_IDR_SLICE){ h->frame_num_offset= 0; }else{ if(h->frame_num < h->prev_frame_num) h->frame_num_offset= h->prev_frame_num_offset + max_frame_num; else h->frame_num_offset= h->prev_frame_num_offset; } if(h->sps.poc_type==0){ const int max_poc_lsb= 1<sps.log2_max_poc_lsb; if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2) h->poc_msb = h->prev_poc_msb + max_poc_lsb; else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2) h->poc_msb = h->prev_poc_msb - max_poc_lsb; else h->poc_msb = h->prev_poc_msb; //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb); field_poc[0] = field_poc[1] = h->poc_msb + h->poc_lsb; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc_bottom; }else if(h->sps.poc_type==1){ int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; int i; if(h->sps.poc_cycle_length != 0) abs_frame_num = h->frame_num_offset + h->frame_num; else abs_frame_num = 0; if(h->nal_ref_idc==0 && abs_frame_num > 0) abs_frame_num--; expected_delta_per_poc_cycle = 0; for(i=0; i < h->sps.poc_cycle_length; i++) expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse if(abs_frame_num > 0){ int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; for(i = 0; i <= frame_num_in_poc_cycle; i++) expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ]; } else expectedpoc = 0; if(h->nal_ref_idc == 0) expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; field_poc[0] = expectedpoc + h->delta_poc[0]; field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc[1]; }else{ int poc; if(h->nal_unit_type == NAL_IDR_SLICE){ poc= 0; }else{ if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num); else poc= 2*(h->frame_num_offset + h->frame_num) - 1; } field_poc[0]= poc; field_poc[1]= poc; } if(s->picture_structure != PICT_BOTTOM_FIELD) s->current_picture_ptr->field_poc[0]= field_poc[0]; if(s->picture_structure != PICT_TOP_FIELD) s->current_picture_ptr->field_poc[1]= field_poc[1]; if(s->picture_structure == PICT_FRAME) // FIXME field pix? s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]); return 0; } /** * decodes a slice header. * this will allso call MPV_common_init() and frame_start() as needed */ static int decode_slice_header(H264Context *h){ MpegEncContext * const s = &h->s; int first_mb_in_slice, pps_id; int num_ref_idx_active_override_flag; static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE}; float new_aspect; s->current_picture.reference= h->nal_ref_idc != 0; first_mb_in_slice= get_ue_golomb(&s->gb); h->slice_type= get_ue_golomb(&s->gb); if(h->slice_type > 9){ fprintf(stderr, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y); } if(h->slice_type > 4){ h->slice_type -= 5; h->slice_type_fixed=1; }else h->slice_type_fixed=0; h->slice_type= slice_type_map[ h->slice_type ]; s->pict_type= h->slice_type; // to make a few old func happy, its wrong though pps_id= get_ue_golomb(&s->gb); if(pps_id>255){ fprintf(stderr, "pps_id out of range\n"); return -1; } h->pps= h->pps_buffer[pps_id]; if(h->pps.slice_group_count == 0){ fprintf(stderr, "non existing PPS referenced\n"); return -1; } h->sps= h->sps_buffer[ h->pps.sps_id ]; if(h->sps.log2_max_frame_num == 0){ fprintf(stderr, "non existing SPS referenced\n"); return -1; } s->mb_width= h->sps.mb_width; s->mb_height= h->sps.mb_height; h->b_stride= s->mb_width*4; h->b8_stride= s->mb_width*2; s->mb_x = first_mb_in_slice % s->mb_width; s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right ); if(h->sps.frame_mbs_only_flag) s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom); else s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck if(s->aspected_height) //FIXME emms at end of slice ? new_aspect= h->sps.sar_width*s->width / (float)(s->height*h->sps.sar_height); else new_aspect=0; if (s->context_initialized && ( s->width != s->avctx->width || s->height != s->avctx->height || ABS(new_aspect - s->avctx->aspect_ratio) > 0.001)) { free_tables(h); MPV_common_end(s); } if (!s->context_initialized) { if (MPV_common_init(s) < 0) return -1; alloc_tables(h); s->avctx->width = s->width; s->avctx->height = s->height; s->avctx->aspect_ratio= new_aspect; } if(first_mb_in_slice == 0){ frame_start(h); } s->current_picture_ptr->frame_num= //FIXME frame_num cleanup h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num); if(h->sps.frame_mbs_only_flag){ s->picture_structure= PICT_FRAME; }else{ if(get_bits1(&s->gb)) //field_pic_flag s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag else s->picture_structure= PICT_FRAME; } if(s->picture_structure==PICT_FRAME){ h->curr_pic_num= h->frame_num; h->max_pic_num= 1<< h->sps.log2_max_frame_num; }else{ h->curr_pic_num= 2*h->frame_num; h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1); } if(h->nal_unit_type == NAL_IDR_SLICE){ get_ue_golomb(&s->gb); /* idr_pic_id */ } if(h->sps.poc_type==0){ h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){ h->delta_poc_bottom= get_se_golomb(&s->gb); } } if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){ h->delta_poc[0]= get_se_golomb(&s->gb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME) h->delta_poc[1]= get_se_golomb(&s->gb); } init_poc(h); if(h->pps.redundant_pic_cnt_present){ h->redundant_pic_count= get_ue_golomb(&s->gb); } //set defaults, might be overriden a few line later h->ref_count[0]= h->pps.ref_count[0]; h->ref_count[1]= h->pps.ref_count[1]; if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){ if(h->slice_type == B_TYPE){ h->direct_spatial_mv_pred= get_bits1(&s->gb); } num_ref_idx_active_override_flag= get_bits1(&s->gb); if(num_ref_idx_active_override_flag){ h->ref_count[0]= get_ue_golomb(&s->gb) + 1; if(h->slice_type==B_TYPE) h->ref_count[1]= get_ue_golomb(&s->gb) + 1; if(h->ref_count[0] > 32 || h->ref_count[1] > 32){ fprintf(stderr, "reference overflow\n"); return -1; } } } if(first_mb_in_slice == 0){ fill_default_ref_list(h); } decode_ref_pic_list_reordering(h); if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) ) pred_weight_table(h); if(s->current_picture.reference) decode_ref_pic_marking(h); //FIXME CABAC stuff s->qscale = h->pps.init_qp + get_se_golomb(&s->gb); //slice_qp_delta //FIXME qscale / qp ... stuff if(h->slice_type == SP_TYPE){ get_bits1(&s->gb); /* sp_for_switch_flag */ } if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){ get_se_golomb(&s->gb); /* slice_qs_delta */ } if( h->pps.deblocking_filter_parameters_present ) { h->disable_deblocking_filter_idc= get_ue_golomb(&s->gb); if( h->disable_deblocking_filter_idc != 1 ) { h->slice_alpha_c0_offset_div2= get_se_golomb(&s->gb); h->slice_beta_offset_div2= get_se_golomb(&s->gb); } }else h->disable_deblocking_filter_idc= 0; #if 0 //FMO if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5) slice_group_change_cycle= get_bits(&s->gb, ?); #endif if(s->avctx->debug&FF_DEBUG_PICT_INFO){ printf("mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n", first_mb_in_slice, av_get_pict_type_char(h->slice_type), pps_id, h->frame_num, s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], s->qscale, h->disable_deblocking_filter_idc ); } return 0; } /** * */ static inline int get_level_prefix(GetBitContext *gb){ unsigned int buf; int log; OPEN_READER(re, gb); UPDATE_CACHE(re, gb); buf=GET_CACHE(re, gb); log= 32 - av_log2(buf); #ifdef TRACE print_bin(buf>>(32-log), log); printf("%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__); #endif LAST_SKIP_BITS(re, gb, log); CLOSE_READER(re, gb); return log-1; } /** * decodes a residual block. * @param n block index * @param scantable scantable * @param max_coeff number of coefficients in the block * @return <0 if an error occured */ static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){ MpegEncContext * const s = &h->s; const uint16_t *qmul= dequant_coeff[qp]; static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3}; int level[16], run[16]; int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones; //FIXME put trailing_onex into the context if(n == CHROMA_DC_BLOCK_INDEX){ coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1); total_coeff= coeff_token>>2; }else{ if(n == LUMA_DC_BLOCK_INDEX){ total_coeff= pred_non_zero_count(h, 0); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; }else{ total_coeff= pred_non_zero_count(h, n); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; h->non_zero_count_cache[ scan8[n] ]= total_coeff; } } //FIXME set last_non_zero? if(total_coeff==0) return 0; trailing_ones= coeff_token&3; tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff); assert(total_coeff<=16); for(i=0; i 10 && trailing_ones < 3; for(; imb_x, s->mb_y); return -1; } if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration mask= -(level_code&1); level[i]= (((2+level_code)>>1) ^ mask) - mask; if(suffix_length==0) suffix_length=1; //FIXME split first iteration #if 1 if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++; #else if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++; ? == prefix > 2 or sth #endif tprintf("level: %d suffix_length:%d\n", level[i], suffix_length); } if(total_coeff == max_coeff) zeros_left=0; else{ if(n == CHROMA_DC_BLOCK_INDEX) zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1); else zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1); } for(i=0; imb_x, s->mb_y); return -1; } for(; i 24){ for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode? int j; coeff_num += run[i] + 1; //FIXME add 1 earlier ? j= scantable[ coeff_num ]; block[j]= level[i]; } }else{ for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode? int j; coeff_num += run[i] + 1; //FIXME add 1 earlier ? j= scantable[ coeff_num ]; block[j]= level[i] * qmul[j]; // printf("%d %d ", block[j], qmul[j]); } } return 0; } /** * decodes a macroblock * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ static int decode_mb(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type, partition_count, cbp; s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong? tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y); cbp = 0; /* avoid warning. FIXME: find a solution without slowing down the code */ if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){ if(s->mb_skip_run==-1) s->mb_skip_run= get_ue_golomb(&s->gb); if (s->mb_skip_run--) { int mx, my; /* skip mb */ //FIXME b frame mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0; memset(h->non_zero_count[mb_xy], 0, 16); memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){ h->mb_field_decoding_flag= get_bits1(&s->gb); } if(h->mb_field_decoding_flag) mb_type|= MB_TYPE_INTERLACED; fill_caches(h, mb_type); //FIXME check what is needed and what not ... pred_pskip_motion(h, &mx, &my); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); write_back_motion(h, mb_type); s->current_picture.mb_type[mb_xy]= mb_type; //FIXME SKIP type h->slice_table[ mb_xy ]= h->slice_num; h->prev_mb_skiped= 1; return 0; } } if(h->sps.mb_aff /* && !field pic FIXME needed? */){ if((s->mb_y&1)==0) h->mb_field_decoding_flag = get_bits1(&s->gb); }else h->mb_field_decoding_flag=0; //FIXME som ed note ?! h->prev_mb_skiped= 0; mb_type= get_ue_golomb(&s->gb); if(h->slice_type == B_TYPE){ if(mb_type < 23){ partition_count= b_mb_type_info[mb_type].partition_count; mb_type= b_mb_type_info[mb_type].type; }else{ mb_type -= 23; goto decode_intra_mb; } }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){ if(mb_type < 5){ partition_count= p_mb_type_info[mb_type].partition_count; mb_type= p_mb_type_info[mb_type].type; }else{ mb_type -= 5; goto decode_intra_mb; } }else{ assert(h->slice_type == I_TYPE); decode_intra_mb: if(mb_type > 25){ fprintf(stderr, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y); return -1; } partition_count=0; cbp= i_mb_type_info[mb_type].cbp; h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode; mb_type= i_mb_type_info[mb_type].type; } if(h->mb_field_decoding_flag) mb_type |= MB_TYPE_INTERLACED; s->current_picture.mb_type[mb_xy]= mb_type; h->slice_table[ mb_xy ]= h->slice_num; if(IS_INTRA_PCM(mb_type)){ const uint8_t *ptr; int x, y; // we assume these blocks are very rare so we dont optimize it align_get_bits(&s->gb); ptr= s->gb.buffer + get_bits_count(&s->gb); for(y=0; y<16; y++){ const int index= 4*(y&3) + 64*(y>>2); for(x=0; x<16; x++){ h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++); } } for(y=0; y<8; y++){ const int index= 256 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++); } } for(y=0; y<8; y++){ const int index= 256 + 64 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++); } } skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers memset(h->non_zero_count[mb_xy], 16, 16); return 0; } fill_caches(h, mb_type); //mb_pred if(IS_INTRA(mb_type)){ // init_top_left_availability(h); if(IS_INTRA4x4(mb_type)){ int i; // fill_intra4x4_pred_table(h); for(i=0; i<16; i++){ const int mode_coded= !get_bits1(&s->gb); const int predicted_mode= pred_intra_mode(h, i); int mode; if(mode_coded){ const int rem_mode= get_bits(&s->gb, 3); if(rem_modeintra4x4_pred_mode_cache[ scan8[i] ] = mode; } write_back_intra_pred_mode(h); if( check_intra4x4_pred_mode(h) < 0) return -1; }else{ h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode); if(h->intra16x16_pred_mode < 0) return -1; } h->chroma_pred_mode= get_ue_golomb(&s->gb); h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode); if(h->chroma_pred_mode < 0) return -1; }else if(partition_count==4){ int i, j, sub_partition_count[4], list, ref[2][4]; if(h->slice_type == B_TYPE){ for(i=0; i<4; i++){ h->sub_mb_type[i]= get_ue_golomb(&s->gb); if(h->sub_mb_type[i] >=13){ fprintf(stderr, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y); return -1; } sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type; } }else{ assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ? for(i=0; i<4; i++){ h->sub_mb_type[i]= get_ue_golomb(&s->gb); if(h->sub_mb_type[i] >=4){ fprintf(stderr, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y); return -1; } sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type; } } for(list=0; list<2; list++){ const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list]; if(ref_count == 0) continue; for(i=0; i<4; i++){ if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){ ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip? }else{ //FIXME ref[list][i] = -1; } } } for(list=0; list<2; list++){ const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list]; if(ref_count == 0) continue; for(i=0; i<4; i++){ h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]= h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i]; if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){ const int sub_mb_type= h->sub_mb_type[i]; const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1; for(j=0; jmv_cache[list][ scan8[index] ]; pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf("final mv:%d %d\n", mx, my); if(IS_SUB_8X8(sub_mb_type)){ mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx; mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my; }else if(IS_SUB_8X4(sub_mb_type)){ mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx; mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my; }else if(IS_SUB_4X8(sub_mb_type)){ mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx; mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my; }else{ assert(IS_SUB_4X4(sub_mb_type)); mv_cache[ 0 ][0]= mx; mv_cache[ 0 ][1]= my; } } }else{ uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0]; p[0] = p[1]= p[8] = p[9]= 0; } } } }else if(!IS_DIRECT(mb_type)){ int list, mx, my, i; //FIXME we should set ref_idx_l? to 0 if we use that later ... if(IS_16X16(mb_type)){ for(list=0; list<2; list++){ if(h->ref_count[0]>0){ if(IS_DIR(mb_type, 0, list)){ const int val= get_te0_golomb(&s->gb, h->ref_count[list]); fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1); } } } for(list=0; list<2; list++){ if(IS_DIR(mb_type, 0, list)){ pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf("final mv:%d %d\n", mx, my); fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4); } } } else if(IS_16X8(mb_type)){ for(list=0; list<2; list++){ if(h->ref_count[list]>0){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ const int val= get_te0_golomb(&s->gb, h->ref_count[list]); fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1); } } } } for(list=0; list<2; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf("final mv:%d %d\n", mx, my); fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4); } } } }else{ assert(IS_8X16(mb_type)); for(list=0; list<2; list++){ if(h->ref_count[list]>0){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ //FIXME optimize const int val= get_te0_golomb(&s->gb, h->ref_count[list]); fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1); } } } } for(list=0; list<2; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf("final mv:%d %d\n", mx, my); fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4); } } } } } if(IS_INTER(mb_type)) write_back_motion(h, mb_type); if(!IS_INTRA16x16(mb_type)){ cbp= get_ue_golomb(&s->gb); if(cbp > 47){ fprintf(stderr, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y); return -1; } if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp]; else cbp= golomb_to_inter_cbp[cbp]; } if(cbp || IS_INTRA16x16(mb_type)){ int i8x8, i4x4, chroma_idx; int chroma_qp, dquant; GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr; const uint8_t *scan, *dc_scan; // fill_non_zero_count_cache(h); if(IS_INTERLACED(mb_type)){ scan= field_scan; dc_scan= luma_dc_field_scan; }else{ scan= zigzag_scan; dc_scan= luma_dc_zigzag_scan; } dquant= get_se_golomb(&s->gb); if( dquant > 25 || dquant < -26 ){ fprintf(stderr, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y); return -1; } s->qscale += dquant; if(((unsigned)s->qscale) > 51){ if(s->qscale<0) s->qscale+= 52; else s->qscale-= 52; } h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale); if(IS_INTRA16x16(mb_type)){ if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){ return -1; //FIXME continue if partotioned and other retirn -1 too } assert((cbp&15) == 0 || (cbp&15) == 15); if(cbp&15){ for(i8x8=0; i8x8<4; i8x8++){ for(i4x4=0; i4x4<4; i4x4++){ const int index= i4x4 + 4*i8x8; if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){ return -1; } } } }else{ memset(&h->non_zero_count_cache[8], 0, 8*4); //FIXME stupid & slow } }else{ for(i8x8=0; i8x8<4; i8x8++){ if(cbp & (1<mb + 16*index, index, scan, s->qscale, 16) <0 ){ return -1; } } }else{ uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ]; nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0; } } } if(cbp&0x30){ for(chroma_idx=0; chroma_idx<2; chroma_idx++) if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){ return -1; } } if(cbp&0x20){ for(chroma_idx=0; chroma_idx<2; chroma_idx++){ for(i4x4=0; i4x4<4; i4x4++){ const int index= 16 + 4*chroma_idx + i4x4; if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){ return -1; } } } }else{ uint8_t * const nnz= &h->non_zero_count_cache[0]; nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; } }else{ memset(&h->non_zero_count_cache[8], 0, 8*5); } write_back_non_zero_count(h); return 0; } static int decode_slice(H264Context *h){ MpegEncContext * const s = &h->s; const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F; s->mb_skip_run= -1; #if 1 for(;;){ int ret= decode_mb(h); hl_decode_mb(h); if(ret>=0 && h->sps.mb_aff){ //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; ret= decode_mb(h); hl_decode_mb(h); s->mb_y--; } if(ret<0){ fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; ff_draw_horiz_band(s, 16*s->mb_y, 16); if(++s->mb_y >= s->mb_height){ tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if(get_bits_count(&s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){ if(get_bits_count(&s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } #endif #if 0 for(;s->mb_y < s->mb_height; s->mb_y++){ for(;s->mb_x < s->mb_width; s->mb_x++){ int ret= decode_mb(h); hl_decode_mb(h); if(ret<0){ fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; if(++s->mb_y >= s->mb_height){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } s->mb_x=0; ff_draw_horiz_band(s, 16*s->mb_y, 16); } #endif return -1; //not reached } static inline int decode_vui_parameters(H264Context *h, SPS *sps){ MpegEncContext * const s = &h->s; int aspect_ratio_info_present_flag, aspect_ratio_idc; aspect_ratio_info_present_flag= get_bits1(&s->gb); if( aspect_ratio_info_present_flag ) { aspect_ratio_idc= get_bits(&s->gb, 8); if( aspect_ratio_idc == EXTENDED_SAR ) { sps->sar_width= get_bits(&s->gb, 16); sps->sar_height= get_bits(&s->gb, 16); }else if(aspect_ratio_idc < 16){ sps->sar_width= pixel_aspect[aspect_ratio_idc][0]; sps->sar_height= pixel_aspect[aspect_ratio_idc][1]; }else{ fprintf(stderr, "illegal aspect ratio\n"); return -1; } }else{ sps->sar_width= sps->sar_height= 0; } // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height); #if 0 | overscan_info_present_flag |0 |u(1) | | if( overscan_info_present_flag ) | | | | overscan_appropriate_flag |0 |u(1) | | video_signal_type_present_flag |0 |u(1) | | if( video_signal_type_present_flag ) { | | | | video_format |0 |u(3) | | video_full_range_flag |0 |u(1) | | colour_description_present_flag |0 |u(1) | | if( colour_description_present_flag ) { | | | | colour_primaries |0 |u(8) | | transfer_characteristics |0 |u(8) | | matrix_coefficients |0 |u(8) | | } | | | | } | | | | chroma_location_info_present_flag |0 |u(1) | | if ( chroma_location_info_present_flag ) { | | | | chroma_sample_location_type_top_field |0 |ue(v) | | chroma_sample_location_type_bottom_field |0 |ue(v) | | } | | | | timing_info_present_flag |0 |u(1) | | if( timing_info_present_flag ) { | | | | num_units_in_tick |0 |u(32) | | time_scale |0 |u(32) | | fixed_frame_rate_flag |0 |u(1) | | } | | | | nal_hrd_parameters_present_flag |0 |u(1) | | if( nal_hrd_parameters_present_flag = = 1) | | | | hrd_parameters( ) | | | | vcl_hrd_parameters_present_flag |0 |u(1) | | if( vcl_hrd_parameters_present_flag = = 1) | | | | hrd_parameters( ) | | | | if( ( nal_hrd_parameters_present_flag = = 1 | || | | | | | | |( vcl_hrd_parameters_present_flag = = 1 ) ) | | | | low_delay_hrd_flag |0 |u(1) | | bitstream_restriction_flag |0 |u(1) | | if( bitstream_restriction_flag ) { |0 |u(1) | | motion_vectors_over_pic_boundaries_flag |0 |u(1) | | max_bytes_per_pic_denom |0 |ue(v) | | max_bits_per_mb_denom |0 |ue(v) | | log2_max_mv_length_horizontal |0 |ue(v) | | log2_max_mv_length_vertical |0 |ue(v) | | num_reorder_frames |0 |ue(v) | | max_dec_frame_buffering |0 |ue(v) | | } | | | |} | | | #endif return 0; } static inline int decode_seq_parameter_set(H264Context *h){ MpegEncContext * const s = &h->s; int profile_idc, level_idc; int sps_id, i; SPS *sps; profile_idc= get_bits(&s->gb, 8); get_bits1(&s->gb); //constraint_set0_flag get_bits1(&s->gb); //constraint_set1_flag get_bits1(&s->gb); //constraint_set2_flag get_bits(&s->gb, 5); // reserved level_idc= get_bits(&s->gb, 8); sps_id= get_ue_golomb(&s->gb); sps= &h->sps_buffer[ sps_id ]; sps->profile_idc= profile_idc; sps->level_idc= level_idc; sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4; sps->poc_type= get_ue_golomb(&s->gb); if(sps->poc_type == 0){ //FIXME #define sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4; } else if(sps->poc_type == 1){//FIXME #define sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb); sps->offset_for_non_ref_pic= get_se_golomb(&s->gb); sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb); sps->poc_cycle_length= get_ue_golomb(&s->gb); for(i=0; ipoc_cycle_length; i++) sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb); } if(sps->poc_type > 2){ fprintf(stderr, "illegal POC type %d\n", sps->poc_type); return -1; } sps->ref_frame_count= get_ue_golomb(&s->gb); sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb); sps->mb_width= get_ue_golomb(&s->gb) + 1; sps->mb_height= get_ue_golomb(&s->gb) + 1; sps->frame_mbs_only_flag= get_bits1(&s->gb); if(!sps->frame_mbs_only_flag) sps->mb_aff= get_bits1(&s->gb); else sps->mb_aff= 0; sps->direct_8x8_inference_flag= get_bits1(&s->gb); sps->crop= get_bits1(&s->gb); if(sps->crop){ sps->crop_left = get_ue_golomb(&s->gb); sps->crop_right = get_ue_golomb(&s->gb); sps->crop_top = get_ue_golomb(&s->gb); sps->crop_bottom= get_ue_golomb(&s->gb); if(sps->crop_left || sps->crop_top){ fprintf(stderr, "insane croping not completly supported, this could look slightly wrong ...\n"); } }else{ sps->crop_left = sps->crop_right = sps->crop_top = sps->crop_bottom= 0; } sps->vui_parameters_present_flag= get_bits1(&s->gb); if( sps->vui_parameters_present_flag ) decode_vui_parameters(h, sps); if(s->avctx->debug&FF_DEBUG_PICT_INFO){ printf("sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n", sps_id, sps->profile_idc, sps->level_idc, sps->poc_type, sps->ref_frame_count, sps->mb_width, sps->mb_height, sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"), sps->direct_8x8_inference_flag ? "8B8" : "", sps->crop_left, sps->crop_right, sps->crop_top, sps->crop_bottom, sps->vui_parameters_present_flag ? "VUI" : "" ); } return 0; } static inline int decode_picture_parameter_set(H264Context *h){ MpegEncContext * const s = &h->s; int pps_id= get_ue_golomb(&s->gb); PPS *pps= &h->pps_buffer[pps_id]; pps->sps_id= get_ue_golomb(&s->gb); pps->cabac= get_bits1(&s->gb); pps->pic_order_present= get_bits1(&s->gb); pps->slice_group_count= get_ue_golomb(&s->gb) + 1; if(pps->slice_group_count > 1 ){ pps->mb_slice_group_map_type= get_ue_golomb(&s->gb); fprintf(stderr, "FMO not supported\n"); switch(pps->mb_slice_group_map_type){ case 0: #if 0 | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | | | run_length[ i ] |1 |ue(v) | #endif break; case 2: #if 0 | for( i = 0; i < num_slice_groups_minus1; i++ ) | | | |{ | | | | top_left_mb[ i ] |1 |ue(v) | | bottom_right_mb[ i ] |1 |ue(v) | | } | | | #endif break; case 3: case 4: case 5: #if 0 | slice_group_change_direction_flag |1 |u(1) | | slice_group_change_rate_minus1 |1 |ue(v) | #endif break; case 6: #if 0 | slice_group_id_cnt_minus1 |1 |ue(v) | | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | | |) | | | | slice_group_id[ i ] |1 |u(v) | #endif break; } } pps->ref_count[0]= get_ue_golomb(&s->gb) + 1; pps->ref_count[1]= get_ue_golomb(&s->gb) + 1; if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){ fprintf(stderr, "reference overflow (pps)\n"); return -1; } pps->weighted_pred= get_bits1(&s->gb); pps->weighted_bipred_idc= get_bits(&s->gb, 2); pps->init_qp= get_se_golomb(&s->gb) + 26; pps->init_qs= get_se_golomb(&s->gb) + 26; pps->chroma_qp_index_offset= get_se_golomb(&s->gb); pps->deblocking_filter_parameters_present= get_bits1(&s->gb); pps->constrained_intra_pred= get_bits1(&s->gb); pps->redundant_pic_cnt_present = get_bits1(&s->gb); if(s->avctx->debug&FF_DEBUG_PICT_INFO){ printf("pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s\n", pps_id, pps->sps_id, pps->cabac ? "CABAC" : "CAVLC", pps->slice_group_count, pps->ref_count[0], pps->ref_count[1], pps->weighted_pred ? "weighted" : "", pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset, pps->deblocking_filter_parameters_present ? "LPAR" : "", pps->constrained_intra_pred ? "CONSTR" : "", pps->redundant_pic_cnt_present ? "REDU" : "" ); } return 0; } /** * finds the end of the current frame in the bitstream. * @return the position of the first byte of the next frame, or -1 */ static int find_frame_end(MpegEncContext *s, uint8_t *buf, int buf_size){ ParseContext *pc= &s->parse_context; int i; uint32_t state; //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]); // mb_addr= pc->mb_addr - 1; state= pc->state; //FIXME this will fail with slices for(i=0; iframe_start_found){ pc->state=-1; pc->frame_start_found= 0; return i-3; } pc->frame_start_found= 1; } } pc->state= state; return END_NOT_FOUND; } static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){ MpegEncContext * const s = &h->s; AVCodecContext * const avctx= s->avctx; int buf_index=0; #if 0 int i; for(i=0; i<32; i++){ printf("%X ", buf[i]); } #endif for(;;){ int consumed; int dst_length; int bit_length; uint8_t *ptr; // start code prefix search for(; buf_index + 3 < buf_size; buf_index++){ // this should allways succeed in the first iteration if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1) break; } if(buf_index+3 >= buf_size) break; buf_index+=3; ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, buf_size - buf_index); if(ptr[dst_length - 1] == 0) dst_length--; bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1); if(s->avctx->debug&FF_DEBUG_STARTCODE){ printf("NAL %d at %d length %d\n", h->nal_unit_type, buf_index, dst_length); } buf_index += consumed; if(h->nal_ref_idc < s->hurry_up) continue; switch(h->nal_unit_type){ case NAL_IDR_SLICE: idr(h); //FIXME ensure we dont loose some frames if there is reordering case NAL_SLICE: init_get_bits(&s->gb, ptr, bit_length); h->intra_gb_ptr= h->inter_gb_ptr= &s->gb; s->data_partitioning = 0; if(decode_slice_header(h) < 0) return -1; if(h->redundant_pic_count==0) decode_slice(h); break; case NAL_DPA: init_get_bits(&s->gb, ptr, bit_length); h->intra_gb_ptr= h->inter_gb_ptr= NULL; s->data_partitioning = 1; if(decode_slice_header(h) < 0) return -1; break; case NAL_DPB: init_get_bits(&h->intra_gb, ptr, bit_length); h->intra_gb_ptr= &h->intra_gb; break; case NAL_DPC: init_get_bits(&h->inter_gb, ptr, bit_length); h->inter_gb_ptr= &h->inter_gb; if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning) decode_slice(h); break; case NAL_SEI: break; case NAL_SPS: init_get_bits(&s->gb, ptr, bit_length); decode_seq_parameter_set(h); if(s->flags& CODEC_FLAG_LOW_DELAY) s->low_delay=1; avctx->has_b_frames= !s->low_delay; break; case NAL_PPS: init_get_bits(&s->gb, ptr, bit_length); decode_picture_parameter_set(h); break; case NAL_PICTURE_DELIMITER: break; case NAL_FILTER_DATA: break; } //FIXME move after where irt is set s->current_picture.pict_type= s->pict_type; s->current_picture.key_frame= s->pict_type == I_TYPE; } if(!s->current_picture_ptr) return buf_index; //no frame h->prev_frame_num_offset= h->frame_num_offset; h->prev_frame_num= h->frame_num; if(s->current_picture_ptr->reference){ h->prev_poc_msb= h->poc_msb; h->prev_poc_lsb= h->poc_lsb; } if(s->current_picture_ptr->reference) execute_ref_pic_marking(h, h->mmco, h->mmco_index); else assert(h->mmco_index==0); ff_er_frame_end(s); MPV_frame_end(s); return buf_index; } /** * retunrs the number of bytes consumed for building the current frame */ static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){ if(s->flags&CODEC_FLAG_TRUNCATED){ pos -= s->parse_context.last_index; if(pos<0) pos=0; // FIXME remove (uneeded?) return pos; }else{ if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...) if(pos+10>buf_size) pos=buf_size; // oops ;) return pos; } } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { H264Context *h = avctx->priv_data; MpegEncContext *s = &h->s; AVFrame *pict = data; int buf_index; s->flags= avctx->flags; *data_size = 0; /* no supplementary picture */ if (buf_size == 0) { return 0; } if(s->flags&CODEC_FLAG_TRUNCATED){ int next= find_frame_end(s, buf, buf_size); if( ff_combine_frame(s, next, &buf, &buf_size) < 0 ) return buf_size; //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index); } if(s->avctx->extradata_size && s->picture_number==0){ if(0 < decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) ) return -1; } buf_index=decode_nal_units(h, buf, buf_size); if(buf_index < 0) return -1; //FIXME do something with unavailable reference frames // if(ret==FRAME_SKIPED) return get_consumed_bytes(s, buf_index, buf_size); #if 0 if(s->pict_type==B_TYPE || s->low_delay){ *pict= *(AVFrame*)&s->current_picture; } else { *pict= *(AVFrame*)&s->last_picture; } #endif if(!s->current_picture_ptr){ fprintf(stderr, "error, NO frame\n"); return -1; } *pict= *(AVFrame*)&s->current_picture; //FIXME ff_print_debug_info(s, s->current_picture_ptr); assert(pict->data[0]); //printf("out %d\n", (int)pict->data[0]); #if 0 //? /* Return the Picture timestamp as the frame number */ /* we substract 1 because it is added on utils.c */ avctx->frame_number = s->picture_number - 1; #endif #if 0 /* dont output the last pic after seeking */ if(s->last_picture_ptr || s->low_delay) //Note this isnt a issue as a IDR pic should flush teh buffers #endif *data_size = sizeof(AVFrame); return get_consumed_bytes(s, buf_index, buf_size); } #if 0 static inline void fill_mb_avail(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; if(s->mb_y){ h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num; h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num; h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num; }else{ h->mb_avail[0]= h->mb_avail[1]= h->mb_avail[2]= 0; } h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num; h->mb_avail[4]= 1; //FIXME move out h->mb_avail[5]= 0; //FIXME move out } #endif #if 0 //selftest #define COUNT 8000 #define SIZE (COUNT*40) int main(){ int i; uint8_t temp[SIZE]; PutBitContext pb; GetBitContext gb; // int int_temp[10000]; DSPContext dsp; AVCodecContext avctx; dsputil_init(&dsp, &avctx); init_put_bits(&pb, temp, SIZE); printf("testing unsigned exp golomb\n"); for(i=0; ipriv_data; MpegEncContext *s = &h->s; free_tables(h); //FIXME cleanup init stuff perhaps MPV_common_end(s); // memset(h, 0, sizeof(H264Context)); return 0; } AVCodec h264_decoder = { "h264", CODEC_TYPE_VIDEO, CODEC_ID_H264, sizeof(H264Context), decode_init, NULL, decode_end, decode_frame, /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED, }; #include "svq3.c"