/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #include "libavutil/avassert.h" #include "libavutil/display.h" #include "libavutil/imgutils.h" #include "libavutil/stereo3d.h" #include "libavutil/timer.h" #include "internal.h" #include "cabac.h" #include "cabac_functions.h" #include "error_resilience.h" #include "avcodec.h" #include "h264.h" #include "h264data.h" #include "h264chroma.h" #include "h264_mvpred.h" #include "golomb.h" #include "mathops.h" #include "me_cmp.h" #include "mpegutils.h" #include "rectangle.h" #include "svq3.h" #include "thread.h" #include const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, int (*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped) { H264Context *h = opaque; h->mb_x = mb_x; h->mb_y = mb_y; h->mb_xy = mb_x + mb_y * h->mb_stride; memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache)); assert(ref >= 0); /* FIXME: It is possible albeit uncommon that slice references * differ between slices. We take the easy approach and ignore * it for now. If this turns out to have any relevance in * practice then correct remapping should be added. */ if (ref >= h->ref_count[0]) ref = 0; fill_rectangle(&h->cur_pic.ref_index[0][4 * h->mb_xy], 2, 2, 2, ref, 1); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); assert(!FRAME_MBAFF(h)); ff_h264_hl_decode_mb(h); } void ff_h264_draw_horiz_band(H264Context *h, int y, int height) { AVCodecContext *avctx = h->avctx; AVFrame *cur = &h->cur_pic.f; AVFrame *last = h->ref_list[0][0].f.data[0] ? &h->ref_list[0][0].f : NULL; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); int vshift = desc->log2_chroma_h; const int field_pic = h->picture_structure != PICT_FRAME; if (field_pic) { height <<= 1; y <<= 1; } height = FFMIN(height, avctx->height - y); if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD)) return; if (avctx->draw_horiz_band) { AVFrame *src; int offset[AV_NUM_DATA_POINTERS]; int i; if (cur->pict_type == AV_PICTURE_TYPE_B || h->low_delay || (avctx->slice_flags & SLICE_FLAG_CODED_ORDER)) src = cur; else if (last) src = last; else return; offset[0] = y * src->linesize[0]; offset[1] = offset[2] = (y >> vshift) * src->linesize[1]; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); avctx->draw_horiz_band(avctx, src, offset, y, h->picture_structure, height); } } /** * Check if the top & left blocks are available if needed and * change the dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h) { static const int8_t top[12] = { -1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0 }; static const int8_t left[12] = { 0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED }; int i; if (!(h->top_samples_available & 0x8000)) { for (i = 0; i < 4; i++) { int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]]; if (status < 0) { av_log(h->avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } else if (status) { h->intra4x4_pred_mode_cache[scan8[0] + i] = status; } } } if ((h->left_samples_available & 0x8888) != 0x8888) { static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 }; for (i = 0; i < 4; i++) if (!(h->left_samples_available & mask[i])) { int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]]; if (status < 0) { av_log(h->avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } else if (status) { h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status; } } } return 0; } // FIXME cleanup like ff_h264_check_intra_pred_mode /** * Check if the top & left blocks are available if needed and * change the dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma) { static const int8_t top[4] = { LEFT_DC_PRED8x8, 1, -1, -1 }; static const int8_t left[5] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 }; if (mode > 3U) { av_log(h->avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } if (!(h->top_samples_available & 0x8000)) { mode = top[mode]; if (mode < 0) { av_log(h->avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } } if ((h->left_samples_available & 0x8080) != 0x8080) { mode = left[mode]; if (is_chroma && (h->left_samples_available & 0x8080)) { // mad cow disease mode, aka MBAFF + constrained_intra_pred mode = ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available & 0x8000)) + 2 * (mode == DC_128_PRED8x8); } if (mode < 0) { av_log(h->avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } } return mode; } const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length) { int i, si, di; uint8_t *dst; int bufidx; // src[0]&0x80; // forbidden bit h->nal_ref_idc = src[0] >> 5; h->nal_unit_type = src[0] & 0x1F; src++; length--; #define STARTCODE_TEST \ if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ if (src[i + 2] != 3) { \ /* startcode, so we must be past the end */ \ length = i; \ } \ break; \ } #if HAVE_FAST_UNALIGNED #define FIND_FIRST_ZERO \ if (i > 0 && !src[i]) \ i--; \ while (src[i]) \ i++ #if HAVE_FAST_64BIT for (i = 0; i + 1 < length; i += 9) { if (!((~AV_RN64A(src + i) & (AV_RN64A(src + i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 7; } #else for (i = 0; i + 1 < length; i += 5) { if (!((~AV_RN32A(src + i) & (AV_RN32A(src + i) - 0x01000101U)) & 0x80008080U)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 3; } #endif #else for (i = 0; i + 1 < length; i += 2) { if (src[i]) continue; if (i > 0 && src[i - 1] == 0) i--; STARTCODE_TEST; } #endif if (i >= length - 1) { // no escaped 0 *dst_length = length; *consumed = length + 1; // +1 for the header return src; } // use second escape buffer for inter data bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length + FF_INPUT_BUFFER_PADDING_SIZE); dst = h->rbsp_buffer[bufidx]; if (dst == NULL) return NULL; memcpy(dst, src, i); si = di = i; while (si + 2 < length) { // remove escapes (very rare 1:2^22) if (src[si + 2] > 3) { dst[di++] = src[si++]; dst[di++] = src[si++]; } else if (src[si] == 0 && src[si + 1] == 0) { if (src[si + 2] == 3) { // escape dst[di++] = 0; dst[di++] = 0; si += 3; continue; } else // next start code goto nsc; } dst[di++] = src[si++]; } while (si < length) dst[di++] = src[si++]; nsc: memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); *dst_length = di; *consumed = si + 1; // +1 for the header /* FIXME store exact number of bits in the getbitcontext * (it is needed for decoding) */ return dst; } /** * Identify the exact end of the bitstream * @return the length of the trailing, or 0 if damaged */ static int decode_rbsp_trailing(H264Context *h, const uint8_t *src) { int v = *src; int r; tprintf(h->avctx, "rbsp trailing %X\n", v); for (r = 1; r < 9; r++) { if (v & 1) return r; v >>= 1; } return 0; } void ff_h264_free_tables(H264Context *h, int free_rbsp) { int i; H264Context *hx; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table = NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); av_buffer_pool_uninit(&h->qscale_table_pool); av_buffer_pool_uninit(&h->mb_type_pool); av_buffer_pool_uninit(&h->motion_val_pool); av_buffer_pool_uninit(&h->ref_index_pool); if (free_rbsp && h->DPB) { for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) ff_h264_unref_picture(h, &h->DPB[i]); av_freep(&h->DPB); } else if (h->DPB) { for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) h->DPB[i].needs_realloc = 1; } h->cur_pic_ptr = NULL; for (i = 0; i < H264_MAX_THREADS; i++) { hx = h->thread_context[i]; if (!hx) continue; av_freep(&hx->top_borders[1]); av_freep(&hx->top_borders[0]); av_freep(&hx->bipred_scratchpad); av_freep(&hx->edge_emu_buffer); av_freep(&hx->dc_val_base); av_freep(&hx->er.mb_index2xy); av_freep(&hx->er.error_status_table); av_freep(&hx->er.er_temp_buffer); av_freep(&hx->er.mbintra_table); av_freep(&hx->er.mbskip_table); if (free_rbsp) { av_freep(&hx->rbsp_buffer[1]); av_freep(&hx->rbsp_buffer[0]); hx->rbsp_buffer_size[0] = 0; hx->rbsp_buffer_size[1] = 0; } if (i) av_freep(&h->thread_context[i]); } } int ff_h264_alloc_tables(H264Context *h) { const int big_mb_num = h->mb_stride * (h->mb_height + 1); const int row_mb_num = h->mb_stride * 2 * h->avctx->thread_count; int x, y, i; FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count, big_mb_num * 48 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base, (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0], 16 * row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1], 16 * row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table, 4 * big_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail) memset(h->slice_table_base, -1, (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base)); h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy, big_mb_num * sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy, big_mb_num * sizeof(uint32_t), fail); for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) { const int mb_xy = x + y * h->mb_stride; const int b_xy = 4 * x + 4 * y * h->b_stride; h->mb2b_xy[mb_xy] = b_xy; h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); } if (!h->dequant4_coeff[0]) h264_init_dequant_tables(h); if (!h->DPB) { h->DPB = av_mallocz_array(H264_MAX_PICTURE_COUNT, sizeof(*h->DPB)); if (!h->DPB) return AVERROR(ENOMEM); for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) av_frame_unref(&h->DPB[i].f); av_frame_unref(&h->cur_pic.f); } return 0; fail: ff_h264_free_tables(h, 1); return AVERROR(ENOMEM); } /** * Init context * Allocate buffers which are not shared amongst multiple threads. */ int ff_h264_context_init(H264Context *h) { ERContext *er = &h->er; int mb_array_size = h->mb_height * h->mb_stride; int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); int c_size = h->mb_stride * (h->mb_height + 1); int yc_size = y_size + 2 * c_size; int x, y, i; FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[0], h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[1], h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) h->ref_cache[0][scan8[5] + 1] = h->ref_cache[0][scan8[7] + 1] = h->ref_cache[0][scan8[13] + 1] = h->ref_cache[1][scan8[5] + 1] = h->ref_cache[1][scan8[7] + 1] = h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; if (CONFIG_ERROR_RESILIENCE) { /* init ER */ er->avctx = h->avctx; er->mecc = &h->mecc; er->decode_mb = h264_er_decode_mb; er->opaque = h; er->quarter_sample = 1; er->mb_num = h->mb_num; er->mb_width = h->mb_width; er->mb_height = h->mb_height; er->mb_stride = h->mb_stride; er->b8_stride = h->mb_width * 2 + 1; // error resilience code looks cleaner with this FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, (h->mb_num + 1) * sizeof(int), fail); for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * h->mb_stride + h->mb_width; FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, mb_array_size * sizeof(uint8_t), fail); FF_ALLOC_OR_GOTO(h->avctx, er->mbintra_table, mb_array_size, fail); memset(er->mbintra_table, 1, mb_array_size); FF_ALLOCZ_OR_GOTO(h->avctx, er->mbskip_table, mb_array_size + 2, fail); FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, h->mb_height * h->mb_stride, fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->dc_val_base, yc_size * sizeof(int16_t), fail); er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2; er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1; er->dc_val[2] = er->dc_val[1] + c_size; for (i = 0; i < yc_size; i++) h->dc_val_base[i] = 1024; } return 0; fail: return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, int parse_extradata); int ff_h264_decode_extradata(H264Context *h) { AVCodecContext *avctx = h->avctx; int ret; if (avctx->extradata[0] == 1) { int i, cnt, nalsize; unsigned char *p = avctx->extradata; h->is_avc = 1; if (avctx->extradata_size < 7) { av_log(avctx, AV_LOG_ERROR, "avcC %d too short\n", avctx->extradata_size); return AVERROR_INVALIDDATA; } /* sps and pps in the avcC always have length coded with 2 bytes, * so put a fake nal_length_size = 2 while parsing them */ h->nal_length_size = 2; // Decode sps from avcC cnt = *(p + 5) & 0x1f; // Number of sps p += 6; for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if (p - avctx->extradata + nalsize > avctx->extradata_size) return AVERROR_INVALIDDATA; ret = decode_nal_units(h, p, nalsize, 1); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i); return ret; } p += nalsize; } // Decode pps from avcC cnt = *(p++); // Number of pps for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if (p - avctx->extradata + nalsize > avctx->extradata_size) return AVERROR_INVALIDDATA; ret = decode_nal_units(h, p, nalsize, 1); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i); return ret; } p += nalsize; } // Store right nal length size that will be used to parse all other nals h->nal_length_size = (avctx->extradata[4] & 0x03) + 1; } else { h->is_avc = 0; ret = decode_nal_units(h, avctx->extradata, avctx->extradata_size, 1); if (ret < 0) return ret; } return 0; } av_cold int ff_h264_decode_init(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; int ret; h->avctx = avctx; h->bit_depth_luma = 8; h->chroma_format_idc = 1; ff_h264dsp_init(&h->h264dsp, 8, 1); ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); ff_h264qpel_init(&h->h264qpel, 8); ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1); h->dequant_coeff_pps = -1; /* needed so that IDCT permutation is known early */ if (CONFIG_ERROR_RESILIENCE) ff_me_cmp_init(&h->mecc, h->avctx); ff_videodsp_init(&h->vdsp, 8); memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t)); memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t)); h->picture_structure = PICT_FRAME; h->slice_context_count = 1; h->workaround_bugs = avctx->workaround_bugs; h->flags = avctx->flags; /* set defaults */ // s->decode_mb = ff_h263_decode_mb; if (!avctx->has_b_frames) h->low_delay = 1; avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; ff_h264_decode_init_vlc(); ff_init_cabac_states(); h->pixel_shift = 0; h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8; h->thread_context[0] = h; h->outputed_poc = h->next_outputed_poc = INT_MIN; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->prev_poc_msb = 1 << 16; h->x264_build = -1; ff_h264_reset_sei(h); h->recovery_frame = -1; h->frame_recovered = 0; if (avctx->codec_id == AV_CODEC_ID_H264) { if (avctx->ticks_per_frame == 1) h->avctx->time_base.den *= 2; avctx->ticks_per_frame = 2; } if (avctx->extradata_size > 0 && avctx->extradata) { ret = ff_h264_decode_extradata(h); if (ret < 0) return ret; } if (h->sps.bitstream_restriction_flag && h->avctx->has_b_frames < h->sps.num_reorder_frames) { h->avctx->has_b_frames = h->sps.num_reorder_frames; h->low_delay = 0; } avctx->internal->allocate_progress = 1; return 0; } static int decode_init_thread_copy(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; if (!avctx->internal->is_copy) return 0; memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); h->context_initialized = 0; return 0; } /** * Run setup operations that must be run after slice header decoding. * This includes finding the next displayed frame. * * @param h h264 master context * @param setup_finished enough NALs have been read that we can call * ff_thread_finish_setup() */ static void decode_postinit(H264Context *h, int setup_finished) { H264Picture *out = h->cur_pic_ptr; H264Picture *cur = h->cur_pic_ptr; int i, pics, out_of_order, out_idx; int invalid = 0, cnt = 0; h->cur_pic_ptr->f.pict_type = h->pict_type; if (h->next_output_pic) return; if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { /* FIXME: if we have two PAFF fields in one packet, we can't start * the next thread here. If we have one field per packet, we can. * The check in decode_nal_units() is not good enough to find this * yet, so we assume the worst for now. */ // if (setup_finished) // ff_thread_finish_setup(h->avctx); return; } cur->f.interlaced_frame = 0; cur->f.repeat_pict = 0; /* Signal interlacing information externally. */ /* Prioritize picture timing SEI information over used * decoding process if it exists. */ if (h->sps.pic_struct_present_flag) { switch (h->sei_pic_struct) { case SEI_PIC_STRUCT_FRAME: break; case SEI_PIC_STRUCT_TOP_FIELD: case SEI_PIC_STRUCT_BOTTOM_FIELD: cur->f.interlaced_frame = 1; break; case SEI_PIC_STRUCT_TOP_BOTTOM: case SEI_PIC_STRUCT_BOTTOM_TOP: if (FIELD_OR_MBAFF_PICTURE(h)) cur->f.interlaced_frame = 1; else // try to flag soft telecine progressive cur->f.interlaced_frame = h->prev_interlaced_frame; break; case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: /* Signal the possibility of telecined film externally * (pic_struct 5,6). From these hints, let the applications * decide if they apply deinterlacing. */ cur->f.repeat_pict = 1; break; case SEI_PIC_STRUCT_FRAME_DOUBLING: cur->f.repeat_pict = 2; break; case SEI_PIC_STRUCT_FRAME_TRIPLING: cur->f.repeat_pict = 4; break; } if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0; } else { /* Derive interlacing flag from used decoding process. */ cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE(h); } h->prev_interlaced_frame = cur->f.interlaced_frame; if (cur->field_poc[0] != cur->field_poc[1]) { /* Derive top_field_first from field pocs. */ cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1]; } else { if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) { /* Use picture timing SEI information. Even if it is a * information of a past frame, better than nothing. */ if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) cur->f.top_field_first = 1; else cur->f.top_field_first = 0; } else { /* Most likely progressive */ cur->f.top_field_first = 0; } } if (h->sei_frame_packing_present && h->frame_packing_arrangement_type >= 0 && h->frame_packing_arrangement_type <= 6 && h->content_interpretation_type > 0 && h->content_interpretation_type < 3) { AVStereo3D *stereo = av_stereo3d_create_side_data(&cur->f); if (!stereo) return; switch (h->frame_packing_arrangement_type) { case 0: stereo->type = AV_STEREO3D_CHECKERBOARD; break; case 1: stereo->type = AV_STEREO3D_COLUMNS; break; case 2: stereo->type = AV_STEREO3D_LINES; break; case 3: if (h->quincunx_subsampling) stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; else stereo->type = AV_STEREO3D_SIDEBYSIDE; break; case 4: stereo->type = AV_STEREO3D_TOPBOTTOM; break; case 5: stereo->type = AV_STEREO3D_FRAMESEQUENCE; break; case 6: stereo->type = AV_STEREO3D_2D; break; } if (h->content_interpretation_type == 2) stereo->flags = AV_STEREO3D_FLAG_INVERT; } if (h->sei_display_orientation_present && (h->sei_anticlockwise_rotation || h->sei_hflip || h->sei_vflip)) { double angle = h->sei_anticlockwise_rotation * 360 / (double) (1 << 16); AVFrameSideData *rotation = av_frame_new_side_data(&cur->f, AV_FRAME_DATA_DISPLAYMATRIX, sizeof(int32_t) * 9); if (!rotation) return; av_display_rotation_set((int32_t *)rotation->data, angle); av_display_matrix_flip((int32_t *)rotation->data, h->sei_vflip, h->sei_hflip); } // FIXME do something with unavailable reference frames /* Sort B-frames into display order */ if (h->sps.bitstream_restriction_flag && h->avctx->has_b_frames < h->sps.num_reorder_frames) { h->avctx->has_b_frames = h->sps.num_reorder_frames; h->low_delay = 0; } if (h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT && !h->sps.bitstream_restriction_flag) { h->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1; h->low_delay = 0; } pics = 0; while (h->delayed_pic[pics]) pics++; assert(pics <= MAX_DELAYED_PIC_COUNT); h->delayed_pic[pics++] = cur; if (cur->reference == 0) cur->reference = DELAYED_PIC_REF; /* Frame reordering. This code takes pictures from coding order and sorts * them by their incremental POC value into display order. It supports POC * gaps, MMCO reset codes and random resets. * A "display group" can start either with a IDR frame (f.key_frame = 1), * and/or can be closed down with a MMCO reset code. In sequences where * there is no delay, we can't detect that (since the frame was already * output to the user), so we also set h->mmco_reset to detect the MMCO * reset code. * FIXME: if we detect insufficient delays (as per h->avctx->has_b_frames), * we increase the delay between input and output. All frames affected by * the lag (e.g. those that should have been output before another frame * that we already returned to the user) will be dropped. This is a bug * that we will fix later. */ for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) { cnt += out->poc < h->last_pocs[i]; invalid += out->poc == INT_MIN; } if (!h->mmco_reset && !cur->f.key_frame && cnt + invalid == MAX_DELAYED_PIC_COUNT && cnt > 0) { h->mmco_reset = 2; if (pics > 1) h->delayed_pic[pics - 2]->mmco_reset = 2; } if (h->mmco_reset || cur->f.key_frame) { for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; cnt = 0; invalid = MAX_DELAYED_PIC_COUNT; } out = h->delayed_pic[0]; out_idx = 0; for (i = 1; i < MAX_DELAYED_PIC_COUNT && h->delayed_pic[i] && !h->delayed_pic[i - 1]->mmco_reset && !h->delayed_pic[i]->f.key_frame; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } if (h->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f.key_frame || h->mmco_reset)) h->next_outputed_poc = INT_MIN; out_of_order = !out->f.key_frame && !h->mmco_reset && (out->poc < h->next_outputed_poc); if (h->sps.bitstream_restriction_flag && h->avctx->has_b_frames >= h->sps.num_reorder_frames) { } else if (out_of_order && pics - 1 == h->avctx->has_b_frames && h->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) { if (invalid + cnt < MAX_DELAYED_PIC_COUNT) { h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, cnt); } h->low_delay = 0; } else if (h->low_delay && ((h->next_outputed_poc != INT_MIN && out->poc > h->next_outputed_poc + 2) || cur->f.pict_type == AV_PICTURE_TYPE_B)) { h->low_delay = 0; h->avctx->has_b_frames++; } if (pics > h->avctx->has_b_frames) { out->reference &= ~DELAYED_PIC_REF; // for frame threading, the owner must be the second field's thread or // else the first thread can release the picture and reuse it unsafely for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; } memmove(h->last_pocs, &h->last_pocs[1], sizeof(*h->last_pocs) * (MAX_DELAYED_PIC_COUNT - 1)); h->last_pocs[MAX_DELAYED_PIC_COUNT - 1] = cur->poc; if (!out_of_order && pics > h->avctx->has_b_frames) { h->next_output_pic = out; if (out->mmco_reset) { if (out_idx > 0) { h->next_outputed_poc = out->poc; h->delayed_pic[out_idx - 1]->mmco_reset = out->mmco_reset; } else { h->next_outputed_poc = INT_MIN; } } else { if (out_idx == 0 && pics > 1 && h->delayed_pic[0]->f.key_frame) { h->next_outputed_poc = INT_MIN; } else { h->next_outputed_poc = out->poc; } } h->mmco_reset = 0; } else { av_log(h->avctx, AV_LOG_DEBUG, "no picture\n"); } if (h->next_output_pic) { if (h->next_output_pic->recovered) { // We have reached an recovery point and all frames after it in // display order are "recovered". h->frame_recovered |= FRAME_RECOVERED_SEI; } h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI); } if (setup_finished && !h->avctx->hwaccel) ff_thread_finish_setup(h->avctx); } int ff_pred_weight_table(H264Context *h) { int list, i; int luma_def, chroma_def; h->use_weight = 0; h->use_weight_chroma = 0; h->luma_log2_weight_denom = get_ue_golomb(&h->gb); if (h->sps.chroma_format_idc) h->chroma_log2_weight_denom = get_ue_golomb(&h->gb); luma_def = 1 << h->luma_log2_weight_denom; chroma_def = 1 << h->chroma_log2_weight_denom; for (list = 0; list < 2; list++) { h->luma_weight_flag[list] = 0; h->chroma_weight_flag[list] = 0; for (i = 0; i < h->ref_count[list]; i++) { int luma_weight_flag, chroma_weight_flag; luma_weight_flag = get_bits1(&h->gb); if (luma_weight_flag) { h->luma_weight[i][list][0] = get_se_golomb(&h->gb); h->luma_weight[i][list][1] = get_se_golomb(&h->gb); if (h->luma_weight[i][list][0] != luma_def || h->luma_weight[i][list][1] != 0) { h->use_weight = 1; h->luma_weight_flag[list] = 1; } } else { h->luma_weight[i][list][0] = luma_def; h->luma_weight[i][list][1] = 0; } if (h->sps.chroma_format_idc) { chroma_weight_flag = get_bits1(&h->gb); if (chroma_weight_flag) { int j; for (j = 0; j < 2; j++) { h->chroma_weight[i][list][j][0] = get_se_golomb(&h->gb); h->chroma_weight[i][list][j][1] = get_se_golomb(&h->gb); if (h->chroma_weight[i][list][j][0] != chroma_def || h->chroma_weight[i][list][j][1] != 0) { h->use_weight_chroma = 1; h->chroma_weight_flag[list] = 1; } } } else { int j; for (j = 0; j < 2; j++) { h->chroma_weight[i][list][j][0] = chroma_def; h->chroma_weight[i][list][j][1] = 0; } } } } if (h->slice_type_nos != AV_PICTURE_TYPE_B) break; } h->use_weight = h->use_weight || h->use_weight_chroma; return 0; } /** * instantaneous decoder refresh. */ static void idr(H264Context *h) { ff_h264_remove_all_refs(h); h->prev_frame_num = h->prev_frame_num_offset = h->prev_poc_msb = h->prev_poc_lsb = 0; } /* forget old pics after a seek */ void ff_h264_flush_change(H264Context *h) { int i; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->outputed_poc = h->next_outputed_poc = INT_MIN; h->prev_interlaced_frame = 1; idr(h); if (h->cur_pic_ptr) h->cur_pic_ptr->reference = 0; h->first_field = 0; memset(h->ref_list[0], 0, sizeof(h->ref_list[0])); memset(h->ref_list[1], 0, sizeof(h->ref_list[1])); memset(h->default_ref_list[0], 0, sizeof(h->default_ref_list[0])); memset(h->default_ref_list[1], 0, sizeof(h->default_ref_list[1])); ff_h264_reset_sei(h); h->recovery_frame = -1; h->frame_recovered = 0; } /* forget old pics after a seek */ static void flush_dpb(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) { if (h->delayed_pic[i]) h->delayed_pic[i]->reference = 0; h->delayed_pic[i] = NULL; } ff_h264_flush_change(h); if (h->DPB) for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) ff_h264_unref_picture(h, &h->DPB[i]); h->cur_pic_ptr = NULL; ff_h264_unref_picture(h, &h->cur_pic); h->mb_x = h->mb_y = 0; h->parse_context.state = -1; h->parse_context.frame_start_found = 0; h->parse_context.overread = 0; h->parse_context.overread_index = 0; h->parse_context.index = 0; h->parse_context.last_index = 0; ff_h264_free_tables(h, 1); h->context_initialized = 0; } int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc) { const int max_frame_num = 1 << h->sps.log2_max_frame_num; int field_poc[2]; h->frame_num_offset = h->prev_frame_num_offset; if (h->frame_num < h->prev_frame_num) h->frame_num_offset += max_frame_num; if (h->sps.poc_type == 0) { const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb; if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2) h->poc_msb = h->prev_poc_msb + max_poc_lsb; else if (h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2) h->poc_msb = h->prev_poc_msb - max_poc_lsb; else h->poc_msb = h->prev_poc_msb; field_poc[0] = field_poc[1] = h->poc_msb + h->poc_lsb; if (h->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc_bottom; } else if (h->sps.poc_type == 1) { int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; int i; if (h->sps.poc_cycle_length != 0) abs_frame_num = h->frame_num_offset + h->frame_num; else abs_frame_num = 0; if (h->nal_ref_idc == 0 && abs_frame_num > 0) abs_frame_num--; expected_delta_per_poc_cycle = 0; for (i = 0; i < h->sps.poc_cycle_length; i++) // FIXME integrate during sps parse expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i]; if (abs_frame_num > 0) { int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; for (i = 0; i <= frame_num_in_poc_cycle; i++) expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i]; } else expectedpoc = 0; if (h->nal_ref_idc == 0) expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; field_poc[0] = expectedpoc + h->delta_poc[0]; field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; if (h->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc[1]; } else { int poc = 2 * (h->frame_num_offset + h->frame_num); if (!h->nal_ref_idc) poc--; field_poc[0] = poc; field_poc[1] = poc; } if (h->picture_structure != PICT_BOTTOM_FIELD) pic_field_poc[0] = field_poc[0]; if (h->picture_structure != PICT_TOP_FIELD) pic_field_poc[1] = field_poc[1]; *pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]); return 0; } /** * Compute profile from profile_idc and constraint_set?_flags. * * @param sps SPS * * @return profile as defined by FF_PROFILE_H264_* */ int ff_h264_get_profile(SPS *sps) { int profile = sps->profile_idc; switch (sps->profile_idc) { case FF_PROFILE_H264_BASELINE: // constraint_set1_flag set to 1 profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0; break; case FF_PROFILE_H264_HIGH_10: case FF_PROFILE_H264_HIGH_422: case FF_PROFILE_H264_HIGH_444_PREDICTIVE: // constraint_set3_flag set to 1 profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0; break; } return profile; } int ff_h264_set_parameter_from_sps(H264Context *h) { if (h->flags & CODEC_FLAG_LOW_DELAY || (h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames)) { if (h->avctx->has_b_frames > 1 || h->delayed_pic[0]) av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. " "Reenabling low delay requires a codec flush.\n"); else h->low_delay = 1; } if (h->avctx->has_b_frames < 2) h->avctx->has_b_frames = !h->low_delay; if (h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc) { if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10) { h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma; h->cur_chroma_format_idc = h->sps.chroma_format_idc; h->pixel_shift = h->sps.bit_depth_luma > 8; ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc); ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); ff_h264qpel_init(&h->h264qpel, h->sps.bit_depth_luma); ff_h264_pred_init(&h->hpc, h->avctx->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc); if (CONFIG_ERROR_RESILIENCE) ff_me_cmp_init(&h->mecc, h->avctx); ff_videodsp_init(&h->vdsp, h->sps.bit_depth_luma); } else { av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n", h->sps.bit_depth_luma); return AVERROR_INVALIDDATA; } } return 0; } int ff_set_ref_count(H264Context *h) { int ref_count[2], list_count; int num_ref_idx_active_override_flag, max_refs; // set defaults, might be overridden a few lines later ref_count[0] = h->pps.ref_count[0]; ref_count[1] = h->pps.ref_count[1]; if (h->slice_type_nos != AV_PICTURE_TYPE_I) { if (h->slice_type_nos == AV_PICTURE_TYPE_B) h->direct_spatial_mv_pred = get_bits1(&h->gb); num_ref_idx_active_override_flag = get_bits1(&h->gb); if (num_ref_idx_active_override_flag) { ref_count[0] = get_ue_golomb(&h->gb) + 1; if (ref_count[0] < 1) return AVERROR_INVALIDDATA; if (h->slice_type_nos == AV_PICTURE_TYPE_B) { ref_count[1] = get_ue_golomb(&h->gb) + 1; if (ref_count[1] < 1) return AVERROR_INVALIDDATA; } } if (h->slice_type_nos == AV_PICTURE_TYPE_B) list_count = 2; else list_count = 1; } else { list_count = 0; ref_count[0] = ref_count[1] = 0; } max_refs = h->picture_structure == PICT_FRAME ? 16 : 32; if (ref_count[0] > max_refs || ref_count[1] > max_refs) { av_log(h->avctx, AV_LOG_ERROR, "reference overflow\n"); h->ref_count[0] = h->ref_count[1] = 0; return AVERROR_INVALIDDATA; } if (list_count != h->list_count || ref_count[0] != h->ref_count[0] || ref_count[1] != h->ref_count[1]) { h->ref_count[0] = ref_count[0]; h->ref_count[1] = ref_count[1]; h->list_count = list_count; return 1; } return 0; } static int find_start_code(const uint8_t *buf, int buf_size, int buf_index, int next_avc) { // start code prefix search for (; buf_index + 3 < next_avc; buf_index++) // This should always succeed in the first iteration. if (buf[buf_index] == 0 && buf[buf_index + 1] == 0 && buf[buf_index + 2] == 1) break; if (buf_index + 3 >= buf_size) return buf_size; return buf_index + 3; } static int get_avc_nalsize(H264Context *h, const uint8_t *buf, int buf_size, int *buf_index) { int i, nalsize = 0; if (*buf_index >= buf_size - h->nal_length_size) return -1; for (i = 0; i < h->nal_length_size; i++) nalsize = (nalsize << 8) | buf[(*buf_index)++]; if (nalsize <= 0 || nalsize > buf_size - *buf_index) { av_log(h->avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); return -1; } return nalsize; } static int get_bit_length(H264Context *h, const uint8_t *buf, const uint8_t *ptr, int dst_length, int i, int next_avc) { if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc && buf[i] == 0x00 && buf[i + 1] == 0x00 && buf[i + 2] == 0x01 && buf[i + 3] == 0xE0) h->workaround_bugs |= FF_BUG_TRUNCATED; if (!(h->workaround_bugs & FF_BUG_TRUNCATED)) while (dst_length > 0 && ptr[dst_length - 1] == 0) dst_length--; if (!dst_length) return 0; return 8 * dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1); } static int get_last_needed_nal(H264Context *h, const uint8_t *buf, int buf_size) { int next_avc = h->is_avc ? 0 : buf_size; int nal_index = 0; int buf_index = 0; int nals_needed = 0; while(1) { int nalsize = 0; int dst_length, bit_length, consumed; const uint8_t *ptr; if (buf_index >= next_avc) { nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index); if (nalsize < 0) break; next_avc = buf_index + nalsize; } else { buf_index = find_start_code(buf, buf_size, buf_index, next_avc); if (buf_index >= buf_size) break; } ptr = ff_h264_decode_nal(h, buf + buf_index, &dst_length, &consumed, next_avc - buf_index); if (ptr == NULL || dst_length < 0) return AVERROR_INVALIDDATA; buf_index += consumed; bit_length = get_bit_length(h, buf, ptr, dst_length, buf_index, next_avc); nal_index++; /* packets can sometimes contain multiple PPS/SPS, * e.g. two PAFF field pictures in one packet, or a demuxer * which splits NALs strangely if so, when frame threading we * can't start the next thread until we've read all of them */ switch (h->nal_unit_type) { case NAL_SPS: case NAL_PPS: nals_needed = nal_index; break; case NAL_DPA: case NAL_IDR_SLICE: case NAL_SLICE: init_get_bits(&h->gb, ptr, bit_length); if (!get_ue_golomb(&h->gb)) nals_needed = nal_index; } } return nals_needed; } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, int parse_extradata) { AVCodecContext *const avctx = h->avctx; H264Context *hx; ///< thread context int buf_index; unsigned context_count; int next_avc; int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts int nal_index; int ret = 0; h->max_contexts = h->slice_context_count; if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) { h->current_slice = 0; if (!h->first_field) h->cur_pic_ptr = NULL; ff_h264_reset_sei(h); } if (avctx->active_thread_type & FF_THREAD_FRAME) nals_needed = get_last_needed_nal(h, buf, buf_size); { buf_index = 0; context_count = 0; next_avc = h->is_avc ? 0 : buf_size; nal_index = 0; for (;;) { int consumed; int dst_length; int bit_length; const uint8_t *ptr; int nalsize = 0; int err; if (buf_index >= next_avc) { nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index); if (nalsize < 0) break; next_avc = buf_index + nalsize; } else { buf_index = find_start_code(buf, buf_size, buf_index, next_avc); if (buf_index >= buf_size) break; } hx = h->thread_context[context_count]; ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index); if (ptr == NULL || dst_length < 0) { ret = -1; goto end; } bit_length = get_bit_length(h, buf, ptr, dst_length, buf_index + consumed, next_avc); if (h->avctx->debug & FF_DEBUG_STARTCODE) av_log(h->avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length); if (h->is_avc && (nalsize != consumed) && nalsize) av_log(h->avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize); buf_index += consumed; nal_index++; if (avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0 && h->nal_unit_type != NAL_SEI) continue; again: /* Ignore every NAL unit type except PPS and SPS during extradata * parsing. Decoding slices is not possible in codec init * with frame-mt */ if (parse_extradata && HAVE_THREADS && (h->avctx->active_thread_type & FF_THREAD_FRAME) && (hx->nal_unit_type != NAL_PPS && hx->nal_unit_type != NAL_SPS)) { if (hx->nal_unit_type < NAL_AUD || hx->nal_unit_type > NAL_AUXILIARY_SLICE) av_log(avctx, AV_LOG_INFO, "Ignoring NAL unit %d during extradata parsing\n", hx->nal_unit_type); hx->nal_unit_type = NAL_FF_IGNORE; } err = 0; switch (hx->nal_unit_type) { case NAL_IDR_SLICE: if (h->nal_unit_type != NAL_IDR_SLICE) { av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices\n"); ret = -1; goto end; } idr(h); // FIXME ensure we don't lose some frames if there is reordering case NAL_SLICE: init_get_bits(&hx->gb, ptr, bit_length); hx->intra_gb_ptr = hx->inter_gb_ptr = &hx->gb; hx->data_partitioning = 0; if ((err = ff_h264_decode_slice_header(hx, h))) break; if (h->sei_recovery_frame_cnt >= 0 && h->recovery_frame < 0) { h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) & ((1 << h->sps.log2_max_frame_num) - 1); } h->cur_pic_ptr->f.key_frame |= (hx->nal_unit_type == NAL_IDR_SLICE) || (h->sei_recovery_frame_cnt >= 0); if (hx->nal_unit_type == NAL_IDR_SLICE || h->recovery_frame == h->frame_num) { h->recovery_frame = -1; h->cur_pic_ptr->recovered = 1; } // If we have an IDR, all frames after it in decoded order are // "recovered". if (hx->nal_unit_type == NAL_IDR_SLICE) h->frame_recovered |= FRAME_RECOVERED_IDR; h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR); if (h->current_slice == 1) { if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) decode_postinit(h, nal_index >= nals_needed); if (h->avctx->hwaccel && (ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0) return ret; } if (hx->redundant_pic_count == 0 && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos != AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos == AV_PICTURE_TYPE_I) && avctx->skip_frame < AVDISCARD_ALL) { if (avctx->hwaccel) { ret = avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed); if (ret < 0) return ret; } else context_count++; } break; case NAL_DPA: if (h->avctx->flags & CODEC_FLAG2_CHUNKS) { av_log(h->avctx, AV_LOG_ERROR, "Decoding in chunks is not supported for " "partitioned slices.\n"); return AVERROR(ENOSYS); } init_get_bits(&hx->gb, ptr, bit_length); hx->intra_gb_ptr = hx->inter_gb_ptr = NULL; if ((err = ff_h264_decode_slice_header(hx, h)) < 0) { /* make sure data_partitioning is cleared if it was set * before, so we don't try decoding a slice without a valid * slice header later */ h->data_partitioning = 0; break; } hx->data_partitioning = 1; break; case NAL_DPB: init_get_bits(&hx->intra_gb, ptr, bit_length); hx->intra_gb_ptr = &hx->intra_gb; break; case NAL_DPC: init_get_bits(&hx->inter_gb, ptr, bit_length); hx->inter_gb_ptr = &hx->inter_gb; if (hx->redundant_pic_count == 0 && hx->intra_gb_ptr && hx->data_partitioning && h->cur_pic_ptr && h->context_initialized && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos != AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos == AV_PICTURE_TYPE_I) && avctx->skip_frame < AVDISCARD_ALL) context_count++; break; case NAL_SEI: init_get_bits(&h->gb, ptr, bit_length); ret = ff_h264_decode_sei(h); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case NAL_SPS: init_get_bits(&h->gb, ptr, bit_length); ret = ff_h264_decode_seq_parameter_set(h); if (ret < 0 && h->is_avc && (nalsize != consumed) && nalsize) { av_log(h->avctx, AV_LOG_DEBUG, "SPS decoding failure, trying again with the complete NAL\n"); init_get_bits(&h->gb, buf + buf_index + 1 - consumed, 8 * (nalsize - 1)); ff_h264_decode_seq_parameter_set(h); } ret = ff_h264_set_parameter_from_sps(h); if (ret < 0) goto end; break; case NAL_PPS: init_get_bits(&h->gb, ptr, bit_length); ret = ff_h264_decode_picture_parameter_set(h, bit_length); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; case NAL_FF_IGNORE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length); } if (context_count == h->max_contexts) { ret = ff_h264_execute_decode_slices(h, context_count); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; context_count = 0; } if (err < 0) { av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); h->ref_count[0] = h->ref_count[1] = h->list_count = 0; } else if (err == 1) { /* Slice could not be decoded in parallel mode, copy down * NAL unit stuff to context 0 and restart. Note that * rbsp_buffer is not transferred, but since we no longer * run in parallel mode this should not be an issue. */ h->nal_unit_type = hx->nal_unit_type; h->nal_ref_idc = hx->nal_ref_idc; hx = h; goto again; } } } if (context_count) { ret = ff_h264_execute_decode_slices(h, context_count); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; } end: /* clean up */ if (h->cur_pic_ptr && !h->droppable) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } return (ret < 0) ? ret : buf_index; } /** * Return the number of bytes consumed for building the current frame. */ static int get_consumed_bytes(int pos, int buf_size) { if (pos == 0) pos = 1; // avoid infinite loops (I doubt that is needed but...) if (pos + 10 > buf_size) pos = buf_size; // oops ;) return pos; } static int output_frame(H264Context *h, AVFrame *dst, AVFrame *src) { int i; int ret = av_frame_ref(dst, src); if (ret < 0) return ret; if (!h->sps.crop) return 0; for (i = 0; i < 3; i++) { int hshift = (i > 0) ? h->chroma_x_shift : 0; int vshift = (i > 0) ? h->chroma_y_shift : 0; int off = ((h->sps.crop_left >> hshift) << h->pixel_shift) + (h->sps.crop_top >> vshift) * dst->linesize[i]; dst->data[i] += off; } return 0; } static int h264_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; AVFrame *pict = data; int buf_index = 0; int ret; h->flags = avctx->flags; /* reset data partitioning here, to ensure GetBitContexts from previous * packets do not get used. */ h->data_partitioning = 0; /* end of stream, output what is still in the buffers */ out: if (buf_size == 0) { H264Picture *out; int i, out_idx; h->cur_pic_ptr = NULL; // FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; if (out) { ret = output_frame(h, pict, &out->f); if (ret < 0) return ret; *got_frame = 1; } return buf_index; } buf_index = decode_nal_units(h, buf, buf_size, 0); if (buf_index < 0) return AVERROR_INVALIDDATA; if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { buf_size = 0; goto out; } if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { if (avctx->skip_frame >= AVDISCARD_NONREF) return 0; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return AVERROR_INVALIDDATA; } if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) || (h->mb_y >= h->mb_height && h->mb_height)) { if (avctx->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1); ff_h264_field_end(h, 0); *got_frame = 0; if (h->next_output_pic && ((avctx->flags & CODEC_FLAG_OUTPUT_CORRUPT) || h->next_output_pic->recovered)) { if (!h->next_output_pic->recovered) h->next_output_pic->f.flags |= AV_FRAME_FLAG_CORRUPT; ret = output_frame(h, pict, &h->next_output_pic->f); if (ret < 0) return ret; *got_frame = 1; } } assert(pict->buf[0] || !*got_frame); return get_consumed_bytes(buf_index, buf_size); } av_cold void ff_h264_free_context(H264Context *h) { int i; ff_h264_free_tables(h, 1); // FIXME cleanup init stuff perhaps for (i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for (i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); } static av_cold int h264_decode_end(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; ff_h264_free_context(h); ff_h264_unref_picture(h, &h->cur_pic); return 0; } static const AVProfile profiles[] = { { FF_PROFILE_H264_BASELINE, "Baseline" }, { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" }, { FF_PROFILE_H264_MAIN, "Main" }, { FF_PROFILE_H264_EXTENDED, "Extended" }, { FF_PROFILE_H264_HIGH, "High" }, { FF_PROFILE_H264_HIGH_10, "High 10" }, { FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" }, { FF_PROFILE_H264_HIGH_422, "High 4:2:2" }, { FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" }, { FF_PROFILE_H264_HIGH_444, "High 4:4:4" }, { FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" }, { FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" }, { FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" }, { FF_PROFILE_UNKNOWN }, }; AVCodec ff_h264_decoder = { .name = "h264", .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_H264, .priv_data_size = sizeof(H264Context), .init = ff_h264_decode_init, .close = h264_decode_end, .decode = h264_decode_frame, .capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS, .flush = flush_dpb, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context), .profiles = NULL_IF_CONFIG_SMALL(profiles), };