/* * Chinese AVS video (AVS1-P2, JiZhun profile) decoder. * Copyright (c) 2006 Stefan Gehrer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "bitstream.h" #include "golomb.h" #include "mpegvideo.h" #include "cavsdata.h" typedef struct { MpegEncContext s; Picture picture; //currently decoded frame Picture DPB[2]; //reference frames int dist[2]; //temporal distances from current frame to ref frames int profile, level; int aspect_ratio; int mb_width, mb_height; int pic_type; int progressive; int pic_structure; int skip_mode_flag; int loop_filter_disable; int alpha_offset, beta_offset; int ref_flag; int mbx, mby; int flags; int stc; uint8_t *cy, *cu, *cv; int left_qp; uint8_t *top_qp; /* mv motion vector cache 0: D3 B2 B3 C2 4: A1 X0 X1 - 8: A3 X2 X3 - X are the vectors in the current macroblock (5,6,9,10) A is the macroblock to the left (4,8) B is the macroblock to the top (1,2) C is the macroblock to the top-right (3) D is the macroblock to the top-left (0) the same is repeated for backward motion vectors */ vector_t mv[2*4*3]; vector_t *top_mv[2]; vector_t *col_mv; /* luma pred mode cache 0: -- B2 B3 3: A1 X0 X1 6: A3 X2 X3 */ int pred_mode_Y[3*3]; int *top_pred_Y; int l_stride, c_stride; int luma_scan[4]; int qp; int qp_fixed; int cbp; /* intra prediction is done with un-deblocked samples they are saved here before deblocking the MB */ uint8_t *top_border_y, *top_border_u, *top_border_v; uint8_t left_border_y[16], left_border_u[10], left_border_v[10]; uint8_t topleft_border_y, topleft_border_u, topleft_border_v; void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride); void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride); uint8_t *col_type_base; uint8_t *col_type; int sym_factor; int direct_den[2]; int scale_den[2]; int got_keyframe; } AVSContext; /***************************************************************************** * * in-loop deblocking filter * ****************************************************************************/ static inline int get_bs_p(vector_t *mvP, vector_t *mvQ) { if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA)) return 2; if(mvP->ref != mvQ->ref) return 1; if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) ) return 1; return 0; } static inline int get_bs_b(vector_t *mvP, vector_t *mvQ) { if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA)) { return 2; } else { vector_t *mvPbw = mvP + MV_BWD_OFFS; vector_t *mvQbw = mvQ + MV_BWD_OFFS; if( (abs( mvP->x - mvQ->x) >= 4) || (abs( mvP->y - mvQ->y) >= 4) || (abs(mvPbw->x - mvQbw->x) >= 4) || (abs(mvPbw->y - mvQbw->y) >= 4) ) return 1; } return 0; } /* boundary strength (bs) mapping: * * --4---5-- * 0 2 | * | 6 | 7 | * 1 3 | * --------- * */ #define SET_PARAMS \ alpha = alpha_tab[clip(qp_avg + h->alpha_offset,0,63)]; \ beta = beta_tab[clip(qp_avg + h->beta_offset, 0,63)]; \ tc = tc_tab[clip(qp_avg + h->alpha_offset,0,63)]; static void filter_mb(AVSContext *h, enum mb_t mb_type) { DECLARE_ALIGNED_8(uint8_t, bs[8]); int qp_avg, alpha, beta, tc; int i; /* save un-deblocked lines */ h->topleft_border_y = h->top_border_y[h->mbx*16+15]; h->topleft_border_u = h->top_border_u[h->mbx*10+8]; h->topleft_border_v = h->top_border_v[h->mbx*10+8]; memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16); memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8); memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8); for(i=0;i<8;i++) { h->left_border_y[i*2+0] = *(h->cy + 15 + (i*2+0)*h->l_stride); h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+1)*h->l_stride); h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride); h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride); } if(!h->loop_filter_disable) { /* clear bs */ *((uint64_t *)bs) = 0; /* determine bs */ switch(mb_type) { case I_8X8: *((uint64_t *)bs) = 0x0202020202020202ULL; break; case P_8X8: case P_8X16: bs[2] = get_bs_p(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1]); bs[3] = get_bs_p(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3]); case P_16X8: bs[6] = get_bs_p(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2]); bs[7] = get_bs_p(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3]); case P_16X16: case P_SKIP: bs[0] = get_bs_p(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0]); bs[1] = get_bs_p(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2]); bs[4] = get_bs_p(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0]); bs[5] = get_bs_p(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1]); break; case B_SKIP: case B_DIRECT: case B_8X8: bs[2] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1]); bs[3] = get_bs_b(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3]); bs[6] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2]); bs[7] = get_bs_b(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3]); case B_FWD_16X16: case B_BWD_16X16: case B_SYM_16X16: bs[0] = get_bs_b(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0]); bs[1] = get_bs_b(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2]); bs[4] = get_bs_b(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0]); bs[5] = get_bs_b(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1]); break; default: if(mb_type & 1) { //16X8 bs[6] = bs[7] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2]); } else { //8X16 bs[2] = bs[3] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1]); } bs[0] = get_bs_b(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0]); bs[1] = get_bs_b(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2]); bs[4] = get_bs_b(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0]); bs[5] = get_bs_b(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1]); } if( *((uint64_t *)bs) ) { if(h->flags & A_AVAIL) { qp_avg = (h->qp + h->left_qp + 1) >> 1; SET_PARAMS; h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]); h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]); h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]); } qp_avg = h->qp; SET_PARAMS; h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]); h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc, bs[6],bs[7]); if(h->flags & B_AVAIL) { qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1; SET_PARAMS; h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]); h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]); h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]); } } } h->left_qp = h->qp; h->top_qp[h->mbx] = h->qp; } #undef SET_PARAMS /***************************************************************************** * * spatial intra prediction * ****************************************************************************/ static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t *left, int block) { int i; switch(block) { case 0: memcpy(&left[1],h->left_border_y,16); left[0] = left[1]; left[17] = left[16]; memcpy(&top[1],&h->top_border_y[h->mbx*16],16); top[17] = top[16]; top[0] = top[1]; if((h->flags & A_AVAIL) && (h->flags & B_AVAIL)) left[0] = top[0] = h->topleft_border_y; break; case 1: for(i=0;i<8;i++) left[i+1] = *(h->cy + 7 + i*h->l_stride); memset(&left[9],left[8],9); left[0] = left[1]; memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8); if(h->flags & C_AVAIL) memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8); else memset(&top[9],top[8],9); top[17] = top[16]; top[0] = top[1]; if(h->flags & B_AVAIL) left[0] = top[0] = h->top_border_y[h->mbx*16+7]; break; case 2: memcpy(&left[1],&h->left_border_y[8],8); memset(&left[9],left[8],9); memcpy(&top[1],h->cy + 7*h->l_stride,16); top[17] = top[16]; left[0] = h->left_border_y[7]; top[0] = top[1]; if(h->flags & A_AVAIL) top[0] = left[0]; break; case 3: for(i=0;i<9;i++) left[i] = *(h->cy + 7 + (i+7)*h->l_stride); memset(&left[9],left[8],9); memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9); memset(&top[9],top[8],9); break; } } static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int y; uint64_t a = *((uint64_t *)(&top[1])); for(y=0;y<8;y++) { *((uint64_t *)(d+y*stride)) = a; } } static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int y; uint64_t a; for(y=0;y<8;y++) { a = left[y+1] * 0x0101010101010101ULL; *((uint64_t *)(d+y*stride)) = a; } } static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int y; uint64_t a = 0x8080808080808080ULL; for(y=0;y<8;y++) *((uint64_t *)(d+y*stride)) = a; } static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int x,y,ia; int ih = 0; int iv = 0; uint8_t *cm = cropTbl + MAX_NEG_CROP; for(x=0; x<4; x++) { ih += (x+1)*(top[5+x]-top[3-x]); iv += (x+1)*(left[5+x]-left[3-x]); } ia = (top[8]+left[8])<<4; ih = (17*ih+16)>>5; iv = (17*iv+16)>>5; for(y=0; y<8; y++) for(x=0; x<8; x++) d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5]; } #define LOWPASS(ARRAY,INDEX) \ (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2) static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int x,y; for(y=0; y<8; y++) for(x=0; x<8; x++) d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1; } static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int x,y; for(y=0; y<8; y++) for(x=0; x<8; x++) d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1; } static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int x,y; for(y=0; y<8; y++) for(x=0; x<8; x++) if(x==y) d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2; else if(x>y) d[y*stride+x] = LOWPASS(top,x-y); else d[y*stride+x] = LOWPASS(left,y-x); } static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int x,y; for(y=0; y<8; y++) for(x=0; x<8; x++) d[y*stride+x] = LOWPASS(left,y+1); } static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) { int x,y; for(y=0; y<8; y++) for(x=0; x<8; x++) d[y*stride+x] = LOWPASS(top,x+1); } #undef LOWPASS static inline void modify_pred(const int_fast8_t *mod_table, int *mode) { int newmode = mod_table[*mode]; if(newmode < 0) { av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n"); *mode = 0; } else { *mode = newmode; } } /***************************************************************************** * * motion compensation * ****************************************************************************/ static inline void mc_dir_part(AVSContext *h,Picture *pic,int square, int chroma_height,int delta,int list,uint8_t *dest_y, uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset, int src_y_offset,qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op,vector_t *mv){ MpegEncContext * const s = &h->s; const int mx= mv->x + src_x_offset*8; const int my= mv->y + src_y_offset*8; const int luma_xy= (mx&3) + ((my&3)<<2); uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride; uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride; uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride; int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; int extra_height= extra_width; int emu=0; const int full_mx= mx>>2; const int full_my= my>>2; const int pic_width = 16*h->mb_width; const int pic_height = 16*h->mb_height; if(!pic->data[0]) return; if(mx&7) extra_width -= 3; if(my&7) extra_height -= 3; if( full_mx < 0-extra_width || full_my < 0-extra_height || full_mx + 16/*FIXME*/ > pic_width + extra_width || full_my + 16/*FIXME*/ > pic_height + extra_height){ ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height); src_y= s->edge_emu_buffer + 2 + 2*h->l_stride; emu=1; } qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps? if(!square){ qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride); } if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); src_cb= s->edge_emu_buffer; } chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7); if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); src_cr= s->edge_emu_buffer; } chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7); } static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta, uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr, int x_offset, int y_offset,qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, vector_t *mv){ qpel_mc_func *qpix_op= qpix_put; h264_chroma_mc_func chroma_op= chroma_put; dest_y += 2*x_offset + 2*y_offset*h->l_stride; dest_cb += x_offset + y_offset*h->c_stride; dest_cr += x_offset + y_offset*h->c_stride; x_offset += 8*h->mbx; y_offset += 8*h->mby; if(mv->ref >= 0){ Picture *ref= &h->DPB[mv->ref]; mc_dir_part(h, ref, square, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, mv); qpix_op= qpix_avg; chroma_op= chroma_avg; } if((mv+MV_BWD_OFFS)->ref >= 0){ Picture *ref= &h->DPB[0]; mc_dir_part(h, ref, square, chroma_height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, mv+MV_BWD_OFFS); } } static void inter_pred(AVSContext *h) { /* always do 8x8 blocks TODO: are larger blocks worth it? */ mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0, h->s.dsp.put_cavs_qpel_pixels_tab[1], h->s.dsp.put_h264_chroma_pixels_tab[1], h->s.dsp.avg_cavs_qpel_pixels_tab[1], h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]); mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0, h->s.dsp.put_cavs_qpel_pixels_tab[1], h->s.dsp.put_h264_chroma_pixels_tab[1], h->s.dsp.avg_cavs_qpel_pixels_tab[1], h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]); mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4, h->s.dsp.put_cavs_qpel_pixels_tab[1], h->s.dsp.put_h264_chroma_pixels_tab[1], h->s.dsp.avg_cavs_qpel_pixels_tab[1], h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]); mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4, h->s.dsp.put_cavs_qpel_pixels_tab[1], h->s.dsp.put_h264_chroma_pixels_tab[1], h->s.dsp.avg_cavs_qpel_pixels_tab[1], h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]); /* set intra prediction modes to default values */ h->pred_mode_Y[3] = h->pred_mode_Y[6] = INTRA_L_LP; h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP; } /***************************************************************************** * * motion vector prediction * ****************************************************************************/ static inline void set_mvs(vector_t *mv, enum block_t size) { switch(size) { case BLK_16X16: mv[MV_STRIDE ] = mv[0]; mv[MV_STRIDE+1] = mv[0]; case BLK_16X8: mv[1] = mv[0]; break; case BLK_8X16: mv[MV_STRIDE] = mv[0]; break; } } static inline void store_mvs(AVSContext *h) { h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0]; h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1]; h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2]; h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3]; } static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) { int den = h->scale_den[src->ref]; *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9; *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9; } static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) { int ax, ay, bx, by, cx, cy; int len_ab, len_bc, len_ca, len_mid; /* scale candidates according to their temporal span */ scale_mv(h, &ax, &ay, mvA, mvP->dist); scale_mv(h, &bx, &by, mvB, mvP->dist); scale_mv(h, &cx, &cy, mvC, mvP->dist); /* find the geometrical median of the three candidates */ len_ab = abs(ax - bx) + abs(ay - by); len_bc = abs(bx - cx) + abs(by - cy); len_ca = abs(cx - ax) + abs(cy - ay); len_mid = mid_pred(len_ab, len_bc, len_ca); if(len_mid == len_ab) { mvP->x = cx; mvP->y = cy; } else if(len_mid == len_bc) { mvP->x = ax; mvP->y = ay; } else { mvP->x = bx; mvP->y = by; } } static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw, vector_t *pmv_bw, vector_t *col_mv) { int den = h->direct_den[col_mv->ref]; int m = col_mv->x >> 31; pmv_fw->dist = h->dist[1]; pmv_bw->dist = h->dist[0]; pmv_fw->ref = 1; pmv_bw->ref = 0; /* scale the co-located motion vector according to its temporal span */ pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m; pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m); m = col_mv->y >> 31; pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m; pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m); } static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) { vector_t *dst = src + MV_BWD_OFFS; /* backward mv is the scaled and negated forward mv */ dst->x = -((src->x * h->sym_factor + 256) >> 9); dst->y = -((src->y * h->sym_factor + 256) >> 9); dst->ref = 0; dst->dist = h->dist[0]; set_mvs(dst, size); } static void mv_pred(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC, enum mv_pred_t mode, enum block_t size, int ref) { vector_t *mvP = &h->mv[nP]; vector_t *mvA = &h->mv[nP-1]; vector_t *mvB = &h->mv[nP-4]; vector_t *mvC = &h->mv[nC]; int mvAref = mvA->ref; int mvBref = mvB->ref; int mvCref; mvP->ref = ref; mvP->dist = h->dist[mvP->ref]; if(mvC->ref == NOT_AVAIL) mvC = &h->mv[nP-5]; // set to top-left (mvD) mvCref = mvC->ref; if(mode == MV_PRED_PSKIP) { if((mvAref == NOT_AVAIL) || (mvBref == NOT_AVAIL) || ((mvA->x | mvA->y | mvA->ref) == 0) || ((mvB->x | mvB->y | mvB->ref) == 0) ) { mvP->x = mvP->y = 0; set_mvs(mvP,size); return; } } /* if there is only one suitable candidate, take it */ if((mvAref >= 0) && (mvBref < 0) && (mvCref < 0)) { mvP->x = mvA->x; mvP->y = mvA->y; } else if((mvAref < 0) && (mvBref >= 0) && (mvCref < 0)) { mvP->x = mvB->x; mvP->y = mvB->y; } else if((mvAref < 0) && (mvBref < 0) && (mvCref >= 0)) { mvP->x = mvC->x; mvP->y = mvC->y; } else { switch(mode) { case MV_PRED_LEFT: if(mvAref == mvP->ref) { mvP->x = mvA->x; mvP->y = mvA->y; } else mv_pred_median(h, mvP, mvA, mvB, mvC); break; case MV_PRED_TOP: if(mvBref == mvP->ref) { mvP->x = mvB->x; mvP->y = mvB->y; } else mv_pred_median(h, mvP, mvA, mvB, mvC); break; case MV_PRED_TOPRIGHT: if(mvCref == mvP->ref) { mvP->x = mvC->x; mvP->y = mvC->y; } else mv_pred_median(h, mvP, mvA, mvB, mvC); break; default: mv_pred_median(h, mvP, mvA, mvB, mvC); break; } } if(mode < MV_PRED_PSKIP) { mvP->x += get_se_golomb(&h->s.gb); mvP->y += get_se_golomb(&h->s.gb); } set_mvs(mvP,size); } /***************************************************************************** * * residual data decoding * ****************************************************************************/ /* kth-order exponential golomb code */ static inline int get_ue_code(GetBitContext *gb, int order) { if(order) { int ret = get_ue_golomb(gb) << order; return ret + get_bits(gb,order); } return get_ue_golomb(gb); } static int decode_residual_block(AVSContext *h, GetBitContext *gb, const residual_vlc_t *r, int esc_golomb_order, int qp, uint8_t *dst, int stride) { int i,pos = -1; int level_code, esc_code, level, run, mask; int level_buf[64]; int run_buf[64]; int dqm = dequant_mul[qp]; int dqs = dequant_shift[qp]; int dqa = 1 << (dqs - 1); const uint8_t *scantab = ff_zigzag_direct; DCTELEM block[64]; memset(block,0,64*sizeof(DCTELEM)); for(i=0;i<65;i++) { level_code = get_ue_code(gb,r->golomb_order); if(level_code >= ESCAPE_CODE) { run = (level_code - ESCAPE_CODE) >> 1; esc_code = get_ue_code(gb,esc_golomb_order); level = esc_code + (run > r->max_run ? 1 : r->level_add[run]); while(level > r->inc_limit) r++; mask = -(level_code & 1); level = (level^mask) - mask; } else { if(level_code < 0) return -1; level = r->rltab[level_code][0]; if(!level) //end of block signal break; run = r->rltab[level_code][1]; r += r->rltab[level_code][2]; } level_buf[i] = level; run_buf[i] = run; } /* inverse scan and dequantization */ while(--i >= 0){ pos += 1 + run_buf[i]; if(pos > 63) { av_log(h->s.avctx, AV_LOG_ERROR, "position out of block bounds at pic %d MB(%d,%d)\n", h->picture.poc, h->mbx, h->mby); return -1; } block[scantab[pos]] = (level_buf[i]*dqm + dqa) >> dqs; } h->s.dsp.cavs_idct8_add(dst,block,stride); return 0; } static inline void decode_residual_chroma(AVSContext *h) { if(h->cbp & (1<<4)) decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp], h->cu,h->c_stride); if(h->cbp & (1<<5)) decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp], h->cv,h->c_stride); } static inline void decode_residual_inter(AVSContext *h) { int block; /* get coded block pattern */ h->cbp = cbp_tab[get_ue_golomb(&h->s.gb)][1]; /* get quantizer */ if(h->cbp && !h->qp_fixed) h->qp += get_se_golomb(&h->s.gb); for(block=0;block<4;block++) if(h->cbp & (1<s.gb,inter_2dvlc,0,h->qp, h->cy + h->luma_scan[block], h->l_stride); decode_residual_chroma(h); } /***************************************************************************** * * macroblock level * ****************************************************************************/ static inline void init_mb(AVSContext *h) { int i; /* copy predictors from top line (MB B and C) into cache */ for(i=0;i<3;i++) { h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i]; h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i]; } h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0]; h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1]; /* clear top predictors if MB B is not available */ if(!(h->flags & B_AVAIL)) { h->mv[MV_FWD_B2] = un_mv; h->mv[MV_FWD_B3] = un_mv; h->mv[MV_BWD_B2] = un_mv; h->mv[MV_BWD_B3] = un_mv; h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL; h->flags &= ~(C_AVAIL|D_AVAIL); } else if(h->mbx) { h->flags |= D_AVAIL; } if(h->mbx == h->mb_width-1) //MB C not available h->flags &= ~C_AVAIL; /* clear top-right predictors if MB C is not available */ if(!(h->flags & C_AVAIL)) { h->mv[MV_FWD_C2] = un_mv; h->mv[MV_BWD_C2] = un_mv; } /* clear top-left predictors if MB D is not available */ if(!(h->flags & D_AVAIL)) { h->mv[MV_FWD_D3] = un_mv; h->mv[MV_BWD_D3] = un_mv; } /* set pointer for co-located macroblock type */ h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx]; } static inline void check_for_slice(AVSContext *h); static inline int next_mb(AVSContext *h) { int i; h->flags |= A_AVAIL; h->cy += 16; h->cu += 8; h->cv += 8; /* copy mvs as predictors to the left */ for(i=0;i<=20;i+=4) h->mv[i] = h->mv[i+2]; /* copy bottom mvs from cache to top line */ h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2]; h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3]; h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2]; h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3]; /* next MB address */ h->mbx++; if(h->mbx == h->mb_width) { //new mb line h->flags = B_AVAIL|C_AVAIL; /* clear left pred_modes */ h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL; /* clear left mv predictors */ for(i=0;i<=20;i+=4) h->mv[i] = un_mv; h->mbx = 0; h->mby++; /* re-calculate sample pointers */ h->cy = h->picture.data[0] + h->mby*16*h->l_stride; h->cu = h->picture.data[1] + h->mby*8*h->c_stride; h->cv = h->picture.data[2] + h->mby*8*h->c_stride; if(h->mby == h->mb_height) { //frame end return 0; } else { //check_for_slice(h); } } return 1; } static void decode_mb_i(AVSContext *h, int is_i_pic) { GetBitContext *gb = &h->s.gb; int block, pred_mode_uv; uint8_t top[18]; uint8_t left[18]; uint8_t *d; /* get intra prediction modes from stream */ for(block=0;block<4;block++) { int nA,nB,predpred; int pos = scan3x3[block]; nA = h->pred_mode_Y[pos-1]; nB = h->pred_mode_Y[pos-3]; if((nA == NOT_AVAIL) || (nB == NOT_AVAIL)) predpred = 2; else predpred = FFMIN(nA,nB); if(get_bits1(gb)) h->pred_mode_Y[pos] = predpred; else { h->pred_mode_Y[pos] = get_bits(gb,2); if(h->pred_mode_Y[pos] >= predpred) h->pred_mode_Y[pos]++; } } pred_mode_uv = get_ue_golomb(gb); if(pred_mode_uv > 6) { av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n"); pred_mode_uv = 0; } /* save pred modes before they get modified */ h->pred_mode_Y[3] = h->pred_mode_Y[5]; h->pred_mode_Y[6] = h->pred_mode_Y[8]; h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7]; h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8]; /* modify pred modes according to availability of neighbour samples */ if(!(h->flags & A_AVAIL)) { modify_pred(left_modifier_l, &h->pred_mode_Y[4] ); modify_pred(left_modifier_l, &h->pred_mode_Y[7] ); modify_pred(left_modifier_c, &pred_mode_uv ); } if(!(h->flags & B_AVAIL)) { modify_pred(top_modifier_l, &h->pred_mode_Y[4] ); modify_pred(top_modifier_l, &h->pred_mode_Y[5] ); modify_pred(top_modifier_c, &pred_mode_uv ); } /* get coded block pattern */ if(is_i_pic) h->cbp = cbp_tab[get_ue_golomb(gb)][0]; if(h->cbp && !h->qp_fixed) h->qp += get_se_golomb(gb); //qp_delta /* luma intra prediction interleaved with residual decode/transform/add */ for(block=0;block<4;block++) { d = h->cy + h->luma_scan[block]; load_intra_pred_luma(h, top, left, block); h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]] (d, top, left, h->l_stride); if(h->cbp & (1<qp,d,h->l_stride); } /* chroma intra prediction */ /* extend borders by one pixel */ h->left_border_u[9] = h->left_border_u[8]; h->left_border_v[9] = h->left_border_v[8]; h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8]; h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8]; if(h->mbx && h->mby) { h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u; h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v; } else { h->left_border_u[0] = h->left_border_u[1]; h->left_border_v[0] = h->left_border_v[1]; h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1]; h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1]; } h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10], h->left_border_u, h->c_stride); h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10], h->left_border_v, h->c_stride); decode_residual_chroma(h); filter_mb(h,I_8X8); /* mark motion vectors as intra */ h->mv[MV_FWD_X0] = intra_mv; set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); h->mv[MV_BWD_X0] = intra_mv; set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); if(h->pic_type != FF_B_TYPE) *h->col_type = I_8X8; } static void mb_skip_p(AVSContext *h) { mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0); inter_pred(h); store_mvs(h); filter_mb(h,P_SKIP); *h->col_type = P_SKIP; } static void mb_skip_b(AVSContext *h) { int i; if(!(*h->col_type)) { /* intra MB at co-location, do in-plane prediction */ mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1); mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0); } else { /* direct prediction from co-located P MB, block-wise */ for(i=0;i<4;i++) mv_pred_direct(h,&h->mv[mv_scan[i]], &h->mv[mv_scan[i]+MV_BWD_OFFS], &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + i]); } } static void decode_mb_p(AVSContext *h, enum mb_t mb_type) { GetBitContext *gb = &h->s.gb; int ref[4]; switch(mb_type) { case P_SKIP: mb_skip_p(h); return; case P_16X16: ref[0] = h->ref_flag ? 0 : get_bits1(gb); mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]); break; case P_16X8: ref[0] = h->ref_flag ? 0 : get_bits1(gb); ref[2] = h->ref_flag ? 0 : get_bits1(gb); mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]); mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]); break; case P_8X16: ref[0] = h->ref_flag ? 0 : get_bits1(gb); ref[1] = h->ref_flag ? 0 : get_bits1(gb); mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]); mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT, BLK_8X16, ref[1]); break; case P_8X8: ref[0] = h->ref_flag ? 0 : get_bits1(gb); ref[1] = h->ref_flag ? 0 : get_bits1(gb); ref[2] = h->ref_flag ? 0 : get_bits1(gb); ref[3] = h->ref_flag ? 0 : get_bits1(gb); mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]); mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]); mv_pred(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]); mv_pred(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]); } inter_pred(h); store_mvs(h); decode_residual_inter(h); filter_mb(h,mb_type); *h->col_type = mb_type; } static void decode_mb_b(AVSContext *h, enum mb_t mb_type) { int block; enum sub_mb_t sub_type[4]; int flags; /* reset all MVs */ h->mv[MV_FWD_X0] = dir_mv; set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); h->mv[MV_BWD_X0] = dir_mv; set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); switch(mb_type) { case B_SKIP: mb_skip_b(h); inter_pred(h); filter_mb(h,B_SKIP); return; case B_DIRECT: mb_skip_b(h); break; case B_FWD_16X16: mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1); break; case B_SYM_16X16: mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1); mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16); break; case B_BWD_16X16: mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0); break; case B_8X8: for(block=0;block<4;block++) sub_type[block] = get_bits(&h->s.gb,2); for(block=0;block<4;block++) { switch(sub_type[block]) { case B_SUB_DIRECT: if(!(*h->col_type)) { /* intra MB at co-location, do in-plane prediction */ mv_pred(h, mv_scan[block], mv_scan[block]-3, MV_PRED_BSKIP, BLK_8X8, 1); mv_pred(h, mv_scan[block]+MV_BWD_OFFS, mv_scan[block]-3+MV_BWD_OFFS, MV_PRED_BSKIP, BLK_8X8, 0); } else mv_pred_direct(h,&h->mv[mv_scan[block]], &h->mv[mv_scan[block]+MV_BWD_OFFS], &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]); break; case B_SUB_FWD: mv_pred(h, mv_scan[block], mv_scan[block]-3, MV_PRED_MEDIAN, BLK_8X8, 1); break; case B_SUB_SYM: mv_pred(h, mv_scan[block], mv_scan[block]-3, MV_PRED_MEDIAN, BLK_8X8, 1); mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8); break; } } for(block=0;block<4;block++) { if(sub_type[block] == B_SUB_BWD) mv_pred(h, mv_scan[block]+MV_BWD_OFFS, mv_scan[block]+MV_BWD_OFFS-3, MV_PRED_MEDIAN, BLK_8X8, 0); } break; default: assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8)); flags = b_partition_flags[(mb_type-1)>>1]; if(mb_type & 1) { /* 16x8 macroblock types */ if(flags & FWD0) mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1); if(flags & SYM0) { mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1); mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8); } if(flags & FWD1) mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1); if(flags & SYM1) { mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1); mv_pred_sym(h, &h->mv[9], BLK_16X8); } if(flags & BWD0) mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0); if(flags & BWD1) mv_pred(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0); } else { /* 8x16 macroblock types */ if(flags & FWD0) mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1); if(flags & SYM0) { mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1); mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16); } if(flags & FWD1) mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1); if(flags & SYM1) { mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1); mv_pred_sym(h, &h->mv[6], BLK_8X16); } if(flags & BWD0) mv_pred(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0); if(flags & BWD1) mv_pred(h, MV_BWD_X1, MV_BWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 0); } } inter_pred(h); decode_residual_inter(h); filter_mb(h,mb_type); } /***************************************************************************** * * slice level * ****************************************************************************/ static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) { if(h->stc > 0xAF) av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc); h->mby = h->stc; if((h->mby == 0) && (!h->qp_fixed)){ h->qp_fixed = get_bits1(gb); h->qp = get_bits(gb,6); } /* inter frame or second slice can have weighting params */ if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2)) if(get_bits1(gb)) { //slice_weighting_flag av_log(h->s.avctx, AV_LOG_ERROR, "weighted prediction not yet supported\n"); } return 0; } static inline void check_for_slice(AVSContext *h) { GetBitContext *gb = &h->s.gb; int align; align = (-get_bits_count(gb)) & 7; if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) { get_bits_long(gb,24+align); h->stc = get_bits(gb,8); decode_slice_header(h,gb); } } /***************************************************************************** * * frame level * ****************************************************************************/ static void init_pic(AVSContext *h) { int i; /* clear some predictors */ for(i=0;i<=20;i+=4) h->mv[i] = un_mv; h->mv[MV_BWD_X0] = dir_mv; set_mvs(&h->mv[MV_BWD_X0], BLK_16X16); h->mv[MV_FWD_X0] = dir_mv; set_mvs(&h->mv[MV_FWD_X0], BLK_16X16); h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL; h->cy = h->picture.data[0]; h->cu = h->picture.data[1]; h->cv = h->picture.data[2]; h->l_stride = h->picture.linesize[0]; h->c_stride = h->picture.linesize[1]; h->luma_scan[2] = 8*h->l_stride; h->luma_scan[3] = 8*h->l_stride+8; h->mbx = h->mby = 0; h->flags = 0; } static int decode_pic(AVSContext *h) { MpegEncContext *s = &h->s; int i,skip_count; enum mb_t mb_type; if (!s->context_initialized) { if (MPV_common_init(s) < 0) return -1; } get_bits(&s->gb,16);//bbv_dwlay if(h->stc == PIC_PB_START_CODE) { h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE; /* make sure we have the reference frames we need */ if(!h->DPB[0].data[0] || (!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE)) return -1; } else { h->pic_type = FF_I_TYPE; if(get_bits1(&s->gb)) get_bits(&s->gb,16);//time_code } /* release last B frame */ if(h->picture.data[0]) s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture); s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture); init_pic(h); h->picture.poc = get_bits(&s->gb,8)*2; /* get temporal distances and MV scaling factors */ if(h->pic_type != FF_B_TYPE) { h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512; } else { h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512; } h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512; h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0; h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0; if(h->pic_type == FF_B_TYPE) { h->sym_factor = h->dist[0]*h->scale_den[1]; } else { h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0; h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0; } if(s->low_delay) get_ue_golomb(&s->gb); //bbv_check_times h->progressive = get_bits1(&s->gb); if(h->progressive) h->pic_structure = 1; else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) ) get_bits1(&s->gb); //advanced_pred_mode_disable skip_bits1(&s->gb); //top_field_first skip_bits1(&s->gb); //repeat_first_field h->qp_fixed = get_bits1(&s->gb); h->qp = get_bits(&s->gb,6); if(h->pic_type == FF_I_TYPE) { if(!h->progressive && !h->pic_structure) skip_bits1(&s->gb);//what is this? skip_bits(&s->gb,4); //reserved bits } else { if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1)) h->ref_flag = get_bits1(&s->gb); skip_bits(&s->gb,4); //reserved bits h->skip_mode_flag = get_bits1(&s->gb); } h->loop_filter_disable = get_bits1(&s->gb); if(!h->loop_filter_disable && get_bits1(&s->gb)) { h->alpha_offset = get_se_golomb(&s->gb); h->beta_offset = get_se_golomb(&s->gb); } else { h->alpha_offset = h->beta_offset = 0; } check_for_slice(h); if(h->pic_type == FF_I_TYPE) { do { init_mb(h); decode_mb_i(h,1); } while(next_mb(h)); } else if(h->pic_type == FF_P_TYPE) { do { if(h->skip_mode_flag) { skip_count = get_ue_golomb(&s->gb); for(i=0;igb) + P_16X16; } else { mb_type = get_ue_golomb(&s->gb) + P_SKIP; } init_mb(h); if(mb_type > P_8X8) { h->cbp = cbp_tab[mb_type - P_8X8 - 1][0]; decode_mb_i(h,0); } else { decode_mb_p(h,mb_type); } } while(next_mb(h)); } else { //FF_B_TYPE do { if(h->skip_mode_flag) { skip_count = get_ue_golomb(&s->gb); for(i=0;igb) + B_DIRECT; } else { mb_type = get_ue_golomb(&s->gb) + B_SKIP; } init_mb(h); if(mb_type > B_8X8) { h->cbp = cbp_tab[mb_type - B_8X8 - 1][0]; decode_mb_i(h,0); } else { decode_mb_b(h,mb_type); } } while(next_mb(h)); } done: if(h->pic_type != FF_B_TYPE) { if(h->DPB[1].data[0]) s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]); memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture)); memcpy(&h->DPB[0], &h->picture, sizeof(Picture)); memset(&h->picture,0,sizeof(Picture)); } return 0; } /***************************************************************************** * * headers and interface * ****************************************************************************/ static void init_top_lines(AVSContext *h) { /* alloc top line of predictors */ h->top_qp = av_malloc( h->mb_width); h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t)); h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t)); h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y)); h->top_border_y = av_malloc((h->mb_width+1)*16); h->top_border_u = av_malloc((h->mb_width)*10); h->top_border_v = av_malloc((h->mb_width)*10); /* alloc space for co-located MVs and types */ h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t)); h->col_type_base = av_malloc(h->mb_width*h->mb_height); } static int decode_seq_header(AVSContext *h) { MpegEncContext *s = &h->s; extern const AVRational ff_frame_rate_tab[]; int frame_rate_code; h->profile = get_bits(&s->gb,8); h->level = get_bits(&s->gb,8); skip_bits1(&s->gb); //progressive sequence s->width = get_bits(&s->gb,14); s->height = get_bits(&s->gb,14); skip_bits(&s->gb,2); //chroma format skip_bits(&s->gb,3); //sample_precision h->aspect_ratio = get_bits(&s->gb,4); frame_rate_code = get_bits(&s->gb,4); skip_bits(&s->gb,18);//bit_rate_lower skip_bits1(&s->gb); //marker_bit skip_bits(&s->gb,12);//bit_rate_upper s->low_delay = get_bits1(&s->gb); h->mb_width = (s->width + 15) >> 4; h->mb_height = (s->height + 15) >> 4; h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num; h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den; h->s.avctx->width = s->width; h->s.avctx->height = s->height; if(!h->top_qp) init_top_lines(h); return 0; } /** * finds the end of the current frame in the bitstream. * @return the position of the first byte of the next frame, or -1 */ int ff_cavs_find_frame_end(ParseContext *pc, const uint8_t *buf, int buf_size) { int pic_found, i; uint32_t state; pic_found= pc->frame_start_found; state= pc->state; i=0; if(!pic_found){ for(i=0; i SLICE_MAX_START_CODE){ pc->frame_start_found=0; pc->state=-1; return i-3; } } } } pc->frame_start_found= pic_found; pc->state= state; return END_NOT_FOUND; } void ff_cavs_flush(AVCodecContext * avctx) { AVSContext *h = avctx->priv_data; h->got_keyframe = 0; } static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size, uint8_t * buf, int buf_size) { AVSContext *h = avctx->priv_data; MpegEncContext *s = &h->s; int input_size; const uint8_t *buf_end; const uint8_t *buf_ptr; AVFrame *picture = data; uint32_t stc; s->avctx = avctx; if (buf_size == 0) { if(!s->low_delay && h->DPB[0].data[0]) { *data_size = sizeof(AVPicture); *picture = *(AVFrame *) &h->DPB[0]; } return 0; } buf_ptr = buf; buf_end = buf + buf_size; for(;;) { buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc); if(stc & 0xFFFFFE00) return FFMAX(0, buf_ptr - buf - s->parse_context.last_index); input_size = (buf_end - buf_ptr)*8; switch(stc) { case SEQ_START_CODE: init_get_bits(&s->gb, buf_ptr, input_size); decode_seq_header(h); break; case PIC_I_START_CODE: if(!h->got_keyframe) { if(h->DPB[0].data[0]) avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]); if(h->DPB[1].data[0]) avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]); h->got_keyframe = 1; } case PIC_PB_START_CODE: *data_size = 0; if(!h->got_keyframe) break; init_get_bits(&s->gb, buf_ptr, input_size); h->stc = stc; if(decode_pic(h)) break; *data_size = sizeof(AVPicture); if(h->pic_type != FF_B_TYPE) { if(h->DPB[1].data[0]) { *picture = *(AVFrame *) &h->DPB[1]; } else { *data_size = 0; } } else *picture = *(AVFrame *) &h->picture; break; case EXT_START_CODE: //mpeg_decode_extension(avctx,buf_ptr, input_size); break; case USER_START_CODE: //mpeg_decode_user_data(avctx,buf_ptr, input_size); break; default: if (stc >= SLICE_MIN_START_CODE && stc <= SLICE_MAX_START_CODE) { init_get_bits(&s->gb, buf_ptr, input_size); decode_slice_header(h, &s->gb); } break; } } } static int cavs_decode_init(AVCodecContext * avctx) { AVSContext *h = avctx->priv_data; MpegEncContext * const s = &h->s; MPV_decode_defaults(s); s->avctx = avctx; avctx->pix_fmt= PIX_FMT_YUV420P; h->luma_scan[0] = 0; h->luma_scan[1] = 8; h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert; h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz; h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp; h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left; h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right; h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left; h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top; h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128; h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp; h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz; h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert; h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane; h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left; h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top; h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128; h->mv[ 7] = un_mv; h->mv[19] = un_mv; return 0; } static int cavs_decode_end(AVCodecContext * avctx) { AVSContext *h = avctx->priv_data; av_free(h->top_qp); av_free(h->top_mv[0]); av_free(h->top_mv[1]); av_free(h->top_pred_Y); av_free(h->top_border_y); av_free(h->top_border_u); av_free(h->top_border_v); av_free(h->col_mv); av_free(h->col_type_base); return 0; } AVCodec cavs_decoder = { "cavs", CODEC_TYPE_VIDEO, CODEC_ID_CAVS, sizeof(AVSContext), cavs_decode_init, NULL, cavs_decode_end, cavs_decode_frame, CODEC_CAP_DR1 | CODEC_CAP_DELAY, .flush= ff_cavs_flush, };