/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /** * @file cabac.h * Context Adaptive Binary Arithmetic Coder. */ #undef NDEBUG #include typedef struct CABACContext{ int low; int range; int outstanding_count; #ifdef STRICT_LIMITS int symCount; #endif uint8_t lps_range[2*64][4]; ///< rangeTabLPS uint8_t lps_state[2*64]; ///< transIdxLPS uint8_t mps_state[2*64]; ///< transIdxMPS const uint8_t *bytestream_start; const uint8_t *bytestream; int bits_left; ///< PutBitContext pb; }CABACContext; extern const uint8_t ff_h264_lps_range[64][4]; extern const uint8_t ff_h264_mps_state[64]; extern const uint8_t ff_h264_lps_state[64]; void ff_init_cabac_encoder(CABACContext *c, uint8_t *buf, int buf_size); void ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size); void ff_init_cabac_states(CABACContext *c, uint8_t const (*lps_range)[4], uint8_t const *mps_state, uint8_t const *lps_state, int state_count); static inline void put_cabac_bit(CABACContext *c, int b){ put_bits(&c->pb, 1, b); for(;c->outstanding_count; c->outstanding_count--){ put_bits(&c->pb, 1, 1-b); } } static inline void renorm_cabac_encoder(CABACContext *c){ while(c->range < 0x100){ //FIXME optimize if(c->low<0x100){ put_cabac_bit(c, 0); }else if(c->low<0x200){ c->outstanding_count++; c->low -= 0x100; }else{ put_cabac_bit(c, 1); c->low -= 0x200; } c->range+= c->range; c->low += c->low; } } static inline void put_cabac(CABACContext *c, uint8_t * const state, int bit){ int RangeLPS= c->lps_range[*state][((c->range)>>6)&3]; if(bit == ((*state)&1)){ c->range -= RangeLPS; *state= c->mps_state[*state]; }else{ c->low += c->range - RangeLPS; c->range = RangeLPS; *state= c->lps_state[*state]; } renorm_cabac_encoder(c); #ifdef STRICT_LIMITS c->symCount++; #endif } static inline void put_cabac_static(CABACContext *c, int RangeLPS, int bit){ assert(c->range > RangeLPS); if(!bit){ c->range -= RangeLPS; }else{ c->low += c->range - RangeLPS; c->range = RangeLPS; } renorm_cabac_encoder(c); #ifdef STRICT_LIMITS c->symCount++; #endif } /** * @param bit 0 -> write zero bit, !=0 write one bit */ static inline void put_cabac_bypass(CABACContext *c, int bit){ c->low += c->low; if(bit){ c->low += c->range; } //FIXME optimize if(c->low<0x200){ put_cabac_bit(c, 0); }else if(c->low<0x400){ c->outstanding_count++; c->low -= 0x200; }else{ put_cabac_bit(c, 1); c->low -= 0x400; } #ifdef STRICT_LIMITS c->symCount++; #endif } /** * * @return the number of bytes written */ static inline int put_cabac_terminate(CABACContext *c, int bit){ c->range -= 2; if(!bit){ renorm_cabac_encoder(c); }else{ c->low += c->range; c->range= 2; renorm_cabac_encoder(c); assert(c->low <= 0x1FF); put_cabac_bit(c, c->low>>9); put_bits(&c->pb, 2, ((c->low>>7)&3)|1); flush_put_bits(&c->pb); //FIXME FIXME FIXME XXX wrong } #ifdef STRICT_LIMITS c->symCount++; #endif return (put_bits_count(&c->pb)+7)>>3; } /** * put (truncated) unary binarization. */ static inline void put_cabac_u(CABACContext *c, uint8_t * state, int v, int max, int max_index, int truncated){ int i; assert(v <= max); #if 1 for(i=0; i= m){ //FIXME optimize put_cabac_bypass(c, 1); v-= m; m+= m; } put_cabac_bypass(c, 0); while(m>>=1){ put_cabac_bypass(c, v&m); } } if(is_signed) put_cabac_bypass(c, sign); } } static inline void renorm_cabac_decoder(CABACContext *c){ while(c->range < 0x10000){ c->range+= c->range; c->low+= c->low; if(--c->bits_left == 0){ c->low+= *c->bytestream++; c->bits_left= 8; } } } static inline int get_cabac(CABACContext *c, uint8_t * const state){ int RangeLPS= c->lps_range[*state][((c->range)>>14)&3]<<8; int bit; c->range -= RangeLPS; if(c->low < c->range){ bit= (*state)&1; *state= c->mps_state[*state]; }else{ bit= ((*state)&1)^1; c->low -= c->range; c->range = RangeLPS; *state= c->lps_state[*state]; } renorm_cabac_decoder(c); return bit; } static inline int get_cabac_static(CABACContext *c, int RangeLPS){ int bit; c->range -= RangeLPS; if(c->low < c->range){ bit= 0; }else{ bit= 1; c->low -= c->range; c->range = RangeLPS; } renorm_cabac_decoder(c); return bit; } static inline int get_cabac_bypass(CABACContext *c){ c->low += c->low; if(--c->bits_left == 0){ c->low+= *c->bytestream++; c->bits_left= 8; } if(c->low < c->range){ return 0; }else{ c->low -= c->range; return 1; } } /** * * @return the number of bytes read or 0 if no end */ static inline int get_cabac_terminate(CABACContext *c){ c->range -= 2<<8; if(c->low < c->range){ renorm_cabac_decoder(c); return 0; }else{ return c->bytestream - c->bytestream_start; } } /** * get (truncated) unnary binarization. */ static inline int get_cabac_u(CABACContext *c, uint8_t * state, int max, int max_index, int truncated){ int i; for(i=0; i>=1){ v+= v + get_cabac_bypass(c); } i += v; if(is_signed && get_cabac_bypass(c)){ return -i; }else return i; }