/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /** * @file cabac.h * Context Adaptive Binary Arithmetic Coder. */ //#undef NDEBUG #include #define CABAC_BITS 16 #define CABAC_MASK ((1<pb, 1, b); for(;c->outstanding_count; c->outstanding_count--){ put_bits(&c->pb, 1, 1-b); } } static inline void renorm_cabac_encoder(CABACContext *c){ while(c->range < 0x100){ //FIXME optimize if(c->low<0x100){ put_cabac_bit(c, 0); }else if(c->low<0x200){ c->outstanding_count++; c->low -= 0x100; }else{ put_cabac_bit(c, 1); c->low -= 0x200; } c->range+= c->range; c->low += c->low; } } static void put_cabac(CABACContext *c, uint8_t * const state, int bit){ int RangeLPS= c->lps_range[*state][c->range>>6]; if(bit == ((*state)&1)){ c->range -= RangeLPS; *state= c->mps_state[*state]; }else{ c->low += c->range - RangeLPS; c->range = RangeLPS; *state= c->lps_state[*state]; } renorm_cabac_encoder(c); #ifdef STRICT_LIMITS c->symCount++; #endif } static void put_cabac_static(CABACContext *c, int RangeLPS, int bit){ assert(c->range > RangeLPS); if(!bit){ c->range -= RangeLPS; }else{ c->low += c->range - RangeLPS; c->range = RangeLPS; } renorm_cabac_encoder(c); #ifdef STRICT_LIMITS c->symCount++; #endif } /** * @param bit 0 -> write zero bit, !=0 write one bit */ static void put_cabac_bypass(CABACContext *c, int bit){ c->low += c->low; if(bit){ c->low += c->range; } //FIXME optimize if(c->low<0x200){ put_cabac_bit(c, 0); }else if(c->low<0x400){ c->outstanding_count++; c->low -= 0x200; }else{ put_cabac_bit(c, 1); c->low -= 0x400; } #ifdef STRICT_LIMITS c->symCount++; #endif } /** * * @return the number of bytes written */ static int put_cabac_terminate(CABACContext *c, int bit){ c->range -= 2; if(!bit){ renorm_cabac_encoder(c); }else{ c->low += c->range; c->range= 2; renorm_cabac_encoder(c); assert(c->low <= 0x1FF); put_cabac_bit(c, c->low>>9); put_bits(&c->pb, 2, ((c->low>>7)&3)|1); flush_put_bits(&c->pb); //FIXME FIXME FIXME XXX wrong } #ifdef STRICT_LIMITS c->symCount++; #endif return (put_bits_count(&c->pb)+7)>>3; } /** * put (truncated) unary binarization. */ static void put_cabac_u(CABACContext *c, uint8_t * state, int v, int max, int max_index, int truncated){ int i; assert(v <= max); #if 1 for(i=0; i= m){ //FIXME optimize put_cabac_bypass(c, 1); v-= m; m+= m; } put_cabac_bypass(c, 0); while(m>>=1){ put_cabac_bypass(c, v&m); } } if(is_signed) put_cabac_bypass(c, sign); } } static void refill(CABACContext *c){ if(c->bytestream <= c->bytestream_end) #if CABAC_BITS == 16 c->low+= (c->bytestream[0]<<9) + (c->bytestream[1]<<1); #else c->low+= c->bytestream[0]<<1; #endif c->low -= CABAC_MASK; c->bytestream+= CABAC_BITS/8; } #if 1 /* all use commented */ static void refill2(CABACContext *c){ int i, x; x= c->low ^ (c->low-1); i= 9 - ff_h264_norm_shift[x>>(CABAC_BITS+1)]; x= -CABAC_MASK; if(c->bytestream <= c->bytestream_end) #if CABAC_BITS == 16 x+= (c->bytestream[0]<<9) + (c->bytestream[1]<<1); #else x+= c->bytestream[0]<<1; #endif c->low += x<bytestream+= CABAC_BITS/8; } #endif static inline void renorm_cabac_decoder(CABACContext *c){ while(c->range < (0x200 << CABAC_BITS)){ c->range+= c->range; c->low+= c->low; if(!(c->low & CABAC_MASK)) refill(c); } } static inline void renorm_cabac_decoder_once(CABACContext *c){ #ifdef ARCH_X86_DISABLED int temp; #if 0 //P3:683 athlon:475 asm( "lea -0x2000000(%0), %2 \n\t" "shr $31, %2 \n\t" //FIXME 31->63 for x86-64 "shl %%cl, %0 \n\t" "shl %%cl, %1 \n\t" : "+r"(c->range), "+r"(c->low), "+c"(temp) ); #elif 0 //P3:680 athlon:474 asm( "cmp $0x2000000, %0 \n\t" "setb %%cl \n\t" //FIXME 31->63 for x86-64 "shl %%cl, %0 \n\t" "shl %%cl, %1 \n\t" : "+r"(c->range), "+r"(c->low), "+c"(temp) ); #elif 1 int temp2; //P3:665 athlon:517 asm( "lea -0x2000000(%0), %%eax \n\t" "cdq \n\t" "mov %0, %%eax \n\t" "and %%edx, %0 \n\t" "and %1, %%edx \n\t" "add %%eax, %0 \n\t" "add %%edx, %1 \n\t" : "+r"(c->range), "+r"(c->low), "+a"(temp), "+d"(temp2) ); #elif 0 int temp2; //P3:673 athlon:509 asm( "cmp $0x2000000, %0 \n\t" "sbb %%edx, %%edx \n\t" "mov %0, %%eax \n\t" "and %%edx, %0 \n\t" "and %1, %%edx \n\t" "add %%eax, %0 \n\t" "add %%edx, %1 \n\t" : "+r"(c->range), "+r"(c->low), "+a"(temp), "+d"(temp2) ); #else int temp2; //P3:677 athlon:511 asm( "cmp $0x2000000, %0 \n\t" "lea (%0, %0), %%eax \n\t" "lea (%1, %1), %%edx \n\t" "cmovb %%eax, %0 \n\t" "cmovb %%edx, %1 \n\t" : "+r"(c->range), "+r"(c->low), "+a"(temp), "+d"(temp2) ); #endif #else //P3:675 athlon:476 int shift= (uint32_t)(c->range - (0x200 << CABAC_BITS))>>31; c->range<<= shift; c->low <<= shift; #endif if(!(c->low & CABAC_MASK)) refill(c); } static int get_cabac(CABACContext *c, uint8_t * const state){ //FIXME gcc generates duplicate load/stores for c->low and c->range //START_TIMER int s = *state; int RangeLPS= c->lps_range[s][c->range>>(CABAC_BITS+7)]<<(CABAC_BITS+1); int bit, lps_mask attribute_unused; c->range -= RangeLPS; #if 1 if(c->low < c->range){ bit= s&1; #ifdef ARCH_X86 //P3:627 asm( "addb $2, %b0 \n\t" " js 1f \n\t" "movb %b0, %1 \n\t" "1: \n\t" : "+q"(s), "=m"(*state) ); #else *state= c->mps_state[s]; //P3:655 /* if(s<126) //P3:657 *state= s+2;*/ s+=2; //P3:631 if(s<128) *state= s; #endif renorm_cabac_decoder_once(c); }else{ bit= ff_h264_norm_shift[RangeLPS>>17]; c->low -= c->range; *state= c->lps_state[s]; // c->range = RangeLPS; // renorm_cabac_decoder(c); c->range = RangeLPS<low <<= bit; bit= (s&1)^1; if(!(c->low & 0xFFFF)){ refill2(c); } } #else lps_mask= (c->range - c->low)>>31; c->low -= c->range & lps_mask; c->range += (RangeLPS - c->range) & lps_mask; bit= (s^lps_mask)&1; *state= c->mps_state[s - (128&lps_mask)]; lps_mask= ff_h264_norm_shift[c->range>>(CABAC_BITS+2)]; c->range<<= lps_mask; c->low <<= lps_mask; if(!(c->low & CABAC_MASK)) refill2(c); #endif //STOP_TIMER("get_cabac") return bit; } static int get_cabac_bypass(CABACContext *c){ c->low += c->low; if(!(c->low & CABAC_MASK)) refill(c); if(c->low < c->range){ return 0; }else{ c->low -= c->range; return 1; } } /** * * @return the number of bytes read or 0 if no end */ static int get_cabac_terminate(CABACContext *c){ c->range -= 4<low < c->range){ renorm_cabac_decoder_once(c); return 0; }else{ return c->bytestream - c->bytestream_start; } } /** * get (truncated) unnary binarization. */ static int get_cabac_u(CABACContext *c, uint8_t * state, int max, int max_index, int truncated){ int i; for(i=0; i>=1){ v+= v + get_cabac_bypass(c); } i += v; if(is_signed && get_cabac_bypass(c)){ return -i; }else return i; }