/* * Alpha optimized DSP utils * Copyright (c) 2002 Falk Hueffner * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavcodec/dsputil.h" #include "dsputil_alpha.h" #include "asm.h" void (*put_pixels_clamped_axp_p)(const DCTELEM *block, uint8_t *pixels, int line_size); void (*add_pixels_clamped_axp_p)(const DCTELEM *block, uint8_t *pixels, int line_size); #if 0 /* These functions were the base for the optimized assembler routines, and remain here for documentation purposes. */ static void put_pixels_clamped_mvi(const DCTELEM *block, uint8_t *pixels, int line_size) { int i = 8; uint64_t clampmask = zap(-1, 0xaa); /* 0x00ff00ff00ff00ff */ do { uint64_t shorts0, shorts1; shorts0 = ldq(block); shorts0 = maxsw4(shorts0, 0); shorts0 = minsw4(shorts0, clampmask); stl(pkwb(shorts0), pixels); shorts1 = ldq(block + 4); shorts1 = maxsw4(shorts1, 0); shorts1 = minsw4(shorts1, clampmask); stl(pkwb(shorts1), pixels + 4); pixels += line_size; block += 8; } while (--i); } void add_pixels_clamped_mvi(const DCTELEM *block, uint8_t *pixels, int line_size) { int h = 8; /* Keep this function a leaf function by generating the constants manually (mainly for the hack value ;-). */ uint64_t clampmask = zap(-1, 0xaa); /* 0x00ff00ff00ff00ff */ uint64_t signmask = zap(-1, 0x33); signmask ^= signmask >> 1; /* 0x8000800080008000 */ do { uint64_t shorts0, pix0, signs0; uint64_t shorts1, pix1, signs1; shorts0 = ldq(block); shorts1 = ldq(block + 4); pix0 = unpkbw(ldl(pixels)); /* Signed subword add (MMX paddw). */ signs0 = shorts0 & signmask; shorts0 &= ~signmask; shorts0 += pix0; shorts0 ^= signs0; /* Clamp. */ shorts0 = maxsw4(shorts0, 0); shorts0 = minsw4(shorts0, clampmask); /* Next 4. */ pix1 = unpkbw(ldl(pixels + 4)); signs1 = shorts1 & signmask; shorts1 &= ~signmask; shorts1 += pix1; shorts1 ^= signs1; shorts1 = maxsw4(shorts1, 0); shorts1 = minsw4(shorts1, clampmask); stl(pkwb(shorts0), pixels); stl(pkwb(shorts1), pixels + 4); pixels += line_size; block += 8; } while (--h); } #endif static void clear_blocks_axp(DCTELEM *blocks) { uint64_t *p = (uint64_t *) blocks; int n = sizeof(DCTELEM) * 6 * 64; do { p[0] = 0; p[1] = 0; p[2] = 0; p[3] = 0; p[4] = 0; p[5] = 0; p[6] = 0; p[7] = 0; p += 8; n -= 8 * 8; } while (n); } static inline uint64_t avg2_no_rnd(uint64_t a, uint64_t b) { return (a & b) + (((a ^ b) & BYTE_VEC(0xfe)) >> 1); } static inline uint64_t avg2(uint64_t a, uint64_t b) { return (a | b) - (((a ^ b) & BYTE_VEC(0xfe)) >> 1); } #if 0 /* The XY2 routines basically utilize this scheme, but reuse parts in each iteration. */ static inline uint64_t avg4(uint64_t l1, uint64_t l2, uint64_t l3, uint64_t l4) { uint64_t r1 = ((l1 & ~BYTE_VEC(0x03)) >> 2) + ((l2 & ~BYTE_VEC(0x03)) >> 2) + ((l3 & ~BYTE_VEC(0x03)) >> 2) + ((l4 & ~BYTE_VEC(0x03)) >> 2); uint64_t r2 = (( (l1 & BYTE_VEC(0x03)) + (l2 & BYTE_VEC(0x03)) + (l3 & BYTE_VEC(0x03)) + (l4 & BYTE_VEC(0x03)) + BYTE_VEC(0x02)) >> 2) & BYTE_VEC(0x03); return r1 + r2; } #endif #define OP(LOAD, STORE) \ do { \ STORE(LOAD(pixels), block); \ pixels += line_size; \ block += line_size; \ } while (--h) #define OP_X2(LOAD, STORE) \ do { \ uint64_t pix1, pix2; \ \ pix1 = LOAD(pixels); \ pix2 = pix1 >> 8 | ((uint64_t) pixels[8] << 56); \ STORE(AVG2(pix1, pix2), block); \ pixels += line_size; \ block += line_size; \ } while (--h) #define OP_Y2(LOAD, STORE) \ do { \ uint64_t pix = LOAD(pixels); \ do { \ uint64_t next_pix; \ \ pixels += line_size; \ next_pix = LOAD(pixels); \ STORE(AVG2(pix, next_pix), block); \ block += line_size; \ pix = next_pix; \ } while (--h); \ } while (0) #define OP_XY2(LOAD, STORE) \ do { \ uint64_t pix1 = LOAD(pixels); \ uint64_t pix2 = pix1 >> 8 | ((uint64_t) pixels[8] << 56); \ uint64_t pix_l = (pix1 & BYTE_VEC(0x03)) \ + (pix2 & BYTE_VEC(0x03)); \ uint64_t pix_h = ((pix1 & ~BYTE_VEC(0x03)) >> 2) \ + ((pix2 & ~BYTE_VEC(0x03)) >> 2); \ \ do { \ uint64_t npix1, npix2; \ uint64_t npix_l, npix_h; \ uint64_t avg; \ \ pixels += line_size; \ npix1 = LOAD(pixels); \ npix2 = npix1 >> 8 | ((uint64_t) pixels[8] << 56); \ npix_l = (npix1 & BYTE_VEC(0x03)) \ + (npix2 & BYTE_VEC(0x03)); \ npix_h = ((npix1 & ~BYTE_VEC(0x03)) >> 2) \ + ((npix2 & ~BYTE_VEC(0x03)) >> 2); \ avg = (((pix_l + npix_l + AVG4_ROUNDER) >> 2) & BYTE_VEC(0x03)) \ + pix_h + npix_h; \ STORE(avg, block); \ \ block += line_size; \ pix_l = npix_l; \ pix_h = npix_h; \ } while (--h); \ } while (0) #define MAKE_OP(OPNAME, SUFF, OPKIND, STORE) \ static void OPNAME ## _pixels ## SUFF ## _axp \ (uint8_t *restrict block, const uint8_t *restrict pixels, \ int line_size, int h) \ { \ if ((size_t) pixels & 0x7) { \ OPKIND(uldq, STORE); \ } else { \ OPKIND(ldq, STORE); \ } \ } \ \ static void OPNAME ## _pixels16 ## SUFF ## _axp \ (uint8_t *restrict block, const uint8_t *restrict pixels, \ int line_size, int h) \ { \ OPNAME ## _pixels ## SUFF ## _axp(block, pixels, line_size, h); \ OPNAME ## _pixels ## SUFF ## _axp(block + 8, pixels + 8, line_size, h); \ } #define PIXOP(OPNAME, STORE) \ MAKE_OP(OPNAME, , OP, STORE) \ MAKE_OP(OPNAME, _x2, OP_X2, STORE) \ MAKE_OP(OPNAME, _y2, OP_Y2, STORE) \ MAKE_OP(OPNAME, _xy2, OP_XY2, STORE) /* Rounding primitives. */ #define AVG2 avg2 #define AVG4 avg4 #define AVG4_ROUNDER BYTE_VEC(0x02) #define STORE(l, b) stq(l, b) PIXOP(put, STORE); #undef STORE #define STORE(l, b) stq(AVG2(l, ldq(b)), b); PIXOP(avg, STORE); /* Not rounding primitives. */ #undef AVG2 #undef AVG4 #undef AVG4_ROUNDER #undef STORE #define AVG2 avg2_no_rnd #define AVG4 avg4_no_rnd #define AVG4_ROUNDER BYTE_VEC(0x01) #define STORE(l, b) stq(l, b) PIXOP(put_no_rnd, STORE); #undef STORE #define STORE(l, b) stq(AVG2(l, ldq(b)), b); PIXOP(avg_no_rnd, STORE); static void put_pixels16_axp_asm(uint8_t *block, const uint8_t *pixels, int line_size, int h) { put_pixels_axp_asm(block, pixels, line_size, h); put_pixels_axp_asm(block + 8, pixels + 8, line_size, h); } void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx) { const int high_bit_depth = avctx->bits_per_raw_sample > 8; if (!high_bit_depth) { c->put_pixels_tab[0][0] = put_pixels16_axp_asm; c->put_pixels_tab[0][1] = put_pixels16_x2_axp; c->put_pixels_tab[0][2] = put_pixels16_y2_axp; c->put_pixels_tab[0][3] = put_pixels16_xy2_axp; c->put_no_rnd_pixels_tab[0][0] = put_pixels16_axp_asm; c->put_no_rnd_pixels_tab[0][1] = put_no_rnd_pixels16_x2_axp; c->put_no_rnd_pixels_tab[0][2] = put_no_rnd_pixels16_y2_axp; c->put_no_rnd_pixels_tab[0][3] = put_no_rnd_pixels16_xy2_axp; c->avg_pixels_tab[0][0] = avg_pixels16_axp; c->avg_pixels_tab[0][1] = avg_pixels16_x2_axp; c->avg_pixels_tab[0][2] = avg_pixels16_y2_axp; c->avg_pixels_tab[0][3] = avg_pixels16_xy2_axp; c->avg_no_rnd_pixels_tab[0][0] = avg_no_rnd_pixels16_axp; c->avg_no_rnd_pixels_tab[0][1] = avg_no_rnd_pixels16_x2_axp; c->avg_no_rnd_pixels_tab[0][2] = avg_no_rnd_pixels16_y2_axp; c->avg_no_rnd_pixels_tab[0][3] = avg_no_rnd_pixels16_xy2_axp; c->put_pixels_tab[1][0] = put_pixels_axp_asm; c->put_pixels_tab[1][1] = put_pixels_x2_axp; c->put_pixels_tab[1][2] = put_pixels_y2_axp; c->put_pixels_tab[1][3] = put_pixels_xy2_axp; c->put_no_rnd_pixels_tab[1][0] = put_pixels_axp_asm; c->put_no_rnd_pixels_tab[1][1] = put_no_rnd_pixels_x2_axp; c->put_no_rnd_pixels_tab[1][2] = put_no_rnd_pixels_y2_axp; c->put_no_rnd_pixels_tab[1][3] = put_no_rnd_pixels_xy2_axp; c->avg_pixels_tab[1][0] = avg_pixels_axp; c->avg_pixels_tab[1][1] = avg_pixels_x2_axp; c->avg_pixels_tab[1][2] = avg_pixels_y2_axp; c->avg_pixels_tab[1][3] = avg_pixels_xy2_axp; c->avg_no_rnd_pixels_tab[1][0] = avg_no_rnd_pixels_axp; c->avg_no_rnd_pixels_tab[1][1] = avg_no_rnd_pixels_x2_axp; c->avg_no_rnd_pixels_tab[1][2] = avg_no_rnd_pixels_y2_axp; c->avg_no_rnd_pixels_tab[1][3] = avg_no_rnd_pixels_xy2_axp; c->clear_blocks = clear_blocks_axp; } /* amask clears all bits that correspond to present features. */ if (amask(AMASK_MVI) == 0) { c->put_pixels_clamped = put_pixels_clamped_mvi_asm; c->add_pixels_clamped = add_pixels_clamped_mvi_asm; if (!high_bit_depth) c->get_pixels = get_pixels_mvi; c->diff_pixels = diff_pixels_mvi; c->sad[0] = pix_abs16x16_mvi_asm; c->sad[1] = pix_abs8x8_mvi; c->pix_abs[0][0] = pix_abs16x16_mvi_asm; c->pix_abs[1][0] = pix_abs8x8_mvi; c->pix_abs[0][1] = pix_abs16x16_x2_mvi; c->pix_abs[0][2] = pix_abs16x16_y2_mvi; c->pix_abs[0][3] = pix_abs16x16_xy2_mvi; } put_pixels_clamped_axp_p = c->put_pixels_clamped; add_pixels_clamped_axp_p = c->add_pixels_clamped; if (!avctx->lowres && avctx->bits_per_raw_sample <= 8 && (avctx->idct_algo == FF_IDCT_AUTO || avctx->idct_algo == FF_IDCT_SIMPLEALPHA)) { c->idct_put = ff_simple_idct_put_axp; c->idct_add = ff_simple_idct_add_axp; c->idct = ff_simple_idct_axp; } }