/* * Copyright (c) 2001-2003 The FFmpeg project * * first version by Francois Revol (revol@free.fr) * fringe ADPCM codecs (e.g., DK3, DK4, Westwood) * by Mike Melanson (melanson@pcisys.net) * CD-ROM XA ADPCM codec by BERO * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) * EA IMA EACS decoder by Peter Ross (pross@xvid.org) * EA IMA SEAD decoder by Peter Ross (pross@xvid.org) * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "get_bits.h" #include "put_bits.h" #include "bytestream.h" #include "adpcm.h" #include "adpcm_data.h" #include "internal.h" /** * @file * ADPCM decoders * Features and limitations: * * Reference documents: * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead] * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead] * http://openquicktime.sourceforge.net/ * XAnim sources (xa_codec.c) http://xanim.polter.net/ * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead] * SoX source code http://sox.sourceforge.net/ * * CD-ROM XA: * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead] * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead] * readstr http://www.geocities.co.jp/Playtown/2004/ */ /* These are for CD-ROM XA ADPCM */ static const int xa_adpcm_table[5][2] = { { 0, 0 }, { 60, 0 }, { 115, -52 }, { 98, -55 }, { 122, -60 } }; static const int ea_adpcm_table[] = { 0, 240, 460, 392, 0, 0, -208, -220, 0, 1, 3, 4, 7, 8, 10, 11, 0, -1, -3, -4 }; // padded to zero where table size is less then 16 static const int swf_index_tables[4][16] = { /*2*/ { -1, 2 }, /*3*/ { -1, -1, 2, 4 }, /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } }; /* end of tables */ typedef struct ADPCMDecodeContext { ADPCMChannelStatus status[6]; int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */ } ADPCMDecodeContext; static av_cold int adpcm_decode_init(AVCodecContext * avctx) { ADPCMDecodeContext *c = avctx->priv_data; unsigned int min_channels = 1; unsigned int max_channels = 2; switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_EA: min_channels = 2; break; case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: case AV_CODEC_ID_ADPCM_EA_XAS: max_channels = 6; break; } if (avctx->channels < min_channels || avctx->channels > max_channels) { av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); return AVERROR(EINVAL); } switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_CT: c->status[0].step = c->status[1].step = 511; break; case AV_CODEC_ID_ADPCM_IMA_WAV: if (avctx->bits_per_coded_sample != 4) { av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n"); return -1; } break; case AV_CODEC_ID_ADPCM_IMA_APC: if (avctx->extradata && avctx->extradata_size >= 8) { c->status[0].predictor = AV_RL32(avctx->extradata); c->status[1].predictor = AV_RL32(avctx->extradata + 4); } break; case AV_CODEC_ID_ADPCM_IMA_WS: if (avctx->extradata && avctx->extradata_size >= 2) c->vqa_version = AV_RL16(avctx->extradata); break; default: break; } switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_IMA_QT: case AV_CODEC_ID_ADPCM_IMA_WAV: case AV_CODEC_ID_ADPCM_4XM: case AV_CODEC_ID_ADPCM_XA: case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: case AV_CODEC_ID_ADPCM_EA_XAS: case AV_CODEC_ID_ADPCM_THP: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break; case AV_CODEC_ID_ADPCM_IMA_WS: avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P : AV_SAMPLE_FMT_S16; break; default: avctx->sample_fmt = AV_SAMPLE_FMT_S16; } return 0; } static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) { int step_index; int predictor; int sign, delta, diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; step_index = av_clip(step_index, 0, 88); sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * step) >> shift; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return (short)c->predictor; } static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift) { int step_index; int predictor; int diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[nibble]; step_index = av_clip(step_index, 0, 88); diff = step >> 3; if (nibble & 4) diff += step; if (nibble & 2) diff += step >> 1; if (nibble & 1) diff += step >> 2; if (nibble & 8) predictor = c->predictor - diff; else predictor = c->predictor + diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return c->predictor; } static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble) { int predictor; predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; c->sample2 = c->sample1; c->sample1 = av_clip_int16(predictor); c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8; if (c->idelta < 16) c->idelta = 16; return c->sample1; } static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) { int sign, delta, diff; int new_step; sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * c->step) >> 3; /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); c->predictor = av_clip_int16(c->predictor); /* calculate new step and clamp it to range 511..32767 */ new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8; c->step = av_clip(new_step, 511, 32767); return (short)c->predictor; } static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) { int sign, delta, diff; sign = nibble & (1<<(size-1)); delta = nibble & ((1<<(size-1))-1); diff = delta << (7 + c->step + shift); /* clamp result */ c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); /* calculate new step */ if (delta >= (2*size - 3) && c->step < 3) c->step++; else if (delta == 0 && c->step > 0) c->step--; return (short) c->predictor; } static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) { if(!c->step) { c->predictor = 0; c->step = 127; } c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8; c->predictor = av_clip_int16(c->predictor); c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; c->step = av_clip(c->step, 127, 24567); return c->predictor; } static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset) { int i, j; int shift,filter,f0,f1; int s_1,s_2; int d,s,t; out0 += sample_offset; if (channels == 1) out1 = out0 + 28; else out1 += sample_offset; for(i=0;i<4;i++) { shift = 12 - (in[4+i*2] & 15); filter = in[4+i*2] >> 4; if (filter > 4) { av_log(avctx, AV_LOG_ERROR, "Invalid XA-ADPCM filter %d (max. allowed is 4)\n", filter); return AVERROR_INVALIDDATA; } f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; s_1 = left->sample1; s_2 = left->sample2; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = sign_extend(d, 4); s = ( t<>6); s_2 = s_1; s_1 = av_clip_int16(s); out0[j] = s_1; } if (channels == 2) { left->sample1 = s_1; left->sample2 = s_2; s_1 = right->sample1; s_2 = right->sample2; } shift = 12 - (in[5+i*2] & 15); filter = in[5+i*2] >> 4; if (filter > 4) { av_log(avctx, AV_LOG_ERROR, "Invalid XA-ADPCM filter %d (max. allowed is 4)\n", filter); return AVERROR_INVALIDDATA; } f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = sign_extend(d >> 4, 4); s = ( t<>6); s_2 = s_1; s_1 = av_clip_int16(s); out1[j] = s_1; } if (channels == 2) { right->sample1 = s_1; right->sample2 = s_2; } else { left->sample1 = s_1; left->sample2 = s_2; } out0 += 28 * (3 - channels); out1 += 28 * (3 - channels); } return 0; } static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples) { ADPCMDecodeContext *c = avctx->priv_data; GetBitContext gb; const int *table; int k0, signmask, nb_bits, count; int size = buf_size*8; int i; init_get_bits(&gb, buf, size); //read bits & initial values nb_bits = get_bits(&gb, 2)+2; table = swf_index_tables[nb_bits-2]; k0 = 1 << (nb_bits-2); signmask = 1 << (nb_bits-1); while (get_bits_count(&gb) <= size - 22*avctx->channels) { for (i = 0; i < avctx->channels; i++) { *samples++ = c->status[i].predictor = get_sbits(&gb, 16); c->status[i].step_index = get_bits(&gb, 6); } for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { int i; for (i = 0; i < avctx->channels; i++) { // similar to IMA adpcm int delta = get_bits(&gb, nb_bits); int step = ff_adpcm_step_table[c->status[i].step_index]; long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 int k = k0; do { if (delta & k) vpdiff += step; step >>= 1; k >>= 1; } while(k); vpdiff += step; if (delta & signmask) c->status[i].predictor -= vpdiff; else c->status[i].predictor += vpdiff; c->status[i].step_index += table[delta & (~signmask)]; c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); c->status[i].predictor = av_clip_int16(c->status[i].predictor); *samples++ = c->status[i].predictor; } } } } /** * Get the number of samples that will be decoded from the packet. * In one case, this is actually the maximum number of samples possible to * decode with the given buf_size. * * @param[out] coded_samples set to the number of samples as coded in the * packet, or 0 if the codec does not encode the * number of samples in each frame. */ static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples) { ADPCMDecodeContext *s = avctx->priv_data; int nb_samples = 0; int ch = avctx->channels; int has_coded_samples = 0; int header_size; *coded_samples = 0; switch (avctx->codec->id) { /* constant, only check buf_size */ case AV_CODEC_ID_ADPCM_EA_XAS: if (buf_size < 76 * ch) return 0; nb_samples = 128; break; case AV_CODEC_ID_ADPCM_IMA_QT: if (buf_size < 34 * ch) return 0; nb_samples = 64; break; /* simple 4-bit adpcm */ case AV_CODEC_ID_ADPCM_CT: case AV_CODEC_ID_ADPCM_IMA_APC: case AV_CODEC_ID_ADPCM_IMA_EA_SEAD: case AV_CODEC_ID_ADPCM_IMA_WS: case AV_CODEC_ID_ADPCM_YAMAHA: nb_samples = buf_size * 2 / ch; break; } if (nb_samples) return nb_samples; /* simple 4-bit adpcm, with header */ header_size = 0; switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_4XM: case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break; case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break; case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break; } if (header_size > 0) return (buf_size - header_size) * 2 / ch; /* more complex formats */ switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_EA: has_coded_samples = 1; *coded_samples = bytestream2_get_le32(gb); *coded_samples -= *coded_samples % 28; nb_samples = (buf_size - 12) / 30 * 28; break; case AV_CODEC_ID_ADPCM_IMA_EA_EACS: has_coded_samples = 1; *coded_samples = bytestream2_get_le32(gb); nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch; break; case AV_CODEC_ID_ADPCM_EA_MAXIS_XA: nb_samples = (buf_size - ch) / ch * 2; break; case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: /* maximum number of samples */ /* has internal offsets and a per-frame switch to signal raw 16-bit */ has_coded_samples = 1; switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_EA_R1: header_size = 4 + 9 * ch; *coded_samples = bytestream2_get_le32(gb); break; case AV_CODEC_ID_ADPCM_EA_R2: header_size = 4 + 5 * ch; *coded_samples = bytestream2_get_le32(gb); break; case AV_CODEC_ID_ADPCM_EA_R3: header_size = 4 + 5 * ch; *coded_samples = bytestream2_get_be32(gb); break; } *coded_samples -= *coded_samples % 28; nb_samples = (buf_size - header_size) * 2 / ch; nb_samples -= nb_samples % 28; break; case AV_CODEC_ID_ADPCM_IMA_DK3: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch; break; case AV_CODEC_ID_ADPCM_IMA_DK4: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch; break; case AV_CODEC_ID_ADPCM_IMA_WAV: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8; break; case AV_CODEC_ID_ADPCM_MS: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch; break; case AV_CODEC_ID_ADPCM_SBPRO_2: case AV_CODEC_ID_ADPCM_SBPRO_3: case AV_CODEC_ID_ADPCM_SBPRO_4: { int samples_per_byte; switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break; case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break; case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break; } if (!s->status[0].step_index) { nb_samples++; buf_size -= ch; } nb_samples += buf_size * samples_per_byte / ch; break; } case AV_CODEC_ID_ADPCM_SWF: { int buf_bits = buf_size * 8 - 2; int nbits = (bytestream2_get_byte(gb) >> 6) + 2; int block_hdr_size = 22 * ch; int block_size = block_hdr_size + nbits * ch * 4095; int nblocks = buf_bits / block_size; int bits_left = buf_bits - nblocks * block_size; nb_samples = nblocks * 4096; if (bits_left >= block_hdr_size) nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch); break; } case AV_CODEC_ID_ADPCM_THP: has_coded_samples = 1; bytestream2_skip(gb, 4); // channel size *coded_samples = bytestream2_get_be32(gb); *coded_samples -= *coded_samples % 14; nb_samples = (buf_size - 80) / (8 * ch) * 14; break; case AV_CODEC_ID_ADPCM_XA: nb_samples = (buf_size / 128) * 224 / ch; break; } /* validate coded sample count */ if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples)) return AVERROR_INVALIDDATA; return nb_samples; } static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; ADPCMDecodeContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; short *samples; int16_t **samples_p; int st; /* stereo */ int count1, count2; int nb_samples, coded_samples, ret; GetByteContext gb; bytestream2_init(&gb, buf, buf_size); nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples); if (nb_samples <= 0) { av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n"); return AVERROR_INVALIDDATA; } /* get output buffer */ frame->nb_samples = nb_samples; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } samples = (short *)frame->data[0]; samples_p = (int16_t **)frame->extended_data; /* use coded_samples when applicable */ /* it is always <= nb_samples, so the output buffer will be large enough */ if (coded_samples) { if (coded_samples != nb_samples) av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n"); frame->nb_samples = nb_samples = coded_samples; } st = avctx->channels == 2 ? 1 : 0; switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_IMA_QT: /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples). Channel data is interleaved per-chunk. */ for (channel = 0; channel < avctx->channels; channel++) { int predictor; int step_index; cs = &(c->status[channel]); /* (pppppp) (piiiiiii) */ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ predictor = sign_extend(bytestream2_get_be16u(&gb), 16); step_index = predictor & 0x7F; predictor &= ~0x7F; if (cs->step_index == step_index) { int diff = predictor - cs->predictor; if (diff < 0) diff = - diff; if (diff > 0x7f) goto update; } else { update: cs->step_index = step_index; cs->predictor = predictor; } if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } samples = samples_p[channel]; for (m = 0; m < 64; m += 2) { int byte = bytestream2_get_byteu(&gb); samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3); samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3); } } break; case AV_CODEC_ID_ADPCM_IMA_WAV: for(i=0; ichannels; i++){ cs = &(c->status[i]); cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", i, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = 0; n < (nb_samples - 1) / 8; n++) { for (i = 0; i < avctx->channels; i++) { cs = &c->status[i]; samples = &samples_p[i][1 + n * 8]; for (m = 0; m < 8; m += 2) { int v = bytestream2_get_byteu(&gb); samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3); samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3); } } } break; case AV_CODEC_ID_ADPCM_4XM: for (i = 0; i < avctx->channels; i++) c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); for (i = 0; i < avctx->channels; i++) { c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (c->status[i].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", i, c->status[i].step_index); return AVERROR_INVALIDDATA; } } for (i = 0; i < avctx->channels; i++) { samples = (int16_t *)frame->data[i]; cs = &c->status[i]; for (n = nb_samples >> 1; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4); *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4); } } break; case AV_CODEC_ID_ADPCM_MS: { int block_predictor; block_predictor = bytestream2_get_byteu(&gb); if (block_predictor > 6) { av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n", block_predictor); return AVERROR_INVALIDDATA; } c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; if (st) { block_predictor = bytestream2_get_byteu(&gb); if (block_predictor > 6) { av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n", block_predictor); return AVERROR_INVALIDDATA; } c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; } c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); if (st){ c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); } c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); *samples++ = c->status[0].sample2; if (st) *samples++ = c->status[1].sample2; *samples++ = c->status[0].sample1; if (st) *samples++ = c->status[1].sample1; for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 ); *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F); } break; } case AV_CODEC_ID_ADPCM_IMA_DK4: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = (nb_samples >> (1 - st)) - 1; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); } break; case AV_CODEC_ID_ADPCM_IMA_DK3: { int last_byte = 0; int nibble; int decode_top_nibble_next = 0; int diff_channel; const int16_t *samples_end = samples + avctx->channels * nb_samples; bytestream2_skipu(&gb, 10); c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[0].step_index = bytestream2_get_byteu(&gb); c->status[1].step_index = bytestream2_get_byteu(&gb); if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n", c->status[0].step_index, c->status[1].step_index); return AVERROR_INVALIDDATA; } /* sign extend the predictors */ diff_channel = c->status[1].predictor; /* DK3 ADPCM support macro */ #define DK3_GET_NEXT_NIBBLE() \ if (decode_top_nibble_next) { \ nibble = last_byte >> 4; \ decode_top_nibble_next = 0; \ } else { \ last_byte = bytestream2_get_byteu(&gb); \ nibble = last_byte & 0x0F; \ decode_top_nibble_next = 1; \ } while (samples < samples_end) { /* for this algorithm, c->status[0] is the sum channel and * c->status[1] is the diff channel */ /* process the first predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the diff channel predictor */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[1], nibble, 3); /* process the first pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; /* process the second predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the second pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; } break; } case AV_CODEC_ID_ADPCM_IMA_ISS: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = nb_samples >> (1 - st); n > 0; n--) { int v1, v2; int v = bytestream2_get_byteu(&gb); /* nibbles are swapped for mono */ if (st) { v1 = v >> 4; v2 = v & 0x0F; } else { v2 = v >> 4; v1 = v & 0x0F; } *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3); } break; case AV_CODEC_ID_ADPCM_IMA_APC: while (bytestream2_get_bytes_left(&gb) > 0) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); } break; case AV_CODEC_ID_ADPCM_IMA_WS: if (c->vqa_version == 3) { for (channel = 0; channel < avctx->channels; channel++) { int16_t *smp = samples_p[channel]; for (n = nb_samples / 2; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); } } } else { for (n = nb_samples / 2; n > 0; n--) { for (channel = 0; channel < avctx->channels; channel++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); } samples += avctx->channels; } } bytestream2_seek(&gb, 0, SEEK_END); break; case AV_CODEC_ID_ADPCM_XA: { int16_t *out0 = samples_p[0]; int16_t *out1 = samples_p[1]; int samples_per_block = 28 * (3 - avctx->channels) * 4; int sample_offset = 0; while (bytestream2_get_bytes_left(&gb) >= 128) { if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb), &c->status[0], &c->status[1], avctx->channels, sample_offset)) < 0) return ret; bytestream2_skipu(&gb, 128); sample_offset += samples_per_block; } break; } case AV_CODEC_ID_ADPCM_IMA_EA_EACS: for (i=0; i<=st; i++) { c->status[i].step_index = bytestream2_get_le32u(&gb); if (c->status[i].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", i, c->status[i].step_index); return AVERROR_INVALIDDATA; } } for (i=0; i<=st; i++) c->status[i].predictor = bytestream2_get_le32u(&gb); for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3); } break; case AV_CODEC_ID_ADPCM_IMA_EA_SEAD: for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6); *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6); } break; case AV_CODEC_ID_ADPCM_EA: { int previous_left_sample, previous_right_sample; int current_left_sample, current_right_sample; int next_left_sample, next_right_sample; int coeff1l, coeff2l, coeff1r, coeff2r; int shift_left, shift_right; /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces, each coding 28 stereo samples. */ current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16); previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16); current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16); previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16); for (count1 = 0; count1 < nb_samples / 28; count1++) { int byte = bytestream2_get_byteu(&gb); coeff1l = ea_adpcm_table[ byte >> 4 ]; coeff2l = ea_adpcm_table[(byte >> 4 ) + 4]; coeff1r = ea_adpcm_table[ byte & 0x0F]; coeff2r = ea_adpcm_table[(byte & 0x0F) + 4]; byte = bytestream2_get_byteu(&gb); shift_left = 20 - (byte >> 4); shift_right = 20 - (byte & 0x0F); for (count2 = 0; count2 < 28; count2++) { byte = bytestream2_get_byteu(&gb); next_left_sample = sign_extend(byte >> 4, 4) << shift_left; next_right_sample = sign_extend(byte, 4) << shift_right; next_left_sample = (next_left_sample + (current_left_sample * coeff1l) + (previous_left_sample * coeff2l) + 0x80) >> 8; next_right_sample = (next_right_sample + (current_right_sample * coeff1r) + (previous_right_sample * coeff2r) + 0x80) >> 8; previous_left_sample = current_left_sample; current_left_sample = av_clip_int16(next_left_sample); previous_right_sample = current_right_sample; current_right_sample = av_clip_int16(next_right_sample); *samples++ = current_left_sample; *samples++ = current_right_sample; } } bytestream2_skip(&gb, 2); // Skip terminating 0x0000 break; } case AV_CODEC_ID_ADPCM_EA_MAXIS_XA: { int coeff[2][2], shift[2]; for(channel = 0; channel < avctx->channels; channel++) { int byte = bytestream2_get_byteu(&gb); for (i=0; i<2; i++) coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i]; shift[channel] = 20 - (byte & 0x0F); } for (count1 = 0; count1 < nb_samples / 2; count1++) { int byte[2]; byte[0] = bytestream2_get_byteu(&gb); if (st) byte[1] = bytestream2_get_byteu(&gb); for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ for(channel = 0; channel < avctx->channels; channel++) { int sample = sign_extend(byte[channel] >> i, 4) << shift[channel]; sample = (sample + c->status[channel].sample1 * coeff[channel][0] + c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; c->status[channel].sample2 = c->status[channel].sample1; c->status[channel].sample1 = av_clip_int16(sample); *samples++ = c->status[channel].sample1; } } } bytestream2_seek(&gb, 0, SEEK_END); break; } case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: { /* channel numbering 2chan: 0=fl, 1=fr 4chan: 0=fl, 1=rl, 2=fr, 3=rr 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3; int previous_sample, current_sample, next_sample; int coeff1, coeff2; int shift; unsigned int channel; uint16_t *samplesC; int count = 0; int offsets[6]; for (channel=0; channelchannels; channel++) offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) : bytestream2_get_le32(&gb)) + (avctx->channels + 1) * 4; for (channel=0; channelchannels; channel++) { bytestream2_seek(&gb, offsets[channel], SEEK_SET); samplesC = samples_p[channel]; if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) { current_sample = sign_extend(bytestream2_get_le16(&gb), 16); previous_sample = sign_extend(bytestream2_get_le16(&gb), 16); } else { current_sample = c->status[channel].predictor; previous_sample = c->status[channel].prev_sample; } for (count1 = 0; count1 < nb_samples / 28; count1++) { int byte = bytestream2_get_byte(&gb); if (byte == 0xEE) { /* only seen in R2 and R3 */ current_sample = sign_extend(bytestream2_get_be16(&gb), 16); previous_sample = sign_extend(bytestream2_get_be16(&gb), 16); for (count2=0; count2<28; count2++) *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16); } else { coeff1 = ea_adpcm_table[ byte >> 4 ]; coeff2 = ea_adpcm_table[(byte >> 4) + 4]; shift = 20 - (byte & 0x0F); for (count2=0; count2<28; count2++) { if (count2 & 1) next_sample = sign_extend(byte, 4) << shift; else { byte = bytestream2_get_byte(&gb); next_sample = sign_extend(byte >> 4, 4) << shift; } next_sample += (current_sample * coeff1) + (previous_sample * coeff2); next_sample = av_clip_int16(next_sample >> 8); previous_sample = current_sample; current_sample = next_sample; *samplesC++ = current_sample; } } } if (!count) { count = count1; } else if (count != count1) { av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n"); count = FFMAX(count, count1); } if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) { c->status[channel].predictor = current_sample; c->status[channel].prev_sample = previous_sample; } } frame->nb_samples = count * 28; bytestream2_seek(&gb, 0, SEEK_END); break; } case AV_CODEC_ID_ADPCM_EA_XAS: for (channel=0; channelchannels; channel++) { int coeff[2][4], shift[4]; int16_t *s = samples_p[channel]; for (n = 0; n < 4; n++, s += 32) { int val = sign_extend(bytestream2_get_le16u(&gb), 16); for (i=0; i<2; i++) coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i]; s[0] = val & ~0x0F; val = sign_extend(bytestream2_get_le16u(&gb), 16); shift[n] = 20 - (val & 0x0F); s[1] = val & ~0x0F; } for (m=2; m<32; m+=2) { s = &samples_p[channel][m]; for (n = 0; n < 4; n++, s += 32) { int level, pred; int byte = bytestream2_get_byteu(&gb); level = sign_extend(byte >> 4, 4) << shift[n]; pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n]; s[0] = av_clip_int16((level + pred + 0x80) >> 8); level = sign_extend(byte, 4) << shift[n]; pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n]; s[1] = av_clip_int16((level + pred + 0x80) >> 8); } } } break; case AV_CODEC_ID_ADPCM_IMA_AMV: case AV_CODEC_ID_ADPCM_IMA_SMJPEG: if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) { c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[0].step_index = bytestream2_get_le16u(&gb); bytestream2_skipu(&gb, 4); } else { c->status[0].predictor = sign_extend(bytestream2_get_be16u(&gb), 16); c->status[0].step_index = bytestream2_get_byteu(&gb); bytestream2_skipu(&gb, 1); } if (c->status[0].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", c->status[0].step_index); return AVERROR_INVALIDDATA; } for (n = nb_samples >> (1 - st); n > 0; n--) { int hi, lo, v = bytestream2_get_byteu(&gb); if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) { hi = v & 0x0F; lo = v >> 4; } else { lo = v & 0x0F; hi = v >> 4; } *samples++ = adpcm_ima_expand_nibble(&c->status[0], lo, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], hi, 3); } break; case AV_CODEC_ID_ADPCM_CT: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 ); *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F); } break; case AV_CODEC_ID_ADPCM_SBPRO_4: case AV_CODEC_ID_ADPCM_SBPRO_3: case AV_CODEC_ID_ADPCM_SBPRO_2: if (!c->status[0].step_index) { /* the first byte is a raw sample */ *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80); if (st) *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80); c->status[0].step_index = 1; nb_samples--; } if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) { for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte >> 4, 4, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], byte & 0x0F, 4, 0); } } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) { for (n = nb_samples / 3; n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte >> 5 , 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (byte >> 2) & 0x07, 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte & 0x03, 2, 0); } } else { for (n = nb_samples >> (2 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte >> 6 , 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], (byte >> 4) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (byte >> 2) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], byte & 0x03, 2, 2); } } break; case AV_CODEC_ID_ADPCM_SWF: adpcm_swf_decode(avctx, buf, buf_size, samples); bytestream2_seek(&gb, 0, SEEK_END); break; case AV_CODEC_ID_ADPCM_YAMAHA: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 ); } break; case AV_CODEC_ID_ADPCM_THP: { int table[2][16]; int prev[2][2]; int ch; for (i = 0; i < 2; i++) for (n = 0; n < 16; n++) table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16); /* Initialize the previous sample. */ for (i = 0; i < 2; i++) for (n = 0; n < 2; n++) prev[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16); for (ch = 0; ch <= st; ch++) { samples = samples_p[ch]; /* Read in every sample for this channel. */ for (i = 0; i < nb_samples / 14; i++) { int byte = bytestream2_get_byteu(&gb); int index = (byte >> 4) & 7; unsigned int exp = byte & 0x0F; int factor1 = table[ch][index * 2]; int factor2 = table[ch][index * 2 + 1]; /* Decode 14 samples. */ for (n = 0; n < 14; n++) { int32_t sampledat; if (n & 1) { sampledat = sign_extend(byte, 4); } else { byte = bytestream2_get_byteu(&gb); sampledat = sign_extend(byte >> 4, 4); } sampledat = ((prev[ch][0]*factor1 + prev[ch][1]*factor2) >> 11) + (sampledat << exp); *samples = av_clip_int16(sampledat); prev[ch][1] = prev[ch][0]; prev[ch][0] = *samples++; } } } break; } default: return -1; } *got_frame_ptr = 1; return bytestream2_tell(&gb); } static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }; static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }; static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE }; #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \ AVCodec ff_ ## name_ ## _decoder = { \ .name = #name_, \ .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ .type = AVMEDIA_TYPE_AUDIO, \ .id = id_, \ .priv_data_size = sizeof(ADPCMDecodeContext), \ .init = adpcm_decode_init, \ .decode = adpcm_decode_frame, \ .capabilities = AV_CODEC_CAP_DR1, \ .sample_fmts = sample_fmts_, \ } /* Note: Do not forget to add new entries to the Makefile as well. */ ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");