From 1ab5a780424ae8755858e153def1173a50a44e4c Mon Sep 17 00:00:00 2001 From: Jan Ekström Date: Mon, 20 Aug 2012 12:15:34 +0300 Subject: lavc: add Ut Video encoder Signed-off-by: Anton Khirnov --- libavcodec/utvideoenc.c | 735 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 735 insertions(+) create mode 100644 libavcodec/utvideoenc.c (limited to 'libavcodec/utvideoenc.c') diff --git a/libavcodec/utvideoenc.c b/libavcodec/utvideoenc.c new file mode 100644 index 0000000000..4a82046530 --- /dev/null +++ b/libavcodec/utvideoenc.c @@ -0,0 +1,735 @@ +/* + * Ut Video encoder + * Copyright (c) 2012 Jan Ekström + * + * This file is part of Libav. + * + * Libav is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * Libav is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with Libav; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * Ut Video encoder + */ + +#include "libavutil/intreadwrite.h" +#include "avcodec.h" +#include "internal.h" +#include "bytestream.h" +#include "put_bits.h" +#include "dsputil.h" +#include "mathops.h" +#include "utvideo.h" + +/* Compare huffentry symbols */ +static int huff_cmp_sym(const void *a, const void *b) +{ + const HuffEntry *aa = a, *bb = b; + return aa->sym - bb->sym; +} + +static av_cold int utvideo_encode_close(AVCodecContext *avctx) +{ + UtvideoContext *c = avctx->priv_data; + + av_freep(&avctx->coded_frame); + av_freep(&c->slice_bits); + av_freep(&c->slice_buffer); + + return 0; +} + +static av_cold int utvideo_encode_init(AVCodecContext *avctx) +{ + UtvideoContext *c = avctx->priv_data; + + uint32_t original_format; + + c->avctx = avctx; + c->frame_info_size = 4; + + switch (avctx->pix_fmt) { + case PIX_FMT_RGB24: + c->planes = 3; + avctx->codec_tag = MKTAG('U', 'L', 'R', 'G'); + original_format = UTVIDEO_RGB; + break; + case PIX_FMT_RGBA: + c->planes = 4; + avctx->codec_tag = MKTAG('U', 'L', 'R', 'A'); + original_format = UTVIDEO_RGBA; + break; + case PIX_FMT_YUV420P: + if (avctx->width & 1 || avctx->height & 1) { + av_log(avctx, AV_LOG_ERROR, + "4:2:0 video requires even width and height.\n"); + return AVERROR_INVALIDDATA; + } + c->planes = 3; + avctx->codec_tag = MKTAG('U', 'L', 'Y', '0'); + original_format = UTVIDEO_420; + break; + case PIX_FMT_YUV422P: + if (avctx->width & 1) { + av_log(avctx, AV_LOG_ERROR, + "4:2:2 video requires even width.\n"); + return AVERROR_INVALIDDATA; + } + c->planes = 3; + avctx->codec_tag = MKTAG('U', 'L', 'Y', '2'); + original_format = UTVIDEO_422; + break; + default: + av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n", + avctx->pix_fmt); + return AVERROR_INVALIDDATA; + } + + ff_dsputil_init(&c->dsp, avctx); + + /* Check the prediction method, and error out if unsupported */ + if (avctx->prediction_method < 0 || avctx->prediction_method > 4) { + av_log(avctx, AV_LOG_WARNING, + "Prediction method %d is not supported in Ut Video.\n", + avctx->prediction_method); + return AVERROR_OPTION_NOT_FOUND; + } + + if (avctx->prediction_method == FF_PRED_PLANE) { + av_log(avctx, AV_LOG_ERROR, + "Plane prediction is not supported in Ut Video.\n"); + return AVERROR_OPTION_NOT_FOUND; + } + + /* Convert from libavcodec prediction type to Ut Video's */ + c->frame_pred = ff_ut_pred_order[avctx->prediction_method]; + + if (c->frame_pred == PRED_GRADIENT) { + av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n"); + return AVERROR_OPTION_NOT_FOUND; + } + + avctx->coded_frame = avcodec_alloc_frame(); + + if (!avctx->coded_frame) { + av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n"); + utvideo_encode_close(avctx); + return AVERROR(ENOMEM); + } + + /* extradata size is 4 * 32bit */ + avctx->extradata_size = 16; + + avctx->extradata = av_mallocz(avctx->extradata_size + + FF_INPUT_BUFFER_PADDING_SIZE); + + if (!avctx->extradata) { + av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n"); + utvideo_encode_close(avctx); + return AVERROR(ENOMEM); + } + + c->slice_buffer = av_malloc(avctx->width * avctx->height + + FF_INPUT_BUFFER_PADDING_SIZE); + + if (!c->slice_buffer) { + av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n"); + utvideo_encode_close(avctx); + return AVERROR(ENOMEM); + } + + /* + * Set the version of the encoder. + * Last byte is "implementation ID", which is + * obtained from the creator of the format. + * Libavcodec has been assigned with the ID 0xF0. + */ + AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0)); + + /* + * Set the "original format" + * Not used for anything during decoding. + */ + AV_WL32(avctx->extradata + 4, original_format); + + /* Write 4 as the 'frame info size' */ + AV_WL32(avctx->extradata + 8, c->frame_info_size); + + /* + * Set how many slices are going to be used. + * Set one slice for now. + */ + c->slices = 1; + + /* Set compression mode */ + c->compression = COMP_HUFF; + + /* + * Set the encoding flags: + * - Slice count minus 1 + * - Interlaced encoding mode flag, set to zero for now. + * - Compression mode (none/huff) + * And write the flags. + */ + c->flags = (c->slices - 1) << 24; + c->flags |= 0 << 11; // bit field to signal interlaced encoding mode + c->flags |= c->compression; + + AV_WL32(avctx->extradata + 12, c->flags); + + return 0; +} + +static void mangle_rgb_planes(uint8_t *src, int step, int stride, int width, + int height) +{ + int i, j; + uint8_t r, g, b; + + for (j = 0; j < height; j++) { + for (i = 0; i < width * step; i += step) { + r = src[i]; + g = src[i + 1]; + b = src[i + 2]; + + src[i] = r - g + 0x80; + src[i + 2] = b - g + 0x80; + } + src += stride; + } +} + +/* Write data to a plane, no prediction applied */ +static void write_plane(uint8_t *src, uint8_t *dst, int step, int stride, + int width, int height) +{ + int i, j; + + for (j = 0; j < height; j++) { + for (i = 0; i < width * step; i += step) + *dst++ = src[i]; + + src += stride; + } +} + +/* Write data to a plane with left prediction */ +static void left_predict(uint8_t *src, uint8_t *dst, int step, int stride, + int width, int height) +{ + int i, j; + uint8_t prev; + + prev = 0x80; /* Set the initial value */ + for (j = 0; j < height; j++) { + for (i = 0; i < width * step; i += step) { + *dst++ = src[i] - prev; + prev = src[i]; + } + src += stride; + } +} + +/* Write data to a plane with median prediction */ +static void median_predict(uint8_t *src, uint8_t *dst, int step, int stride, + int width, int height) +{ + int i, j; + int A, B, C; + uint8_t prev; + + /* First line uses left neighbour prediction */ + prev = 0x80; /* Set the initial value */ + for (i = 0; i < width * step; i += step) { + *dst++ = src[i] - prev; + prev = src[i]; + } + + if (height == 1) + return; + + src += stride; + + /* + * Second line uses top prediction for the first sample, + * and median for the rest. + */ + C = src[-stride]; + *dst++ = src[0] - C; + A = src[0]; + for (i = step; i < width * step; i += step) { + B = src[i - stride]; + *dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF); + C = B; + A = src[i]; + } + + src += stride; + + /* Rest of the coded part uses median prediction */ + for (j = 2; j < height; j++) { + for (i = 0; i < width * step; i += step) { + B = src[i - stride]; + *dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF); + C = B; + A = src[i]; + } + src += stride; + } +} + +/* Count the usage of values in a plane */ +static void count_usage(uint8_t *src, int width, + int height, uint32_t *counts) +{ + int i, j; + + for (j = 0; j < height; j++) { + for (i = 0; i < width; i++) { + counts[src[i]]++; + } + src += width; + } +} + +static uint32_t add_weights(uint32_t w1, uint32_t w2) +{ + uint32_t max = (w1 & 0xFF) > (w2 & 0xFF) ? (w1 & 0xFF) : (w2 & 0xFF); + + return ((w1 & 0xFFFFFF00) + (w2 & 0xFFFFFF00)) | (1 + max); +} + +static void up_heap(uint32_t val, uint32_t *heap, uint32_t *weights) +{ + uint32_t initial_val = heap[val]; + + while (weights[initial_val] < weights[heap[val >> 1]]) { + heap[val] = heap[val >> 1]; + val >>= 1; + } + + heap[val] = initial_val; +} + +static void down_heap(uint32_t nr_heap, uint32_t *heap, uint32_t *weights) +{ + uint32_t val = 1; + uint32_t val2; + uint32_t initial_val = heap[val]; + + while (1) { + val2 = val << 1; + + if (val2 > nr_heap) + break; + + if (val2 < nr_heap && weights[heap[val2 + 1]] < weights[heap[val2]]) + val2++; + + if (weights[initial_val] < weights[heap[val2]]) + break; + + heap[val] = heap[val2]; + + val = val2; + } + + heap[val] = initial_val; +} + +/* Calculate the huffman code lengths from value counts */ +static void calculate_code_lengths(uint8_t *lengths, uint32_t *counts) +{ + uint32_t nr_nodes, nr_heap, node1, node2; + int i, j; + int32_t k; + + /* Heap and node entries start from 1 */ + uint32_t weights[512]; + uint32_t heap[512]; + int32_t parents[512]; + + /* Set initial weights */ + for (i = 0; i < 256; i++) + weights[i + 1] = (counts[i] ? counts[i] : 1) << 8; + + nr_nodes = 256; + nr_heap = 0; + + heap[0] = 0; + weights[0] = 0; + parents[0] = -2; + + /* Create initial nodes */ + for (i = 1; i <= 256; i++) { + parents[i] = -1; + + heap[++nr_heap] = i; + up_heap(nr_heap, heap, weights); + } + + /* Build the tree */ + while (nr_heap > 1) { + node1 = heap[1]; + heap[1] = heap[nr_heap--]; + + down_heap(nr_heap, heap, weights); + + node2 = heap[1]; + heap[1] = heap[nr_heap--]; + + down_heap(nr_heap, heap, weights); + + nr_nodes++; + + parents[node1] = parents[node2] = nr_nodes; + weights[nr_nodes] = add_weights(weights[node1], weights[node2]); + parents[nr_nodes] = -1; + + heap[++nr_heap] = nr_nodes; + + up_heap(nr_heap, heap, weights); + } + + /* Generate lengths */ + for (i = 1; i <= 256; i++) { + j = 0; + k = i; + + while (parents[k] >= 0) { + k = parents[k]; + j++; + } + + lengths[i - 1] = j; + } +} + +/* Calculate the actual huffman codes from the code lengths */ +static void calculate_codes(HuffEntry *he) +{ + int last, i; + uint32_t code; + + qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len); + + last = 255; + while (he[last].len == 255 && last) + last--; + + code = 1; + for (i = last; i >= 0; i--) { + he[i].code = code >> (32 - he[i].len); + code += 0x80000000u >> (he[i].len - 1); + } + + qsort(he, 256, sizeof(*he), huff_cmp_sym); +} + +/* Write huffman bit codes to a memory block */ +static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size, + int width, int height, HuffEntry *he) +{ + PutBitContext pb; + int i, j; + int count; + + init_put_bits(&pb, dst, dst_size); + + /* Write the codes */ + for (j = 0; j < height; j++) { + for (i = 0; i < width; i++) + put_bits(&pb, he[src[i]].len, he[src[i]].code); + + src += width; + } + + /* Pad output to a 32bit boundary */ + count = put_bits_count(&pb) & 0x1F; + + if (count) + put_bits(&pb, 32 - count, 0); + + /* Get the amount of bits written */ + count = put_bits_count(&pb); + + /* Flush the rest with zeroes */ + flush_put_bits(&pb); + + return count; +} + +static int encode_plane(AVCodecContext *avctx, uint8_t *src, + uint8_t *dst, int step, int stride, + int width, int height, PutByteContext *pb) +{ + UtvideoContext *c = avctx->priv_data; + uint8_t lengths[256]; + uint32_t counts[256] = { 0 }; + + HuffEntry he[256]; + + uint32_t offset = 0, slice_len = 0; + int i, sstart, send = 0; + int symbol; + + /* Do prediction / make planes */ + switch (c->frame_pred) { + case PRED_NONE: + for (i = 0; i < c->slices; i++) { + sstart = send; + send = height * (i + 1) / c->slices; + write_plane(src + sstart * stride, dst + sstart * width, + step, stride, width, send - sstart); + } + break; + case PRED_LEFT: + for (i = 0; i < c->slices; i++) { + sstart = send; + send = height * (i + 1) / c->slices; + left_predict(src + sstart * stride, dst + sstart * width, + step, stride, width, send - sstart); + } + break; + case PRED_MEDIAN: + for (i = 0; i < c->slices; i++) { + sstart = send; + send = height * (i + 1) / c->slices; + median_predict(src + sstart * stride, dst + sstart * width, + step, stride, width, send - sstart); + } + break; + default: + av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n", + c->frame_pred); + return AVERROR_OPTION_NOT_FOUND; + } + + /* Count the usage of values */ + count_usage(dst, width, height, counts); + + /* Check for a special case where only one symbol was used */ + for (symbol = 0; symbol < 256; symbol++) { + /* If non-zero count is found, see if it matches width * height */ + if (counts[symbol]) { + /* Special case if only one symbol was used */ + if (counts[symbol] == width * height) { + /* + * Write a zero for the single symbol + * used in the plane, else 0xFF. + */ + for (i = 0; i < 256; i++) { + if (i == symbol) + bytestream2_put_byte(pb, 0); + else + bytestream2_put_byte(pb, 0xFF); + } + + /* Write zeroes for lengths */ + for (i = 0; i < c->slices; i++) + bytestream2_put_le32(pb, 0); + + /* And that's all for that plane folks */ + return 0; + } + break; + } + } + + /* Calculate huffman lengths */ + calculate_code_lengths(lengths, counts); + + /* + * Write the plane's header into the output packet: + * - huffman code lengths (256 bytes) + * - slice end offsets (gotten from the slice lengths) + */ + for (i = 0; i < 256; i++) { + bytestream2_put_byte(pb, lengths[i]); + + he[i].len = lengths[i]; + he[i].sym = i; + } + + /* Calculate the huffman codes themselves */ + calculate_codes(he); + + send = 0; + for (i = 0; i < c->slices; i++) { + sstart = send; + send = height * (i + 1) / c->slices; + + /* + * Write the huffman codes to a buffer, + * get the offset in bits and convert to bytes. + */ + offset += write_huff_codes(dst + sstart * width, c->slice_bits, + width * (send - sstart), width, + send - sstart, he) >> 3; + + slice_len = offset - slice_len; + + /* Byteswap the written huffman codes */ + c->dsp.bswap_buf((uint32_t *) c->slice_bits, + (uint32_t *) c->slice_bits, + slice_len >> 2); + + /* Write the offset to the stream */ + bytestream2_put_le32(pb, offset); + + /* Seek to the data part of the packet */ + bytestream2_seek_p(pb, 4 * (c->slices - i - 1) + + offset - slice_len, SEEK_CUR); + + /* Write the slices' data into the output packet */ + bytestream2_put_buffer(pb, c->slice_bits, slice_len); + + /* Seek back to the slice offsets */ + bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset, + SEEK_CUR); + + slice_len = offset; + } + + /* And at the end seek to the end of written slice(s) */ + bytestream2_seek_p(pb, offset, SEEK_CUR); + + return 0; +} + +static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt, + const AVFrame *pic, int *got_packet) +{ + UtvideoContext *c = avctx->priv_data; + PutByteContext pb; + + uint32_t frame_info; + + uint8_t *dst; + + int width = avctx->width, height = avctx->height; + int i, ret = 0; + + /* Allocate a new packet if needed, and set it to the pointer dst */ + ret = ff_alloc_packet(pkt, (256 + 4 * c->slices + width * height) * + c->planes + 4); + + if (ret < 0) { + av_log(avctx, AV_LOG_ERROR, + "Error allocating the output packet, or the provided packet " + "was too small.\n"); + return ret; + } + + dst = pkt->data; + + bytestream2_init_writer(&pb, dst, pkt->size); + + av_fast_malloc(&c->slice_bits, &c->slice_bits_size, + width * height + FF_INPUT_BUFFER_PADDING_SIZE); + + if (!c->slice_bits) { + av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n"); + return AVERROR(ENOMEM); + } + + /* In case of RGB, mangle the planes to Ut Video's format */ + if (avctx->pix_fmt == PIX_FMT_RGBA || avctx->pix_fmt == PIX_FMT_RGB24) + mangle_rgb_planes(pic->data[0], c->planes, pic->linesize[0], width, + height); + + /* Deal with the planes */ + switch (avctx->pix_fmt) { + case PIX_FMT_RGB24: + case PIX_FMT_RGBA: + for (i = 0; i < c->planes; i++) { + ret = encode_plane(avctx, pic->data[0] + ff_ut_rgb_order[i], + c->slice_buffer, c->planes, pic->linesize[0], + width, height, &pb); + + if (ret) { + av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); + return ret; + } + } + break; + case PIX_FMT_YUV422P: + for (i = 0; i < c->planes; i++) { + ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1, + pic->linesize[i], width >> !!i, height, &pb); + + if (ret) { + av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); + return ret; + } + } + break; + case PIX_FMT_YUV420P: + for (i = 0; i < c->planes; i++) { + ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1, + pic->linesize[i], width >> !!i, height >> !!i, + &pb); + + if (ret) { + av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); + return ret; + } + } + break; + default: + av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n", + avctx->pix_fmt); + return AVERROR_INVALIDDATA; + } + + /* + * Write frame information (LE 32bit unsigned) + * into the output packet. + * Contains the prediction method. + */ + frame_info = c->frame_pred << 8; + bytestream2_put_le32(&pb, frame_info); + + /* + * At least currently Ut Video is IDR only. + * Set flags accordingly. + */ + avctx->coded_frame->reference = 0; + avctx->coded_frame->key_frame = 1; + avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; + + pkt->size = bytestream2_tell_p(&pb); + pkt->flags |= AV_PKT_FLAG_KEY; + + /* Packet should be done */ + *got_packet = 1; + + return 0; +} + +AVCodec ff_utvideo_encoder = { + .name = "utvideo", + .type = AVMEDIA_TYPE_VIDEO, + .id = CODEC_ID_UTVIDEO, + .priv_data_size = sizeof(UtvideoContext), + .init = utvideo_encode_init, + .encode2 = utvideo_encode_frame, + .close = utvideo_encode_close, + .pix_fmts = (const enum PixelFormat[]) { + PIX_FMT_RGB24, PIX_FMT_RGBA, PIX_FMT_YUV422P, + PIX_FMT_YUV420P, PIX_FMT_NONE + }, + .long_name = NULL_IF_CONFIG_SMALL("Ut Video"), +}; -- cgit v1.2.3