From 064698d381e1e7790f21b0199a8930ea04e2e942 Mon Sep 17 00:00:00 2001 From: Guillaume Martres Date: Sun, 11 Aug 2013 09:02:07 +0200 Subject: Add HEVC decoder MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Initially written by Guillaume Martres as a GSoC project. Further contributions by the OpenHEVC project and other developers, namely: Mickaël Raulet Seppo Tomperi Gildas Cocherel Khaled Jerbi Wassim Hamidouche Vittorio Giovara Jan Ekström Anton Khirnov Martin Storsjö Luca Barbato Yusuke Nakamura Reimar Döffinger Diego Biurrun Signed-off-by: Anton Khirnov --- libavcodec/hevc_mvs.c | 816 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 816 insertions(+) create mode 100644 libavcodec/hevc_mvs.c (limited to 'libavcodec/hevc_mvs.c') diff --git a/libavcodec/hevc_mvs.c b/libavcodec/hevc_mvs.c new file mode 100644 index 0000000000..49d5ff25d8 --- /dev/null +++ b/libavcodec/hevc_mvs.c @@ -0,0 +1,816 @@ +/* + * HEVC video decoder + * + * Copyright (C) 2012 - 2013 Guillaume Martres + * Copyright (C) 2013 Anand Meher Kotra + * + * This file is part of Libav. + * + * Libav is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * Libav is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with Libav; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "hevc.h" + +static const uint8_t l0_l1_cand_idx[12][2] = { + { 0, 1, }, + { 1, 0, }, + { 0, 2, }, + { 2, 0, }, + { 1, 2, }, + { 2, 1, }, + { 0, 3, }, + { 3, 0, }, + { 1, 3, }, + { 3, 1, }, + { 2, 3, }, + { 3, 2, }, +}; + +void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, + int nPbW, int nPbH) +{ + HEVCLocalContext *lc = &s->HEVClc; + int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); + int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); + + lc->na.cand_up = (lc->ctb_up_flag || y0b); + lc->na.cand_left = (lc->ctb_left_flag || x0b); + lc->na.cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up; + lc->na.cand_up_right_sap = + ((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ? + lc->ctb_up_right_flag && !y0b : lc->na.cand_up; + lc->na.cand_up_right = + ((x0b + nPbW) == (1 << s->sps->log2_ctb_size) ? + lc->ctb_up_right_flag && !y0b : lc->na.cand_up ) + && (x0 + nPbW) < lc->end_of_tiles_x; + lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left; +} + +/* + * 6.4.1 Derivation process for z-scan order block availability + */ +static int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr, + int xN, int yN) +{ +#define MIN_TB_ADDR_ZS(x, y) \ + s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)] + int Curr = MIN_TB_ADDR_ZS(xCurr >> s->sps->log2_min_tb_size, + yCurr >> s->sps->log2_min_tb_size); + int N; + + if (xN < 0 || yN < 0 || + xN >= s->sps->width || + yN >= s->sps->height) + return 0; + + N = MIN_TB_ADDR_ZS(xN >> s->sps->log2_min_tb_size, + yN >> s->sps->log2_min_tb_size); + + return N <= Curr; +} + +static int same_prediction_block(HEVCLocalContext *lc, int log2_cb_size, + int x0, int y0, int nPbW, int nPbH, + int xA1, int yA1, int partIdx) +{ + return !(nPbW << 1 == 1 << log2_cb_size && + nPbH << 1 == 1 << log2_cb_size && partIdx == 1 && + lc->cu.x + nPbW > xA1 && + lc->cu.y + nPbH <= yA1); +} + +/* + * 6.4.2 Derivation process for prediction block availability + */ +static int check_prediction_block_available(HEVCContext *s, int log2_cb_size, + int x0, int y0, int nPbW, int nPbH, + int xA1, int yA1, int partIdx) +{ + HEVCLocalContext *lc = &s->HEVClc; + + if (lc->cu.x < xA1 && lc->cu.y < yA1 && + (lc->cu.x + (1 << log2_cb_size)) > xA1 && + (lc->cu.y + (1 << log2_cb_size)) > yA1) + return same_prediction_block(lc, log2_cb_size, x0, y0, + nPbW, nPbH, xA1, yA1, partIdx); + else + return z_scan_block_avail(s, x0, y0, xA1, yA1); +} + +//check if the two luma locations belong to the same mostion estimation region +static int isDiffMER(HEVCContext *s, int xN, int yN, int xP, int yP) +{ + uint8_t plevel = s->pps->log2_parallel_merge_level; + + return xN >> plevel == xP >> plevel && + yN >> plevel == yP >> plevel; +} + +#define MATCH(x) (A.x == B.x) + +// check if the mv's and refidx are the same between A and B +static int compareMVrefidx(struct MvField A, struct MvField B) +{ + if (A.pred_flag[0] && A.pred_flag[1] && B.pred_flag[0] && B.pred_flag[1]) + return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y) && + MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y); + + if (A.pred_flag[0] && !A.pred_flag[1] && B.pred_flag[0] && !B.pred_flag[1]) + return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y); + + if (!A.pred_flag[0] && A.pred_flag[1] && !B.pred_flag[0] && B.pred_flag[1]) + return MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y); + + return 0; +} + +static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb) +{ + int tx, scale_factor; + + td = av_clip_int8_c(td); + tb = av_clip_int8_c(tb); + tx = (0x4000 + abs(td / 2)) / td; + scale_factor = av_clip_c((tb * tx + 32) >> 6, -4096, 4095); + dst->x = av_clip_int16_c((scale_factor * src->x + 127 + + (scale_factor * src->x < 0)) >> 8); + dst->y = av_clip_int16_c((scale_factor * src->y + 127 + + (scale_factor * src->y < 0)) >> 8); +} + +static int check_mvset(Mv *mvLXCol, Mv *mvCol, + int colPic, int poc, + RefPicList *refPicList, int X, int refIdxLx, + RefPicList *refPicList_col, int listCol, int refidxCol) +{ + int cur_lt = refPicList[X].isLongTerm[refIdxLx]; + int col_lt = refPicList_col[listCol].isLongTerm[refidxCol]; + int col_poc_diff, cur_poc_diff; + + if (cur_lt != col_lt) { + mvLXCol->x = 0; + mvLXCol->y = 0; + return 0; + } + + col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol]; + cur_poc_diff = poc - refPicList[X].list[refIdxLx]; + + if (!col_poc_diff) + col_poc_diff = 1; // error resilience + + if (cur_lt || col_poc_diff == cur_poc_diff) { + mvLXCol->x = mvCol->x; + mvLXCol->y = mvCol->y; + } else { + mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff); + } + return 1; +} + +#define CHECK_MVSET(l) \ + check_mvset(mvLXCol, temp_col.mv + l, \ + colPic, s->poc, \ + refPicList, X, refIdxLx, \ + refPicList_col, L ## l, temp_col.ref_idx[l]) + +// derive the motion vectors section 8.5.3.1.8 +static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col, + int refIdxLx, Mv *mvLXCol, int X, + int colPic, RefPicList *refPicList_col) +{ + RefPicList *refPicList = s->ref->refPicList; + + if (temp_col.is_intra) { + mvLXCol->x = 0; + mvLXCol->y = 0; + return 0; + } + + if (temp_col.pred_flag[0] == 0) + return CHECK_MVSET(1); + else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 0) + return CHECK_MVSET(0); + else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 1) { + int check_diffpicount = 0; + int i = 0; + for (i = 0; i < refPicList[0].nb_refs; i++) { + if (refPicList[0].list[i] > s->poc) + check_diffpicount++; + } + for (i = 0; i < refPicList[1].nb_refs; i++) { + if (refPicList[1].list[i] > s->poc) + check_diffpicount++; + } + if (check_diffpicount == 0 && X == 0) + return CHECK_MVSET(0); + else if (check_diffpicount == 0 && X == 1) + return CHECK_MVSET(1); + else { + if (s->sh.collocated_list == L1) + return CHECK_MVSET(0); + else + return CHECK_MVSET(1); + } + } + + return 0; +} + +#define TAB_MVF(x, y) \ + tab_mvf[(y) * min_pu_width + x] + +#define TAB_MVF_PU(v) \ + TAB_MVF(x ## v ## _pu, y ## v ## _pu) + +#define DERIVE_TEMPORAL_COLOCATED_MVS \ + derive_temporal_colocated_mvs(s, temp_col, \ + refIdxLx, mvLXCol, X, colPic, \ + ff_hevc_get_ref_list(s, ref, x, y)) + +/* + * 8.5.3.1.7 temporal luma motion vector prediction + */ +static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0, + int nPbW, int nPbH, int refIdxLx, + Mv *mvLXCol, int X) +{ + MvField *tab_mvf; + MvField temp_col; + int x, y, x_pu, y_pu; + int min_pu_width = s->sps->min_pu_width; + int availableFlagLXCol = 0; + int colPic; + + HEVCFrame *ref = s->ref->collocated_ref; + + if (!ref) + return 0; + + tab_mvf = ref->tab_mvf; + colPic = ref->poc; + + //bottom right collocated motion vector + x = x0 + nPbW; + y = y0 + nPbH; + + ff_thread_await_progress(&ref->tf, y, 0); + if (tab_mvf && + (y0 >> s->sps->log2_ctb_size) == (y >> s->sps->log2_ctb_size) && + y < s->sps->height && + x < s->sps->width) { + x = ((x >> 4) << 4); + y = ((y >> 4) << 4); + x_pu = x >> s->sps->log2_min_pu_size; + y_pu = y >> s->sps->log2_min_pu_size; + temp_col = TAB_MVF(x_pu, y_pu); + availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS; + } + + // derive center collocated motion vector + if (tab_mvf && !availableFlagLXCol) { + x = x0 + (nPbW >> 1); + y = y0 + (nPbH >> 1); + x = ((x >> 4) << 4); + y = ((y >> 4) << 4); + x_pu = x >> s->sps->log2_min_pu_size; + y_pu = y >> s->sps->log2_min_pu_size; + temp_col = TAB_MVF(x_pu, y_pu); + availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS; + } + return availableFlagLXCol; +} + +#define AVAILABLE(cand, v) \ + (cand && !TAB_MVF_PU(v).is_intra) + +#define PRED_BLOCK_AVAILABLE(v) \ + check_prediction_block_available(s, log2_cb_size, \ + x0, y0, nPbW, nPbH, \ + x ## v, y ## v, part_idx) + +#define COMPARE_MV_REFIDX(a, b) \ + compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b)) + +/* + * 8.5.3.1.2 Derivation process for spatial merging candidates + */ +static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0, + int nPbW, int nPbH, + int log2_cb_size, + int singleMCLFlag, int part_idx, + struct MvField mergecandlist[]) +{ + HEVCLocalContext *lc = &s->HEVClc; + RefPicList *refPicList = s->ref->refPicList; + MvField *tab_mvf = s->ref->tab_mvf; + + const int min_pu_width = s->sps->min_pu_width; + + const int cand_bottom_left = lc->na.cand_bottom_left; + const int cand_left = lc->na.cand_left; + const int cand_up_left = lc->na.cand_up_left; + const int cand_up = lc->na.cand_up; + const int cand_up_right = lc->na.cand_up_right_sap; + + const int xA1 = x0 - 1; + const int yA1 = y0 + nPbH - 1; + const int xA1_pu = xA1 >> s->sps->log2_min_pu_size; + const int yA1_pu = yA1 >> s->sps->log2_min_pu_size; + + const int xB1 = x0 + nPbW - 1; + const int yB1 = y0 - 1; + const int xB1_pu = xB1 >> s->sps->log2_min_pu_size; + const int yB1_pu = yB1 >> s->sps->log2_min_pu_size; + + const int xB0 = x0 + nPbW; + const int yB0 = y0 - 1; + const int xB0_pu = xB0 >> s->sps->log2_min_pu_size; + const int yB0_pu = yB0 >> s->sps->log2_min_pu_size; + + const int xA0 = x0 - 1; + const int yA0 = y0 + nPbH; + const int xA0_pu = xA0 >> s->sps->log2_min_pu_size; + const int yA0_pu = yA0 >> s->sps->log2_min_pu_size; + + const int xB2 = x0 - 1; + const int yB2 = y0 - 1; + const int xB2_pu = xB2 >> s->sps->log2_min_pu_size; + const int yB2_pu = yB2 >> s->sps->log2_min_pu_size; + + const int nb_refs = (s->sh.slice_type == P_SLICE) ? + s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]); + int check_MER = 1; + int check_MER_1 = 1; + + int zero_idx = 0; + + int nb_merge_cand = 0; + int nb_orig_merge_cand = 0; + + int is_available_a0; + int is_available_a1; + int is_available_b0; + int is_available_b1; + int is_available_b2; + int check_B0; + int check_A0; + + //first left spatial merge candidate + is_available_a1 = AVAILABLE(cand_left, A1); + + if (!singleMCLFlag && part_idx == 1 && + (lc->cu.part_mode == PART_Nx2N || + lc->cu.part_mode == PART_nLx2N || + lc->cu.part_mode == PART_nRx2N) || + isDiffMER(s, xA1, yA1, x0, y0)) { + is_available_a1 = 0; + } + + if (is_available_a1) + mergecandlist[nb_merge_cand++] = TAB_MVF_PU(A1); + + // above spatial merge candidate + is_available_b1 = AVAILABLE(cand_up, B1); + + if (!singleMCLFlag && part_idx == 1 && + (lc->cu.part_mode == PART_2NxN || + lc->cu.part_mode == PART_2NxnU || + lc->cu.part_mode == PART_2NxnD) || + isDiffMER(s, xB1, yB1, x0, y0)) { + is_available_b1 = 0; + } + + if (is_available_a1 && is_available_b1) + check_MER = !COMPARE_MV_REFIDX(B1, A1); + + if (is_available_b1 && check_MER) + mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B1); + + // above right spatial merge candidate + check_MER = 1; + check_B0 = PRED_BLOCK_AVAILABLE(B0); + + is_available_b0 = check_B0 && AVAILABLE(cand_up_right, B0); + + if (isDiffMER(s, xB0, yB0, x0, y0)) + is_available_b0 = 0; + + if (is_available_b1 && is_available_b0) + check_MER = !COMPARE_MV_REFIDX(B0, B1); + + if (is_available_b0 && check_MER) + mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B0); + + // left bottom spatial merge candidate + check_MER = 1; + check_A0 = PRED_BLOCK_AVAILABLE(A0); + + is_available_a0 = check_A0 && AVAILABLE(cand_bottom_left, A0); + + if (isDiffMER(s, xA0, yA0, x0, y0)) + is_available_a0 = 0; + + if (is_available_a1 && is_available_a0) + check_MER = !COMPARE_MV_REFIDX(A0, A1); + + if (is_available_a0 && check_MER) + mergecandlist[nb_merge_cand++] = TAB_MVF_PU(A0); + + // above left spatial merge candidate + check_MER = 1; + + is_available_b2 = AVAILABLE(cand_up_left, B2); + + if (isDiffMER(s, xB2, yB2, x0, y0)) + is_available_b2 = 0; + + if (is_available_a1 && is_available_b2) + check_MER = !COMPARE_MV_REFIDX(B2, A1); + + if (is_available_b1 && is_available_b2) + check_MER_1 = !COMPARE_MV_REFIDX(B2, B1); + + if (is_available_b2 && check_MER && check_MER_1 && nb_merge_cand != 4) + mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B2); + + // temporal motion vector candidate + if (s->sh.slice_temporal_mvp_enabled_flag && + nb_merge_cand < s->sh.max_num_merge_cand) { + Mv mv_l0_col, mv_l1_col; + int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, + 0, &mv_l0_col, 0); + int available_l1 = (s->sh.slice_type == B_SLICE) ? + temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH, + 0, &mv_l1_col, 1) : 0; + + if (available_l0 || available_l1) { + mergecandlist[nb_merge_cand].is_intra = 0; + mergecandlist[nb_merge_cand].pred_flag[0] = available_l0; + mergecandlist[nb_merge_cand].pred_flag[1] = available_l1; + if (available_l0) { + mergecandlist[nb_merge_cand].mv[0] = mv_l0_col; + mergecandlist[nb_merge_cand].ref_idx[0] = 0; + } + if (available_l1) { + mergecandlist[nb_merge_cand].mv[1] = mv_l1_col; + mergecandlist[nb_merge_cand].ref_idx[1] = 0; + } + nb_merge_cand++; + } + } + + nb_orig_merge_cand = nb_merge_cand; + + // combined bi-predictive merge candidates (applies for B slices) + if (s->sh.slice_type == B_SLICE && nb_orig_merge_cand > 1 && + nb_orig_merge_cand < s->sh.max_num_merge_cand) { + int comb_idx; + + for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand && + comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) { + int l0_cand_idx = l0_l1_cand_idx[comb_idx][0]; + int l1_cand_idx = l0_l1_cand_idx[comb_idx][1]; + MvField l0_cand = mergecandlist[l0_cand_idx]; + MvField l1_cand = mergecandlist[l1_cand_idx]; + + if (l0_cand.pred_flag[0] && l1_cand.pred_flag[1] && + (refPicList[0].list[l0_cand.ref_idx[0]] != + refPicList[1].list[l1_cand.ref_idx[1]] || + l0_cand.mv[0].x != l1_cand.mv[1].x || + l0_cand.mv[0].y != l1_cand.mv[1].y)) { + mergecandlist[nb_merge_cand].ref_idx[0] = l0_cand.ref_idx[0]; + mergecandlist[nb_merge_cand].ref_idx[1] = l1_cand.ref_idx[1]; + mergecandlist[nb_merge_cand].pred_flag[0] = 1; + mergecandlist[nb_merge_cand].pred_flag[1] = 1; + mergecandlist[nb_merge_cand].mv[0].x = l0_cand.mv[0].x; + mergecandlist[nb_merge_cand].mv[0].y = l0_cand.mv[0].y; + mergecandlist[nb_merge_cand].mv[1].x = l1_cand.mv[1].x; + mergecandlist[nb_merge_cand].mv[1].y = l1_cand.mv[1].y; + mergecandlist[nb_merge_cand].is_intra = 0; + nb_merge_cand++; + } + } + } + + // append Zero motion vector candidates + while (nb_merge_cand < s->sh.max_num_merge_cand) { + mergecandlist[nb_merge_cand].pred_flag[0] = 1; + mergecandlist[nb_merge_cand].pred_flag[1] = s->sh.slice_type == B_SLICE; + mergecandlist[nb_merge_cand].mv[0].x = 0; + mergecandlist[nb_merge_cand].mv[0].y = 0; + mergecandlist[nb_merge_cand].mv[1].x = 0; + mergecandlist[nb_merge_cand].mv[1].y = 0; + mergecandlist[nb_merge_cand].is_intra = 0; + mergecandlist[nb_merge_cand].ref_idx[0] = zero_idx < nb_refs ? zero_idx : 0; + mergecandlist[nb_merge_cand].ref_idx[1] = zero_idx < nb_refs ? zero_idx : 0; + + nb_merge_cand++; + zero_idx++; + } +} + +/* + * 8.5.3.1.1 Derivation process of luma Mvs for merge mode + */ +void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, + int nPbH, int log2_cb_size, int part_idx, + int merge_idx, MvField *mv) +{ + int singleMCLFlag = 0; + int nCS = 1 << log2_cb_size; + struct MvField mergecand_list[MRG_MAX_NUM_CANDS] = { { { { 0 } } } }; + int nPbW2 = nPbW; + int nPbH2 = nPbH; + HEVCLocalContext *lc = &s->HEVClc; + + if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) { + singleMCLFlag = 1; + x0 = lc->cu.x; + y0 = lc->cu.y; + nPbW = nCS; + nPbH = nCS; + part_idx = 0; + } + + ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); + derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size, + singleMCLFlag, part_idx, mergecand_list); + + if (mergecand_list[merge_idx].pred_flag[0] == 1 && + mergecand_list[merge_idx].pred_flag[1] == 1 && + (nPbW2 + nPbH2) == 12) { + mergecand_list[merge_idx].ref_idx[1] = -1; + mergecand_list[merge_idx].pred_flag[1] = 0; + } + + *mv = mergecand_list[merge_idx]; +} + +static av_always_inline void dist_scale(HEVCContext *s, Mv *mv, + int min_pu_width, int x, int y, + int elist, int ref_idx_curr, int ref_idx) +{ + RefPicList *refPicList = s->ref->refPicList; + MvField *tab_mvf = s->ref->tab_mvf; + int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]]; + int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx]; + + if (ref_pic_elist != ref_pic_curr) + mv_scale(mv, mv, s->poc - ref_pic_elist, s->poc - ref_pic_curr); +} + +static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index, + Mv *mv, int ref_idx_curr, int ref_idx) +{ + MvField *tab_mvf = s->ref->tab_mvf; + int min_pu_width = s->sps->min_pu_width; + + RefPicList *refPicList = s->ref->refPicList; + + if (TAB_MVF(x, y).pred_flag[pred_flag_index] == 1 && + refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) { + *mv = TAB_MVF(x, y).mv[pred_flag_index]; + return 1; + } + return 0; +} + +static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index, + Mv *mv, int ref_idx_curr, int ref_idx) +{ + MvField *tab_mvf = s->ref->tab_mvf; + int min_pu_width = s->sps->min_pu_width; + + RefPicList *refPicList = s->ref->refPicList; + int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx]; + + int colIsLongTerm = + refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])]; + + if (TAB_MVF(x, y).pred_flag[pred_flag_index] && + colIsLongTerm == currIsLongTerm) { + *mv = TAB_MVF(x, y).mv[pred_flag_index]; + if (!currIsLongTerm) + dist_scale(s, mv, min_pu_width, x, y, + pred_flag_index, ref_idx_curr, ref_idx); + return 1; + } + return 0; +} + +#define MP_MX(v, pred, mx) \ + mv_mp_mode_mx(s, x ## v ## _pu, y ## v ## _pu, pred, \ + &mx, ref_idx_curr, ref_idx) + +#define MP_MX_LT(v, pred, mx) \ + mv_mp_mode_mx_lt(s, x ## v ## _pu, y ## v ## _pu, pred, \ + &mx, ref_idx_curr, ref_idx) + +void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, + int nPbH, int log2_cb_size, int part_idx, + int merge_idx, MvField *mv, + int mvp_lx_flag, int LX) +{ + HEVCLocalContext *lc = &s->HEVClc; + MvField *tab_mvf = s->ref->tab_mvf; + int isScaledFlag_L0 = 0; + int availableFlagLXA0 = 0; + int availableFlagLXB0 = 0; + int numMVPCandLX = 0; + int min_pu_width = s->sps->min_pu_width; + + int xA0, yA0; + int xA0_pu, yA0_pu; + int is_available_a0; + + int xA1, yA1; + int xA1_pu, yA1_pu; + int is_available_a1; + + int xB0, yB0; + int xB0_pu, yB0_pu; + int is_available_b0; + + int xB1, yB1; + int xB1_pu = 0, yB1_pu = 0; + int is_available_b1 = 0; + + int xB2, yB2; + int xB2_pu = 0, yB2_pu = 0; + int is_available_b2 = 0; + Mv mvpcand_list[2] = { { 0 } }; + Mv mxA = { 0 }; + Mv mxB = { 0 }; + int ref_idx_curr = 0; + int ref_idx = 0; + int pred_flag_index_l0; + int pred_flag_index_l1; + int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1); + int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1); + + int cand_up = (lc->ctb_up_flag || y0b); + int cand_left = (lc->ctb_left_flag || x0b); + int cand_up_left = + (!x0b && !y0b) ? lc->ctb_up_left_flag : cand_left && cand_up; + int cand_up_right = + (x0b + nPbW == (1 << s->sps->log2_ctb_size) || + x0 + nPbW >= lc->end_of_tiles_x) ? lc->ctb_up_right_flag && !y0b + : cand_up; + int cand_bottom_left = (y0 + nPbH >= lc->end_of_tiles_y) ? 0 : cand_left; + + ref_idx_curr = LX; + ref_idx = mv->ref_idx[LX]; + pred_flag_index_l0 = LX; + pred_flag_index_l1 = !LX; + + // left bottom spatial candidate + xA0 = x0 - 1; + yA0 = y0 + nPbH; + xA0_pu = xA0 >> s->sps->log2_min_pu_size; + yA0_pu = yA0 >> s->sps->log2_min_pu_size; + + is_available_a0 = PRED_BLOCK_AVAILABLE(A0) && AVAILABLE(cand_bottom_left, A0); + + //left spatial merge candidate + xA1 = x0 - 1; + yA1 = y0 + nPbH - 1; + xA1_pu = xA1 >> s->sps->log2_min_pu_size; + yA1_pu = yA1 >> s->sps->log2_min_pu_size; + + is_available_a1 = AVAILABLE(cand_left, A1); + if (is_available_a0 || is_available_a1) + isScaledFlag_L0 = 1; + + if (is_available_a0) { + availableFlagLXA0 = MP_MX(A0, pred_flag_index_l0, mxA); + if (!availableFlagLXA0) + availableFlagLXA0 = MP_MX(A0, pred_flag_index_l1, mxA); + } + + if (is_available_a1 && !availableFlagLXA0) { + availableFlagLXA0 = MP_MX(A1, pred_flag_index_l0, mxA); + if (!availableFlagLXA0) + availableFlagLXA0 = MP_MX(A1, pred_flag_index_l1, mxA); + } + + if (is_available_a0 && !availableFlagLXA0) { + availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l0, mxA); + if (!availableFlagLXA0) + availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l1, mxA); + } + + if (is_available_a1 && !availableFlagLXA0) { + availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l0, mxA); + if (!availableFlagLXA0) + availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l1, mxA); + } + + // B candidates + // above right spatial merge candidate + xB0 = x0 + nPbW; + yB0 = y0 - 1; + xB0_pu = xB0 >> s->sps->log2_min_pu_size; + yB0_pu = yB0 >> s->sps->log2_min_pu_size; + + is_available_b0 = PRED_BLOCK_AVAILABLE(B0) && AVAILABLE(cand_up_right, B0); + + if (is_available_b0) { + availableFlagLXB0 = MP_MX(B0, pred_flag_index_l0, mxB); + if (!availableFlagLXB0) + availableFlagLXB0 = MP_MX(B0, pred_flag_index_l1, mxB); + } + + if (!availableFlagLXB0) { + // above spatial merge candidate + xB1 = x0 + nPbW - 1; + yB1 = y0 - 1; + xB1_pu = xB1 >> s->sps->log2_min_pu_size; + yB1_pu = yB1 >> s->sps->log2_min_pu_size; + + is_available_b1 = AVAILABLE(cand_up, B1); + + if (is_available_b1) { + availableFlagLXB0 = MP_MX(B1, pred_flag_index_l0, mxB); + if (!availableFlagLXB0) + availableFlagLXB0 = MP_MX(B1, pred_flag_index_l1, mxB); + } + } + + if (!availableFlagLXB0) { + // above left spatial merge candidate + xB2 = x0 - 1; + yB2 = y0 - 1; + xB2_pu = xB2 >> s->sps->log2_min_pu_size; + yB2_pu = yB2 >> s->sps->log2_min_pu_size; + is_available_b2 = AVAILABLE(cand_up_left, B2); + + if (is_available_b2) { + availableFlagLXB0 = MP_MX(B2, pred_flag_index_l0, mxB); + if (!availableFlagLXB0) + availableFlagLXB0 = MP_MX(B2, pred_flag_index_l1, mxB); + } + } + + if (isScaledFlag_L0 == 0) { + if (availableFlagLXB0) { + availableFlagLXA0 = 1; + mxA = mxB; + } + availableFlagLXB0 = 0; + + // XB0 and L1 + if (is_available_b0) { + availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB); + if (!availableFlagLXB0) + availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB); + } + + if (is_available_b1 && !availableFlagLXB0) { + availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB); + if (!availableFlagLXB0) + availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB); + } + + if (is_available_b2 && !availableFlagLXB0) { + availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB); + if (!availableFlagLXB0) + availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB); + } + } + + if (availableFlagLXA0) + mvpcand_list[numMVPCandLX++] = mxA; + + if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y)) + mvpcand_list[numMVPCandLX++] = mxB; + + //temporal motion vector prediction candidate + if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag) { + Mv mv_col; + int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW, + nPbH, ref_idx, + &mv_col, LX); + if (available_col) + mvpcand_list[numMVPCandLX++] = mv_col; + } + + // insert zero motion vectors when the number of available candidates are less than 2 + while (numMVPCandLX < 2) + mvpcand_list[numMVPCandLX++] = (Mv){ 0, 0 }; + + mv->mv[LX].x = mvpcand_list[mvp_lx_flag].x; + mv->mv[LX].y = mvpcand_list[mvp_lx_flag].y; +} -- cgit v1.2.3