summaryrefslogtreecommitdiff
path: root/libavcodec/aacenc_tns.h
Commit message (Collapse)AuthorAge
* aacenc_tns: rework TNS descision logicRostislav Pehlivanov2015-10-17
| | | | | | | | | | | | | | | | | Changes: - strongly prefer dual filters to a single filter - less strict about using 2 filters w.r.t. energy - scrap the usage of threshold and spread, useless - use odd-shaped windows to set the filter direction - use 4 bits instead of 3 bits for short windows - simplify and reduce the main loop to a single level - add stricter regulations for short windows All of this now makes the TNS implementation operate as good as it can and it definitely shows. The frequency thresholds are now even better defined by looking at the spectrals and the overall sound has been improved at the price of just a few bits that are well worth it.
* aacenc_tns: readjust values for new TNS decision makingRostislav Pehlivanov2015-09-12
| | | | | | | | | Since TNS was fixed with the recent commits retweak the values so it's more frequently used. Still not enabled by default yet, though it's possible that it will be made enabled by default in the near future. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
* aacenc_tns: redo coefficient quantization and decision makingRostislav Pehlivanov2015-09-12
| | | | | | | | | | | | | | | | | | This finally (and again) gets rid of basically everything the specifications say about how TNS should be done. The main problem used to be that a single filter was used for all coefficients which despite being explicitly recommended by the specifications usually sounds wrong, therefore it's a corner case in the current TNS implementation. This commit also changes the coefficient bit size, as apparently it's better to use lower precision in case the windows are eight short. This is apparently what fdk_aac uses, looking at the bit stream and makes sense. Also the order when 8 SHORT windows happen is important as 7 was too much and according to PSNR was worse while 5 is just about correct. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
* aacenc_tns: adjust coefficient calculation, add double filter supportRostislav Pehlivanov2015-09-05
| | | | | | | | | | | | | | | | | | | | This commit improves the TNS implementation to the point where it's actually usable and very rarely results in nastyness (in all bitrates except extremely low bitrates it's increasing the quality and prevents some distortions from the coder being audiable). Also adds a double filter support which is only used if the energy difference between the top and bottom of the SFBs is above the thresholds defined in the header file. Looking at the bitstream that fdk_aac generates it sometimes used a double filter despite the specs stating that a single filter should be enough for almost all cases and purposes. Unlike FAAC or fdk_aac we sometimes use a reverse filter in case the energy difference isn't enought to use a double filter. This actually works better. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
* aacenc_tns: rework coefficient quantization and filter applicationRostislav Pehlivanov2015-09-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit reworks the TNS implementation to a hybrid between what the specifications say, what the decoder does and what's the best thing to do. The filter application function was copied from the decoder and modified such that it applies the inverse AR filter to the coefficients. The LPC coefficients themselves are fed into the same quantization expression that the specifications say should be used however further processing is not done, instead they're converted to the form that the decoder expects them to be in and are sent off to the compute_lpc_coeffs function exactly the way the decoder does. This function does all conversions and will return the exact coefficients that the decoder will generate, which are then applied to the coefficients. Having the exact same coefficients on both the encoder and decoder is a must since otherwise the entire sfb's over which the filter is applied will be attenuated. Despite this major rework, TNS might not work fine on some audio types at very low bitrates (e.g. sub 90kbps) as it can attenuate some coefficients too much. Users are advised to experiment with TNS at higher bitrates if they wish to use this tool or simply wait for the implementation to be improved. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
* aacenc_tns: rework the way coefficients are calculatedRostislav Pehlivanov2015-08-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit abandons the way the specifications state to quantize the coefficients, makes use of the new LPC float functions and is much better. The original way of converting non-normalized float samples to int32_t which out LPC system expects was wrong and it was wrong to assume the coefficients that are generated are also valid. It was essentially a full garbage-in, garbage-out system and it definitely shows when looking at spectrals and listening. The high frequencies were very overattenuated. The new LPC function performs the analysis directly. The specifications state to quantize the coefficients into four bit index values using an asin() function which of course had to have ugly ternary operators because the function turns negative if the coefficients are negative which when encoding causes invalid bitstream to get generated. This deviates from this by using the direct TNS tables, which are fairly small since you only have 4 bits at most for index values. The LPC values are directly quantized against the tables and are then used to perform filtering after the requantization, which simply fetches the array values. The end result is that TNS works much better now and doesn't attenuate anything but the actual signal, e.g. TNS removes quantization errors and does it's job correctly now. It might be enabled by default soon since it doesn't hurt and helps reduce nastyness at low bitrates. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
* avcodec: Fix `make checkheaders`Timothy Gu2015-08-22
|
* aacenc: Add missing ff_ prefixesTimothy Gu2015-08-22
| | | | | Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com> Reviewed-by: Ganesh Ajjanagadde <gajjanag@mit.edu>
* aacenc_tns: implement temporal noise shapingRostislav Pehlivanov2015-08-21
This commit implements temporal noise shaping support in the encoder, along with an -aac_tns option to toggle it on or off (off by default for now). TNS will increase audio quality and reduce quantization noise by applying a multitap FIR filter across allowed coefficients and transmit side information to the decoder so it could create an inverse filter. Users are encouraged to test the new functionality by enabling -aac_tns 1 during encoding. No major bugs are observable at this time so after a while if no new problems appear and if the current implementation is deemed of high enough quality and stability it will be enabled by default, possibly at the same time the encoder has its experimental flag removed and becomes the standard aac encoder in ffmpeg. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>