summaryrefslogtreecommitdiff
path: root/libavfilter/vf_unsharp_opencl.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavfilter/vf_unsharp_opencl.c')
-rw-r--r--libavfilter/vf_unsharp_opencl.c482
1 files changed, 482 insertions, 0 deletions
diff --git a/libavfilter/vf_unsharp_opencl.c b/libavfilter/vf_unsharp_opencl.c
new file mode 100644
index 0000000000..c2ebf70ad9
--- /dev/null
+++ b/libavfilter/vf_unsharp_opencl.c
@@ -0,0 +1,482 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/common.h"
+#include "libavutil/imgutils.h"
+#include "libavutil/mem.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+
+#include "avfilter.h"
+#include "internal.h"
+#include "opencl.h"
+#include "opencl_source.h"
+#include "video.h"
+
+#define MAX_DIAMETER 23
+
+typedef struct UnsharpOpenCLContext {
+ OpenCLFilterContext ocf;
+
+ int initialised;
+ cl_kernel kernel;
+ cl_command_queue command_queue;
+
+ float luma_size_x;
+ float luma_size_y;
+ float luma_amount;
+ float chroma_size_x;
+ float chroma_size_y;
+ float chroma_amount;
+
+ int global;
+
+ int nb_planes;
+ struct {
+ float blur_x[MAX_DIAMETER];
+ float blur_y[MAX_DIAMETER];
+
+ cl_mem matrix;
+ cl_mem coef_x;
+ cl_mem coef_y;
+
+ cl_int size_x;
+ cl_int size_y;
+ cl_float amount;
+ cl_float threshold;
+ } plane[4];
+} UnsharpOpenCLContext;
+
+
+static int unsharp_opencl_init(AVFilterContext *avctx)
+{
+ UnsharpOpenCLContext *ctx = avctx->priv;
+ cl_int cle;
+ int err;
+
+ err = ff_opencl_filter_load_program(avctx, &ff_opencl_source_unsharp, 1);
+ if (err < 0)
+ goto fail;
+
+ ctx->command_queue = clCreateCommandQueue(ctx->ocf.hwctx->context,
+ ctx->ocf.hwctx->device_id,
+ 0, &cle);
+ if (!ctx->command_queue) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to create OpenCL "
+ "command queue: %d.\n", cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+
+ // Use global kernel if mask size will be too big for the local store..
+ ctx->global = (ctx->luma_size_x > 17.0f ||
+ ctx->luma_size_y > 17.0f ||
+ ctx->chroma_size_x > 17.0f ||
+ ctx->chroma_size_y > 17.0f);
+
+ ctx->kernel = clCreateKernel(ctx->ocf.program,
+ ctx->global ? "unsharp_global"
+ : "unsharp_local", &cle);
+ if (!ctx->kernel) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to create kernel: %d.\n", cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+
+ ctx->initialised = 1;
+ return 0;
+
+fail:
+ if (ctx->command_queue)
+ clReleaseCommandQueue(ctx->command_queue);
+ if (ctx->kernel)
+ clReleaseKernel(ctx->kernel);
+ return err;
+}
+
+static int unsharp_opencl_make_filter_params(AVFilterContext *avctx)
+{
+ UnsharpOpenCLContext *ctx = avctx->priv;
+ const AVPixFmtDescriptor *desc;
+ float *matrix;
+ double val, sum;
+ cl_int cle;
+ cl_mem buffer;
+ size_t matrix_bytes;
+ float diam_x, diam_y, amount;
+ int err, p, x, y, size_x, size_y;
+
+ desc = av_pix_fmt_desc_get(ctx->ocf.output_format);
+
+ ctx->nb_planes = 0;
+ for (p = 0; p < desc->nb_components; p++)
+ ctx->nb_planes = FFMAX(ctx->nb_planes, desc->comp[p].plane + 1);
+
+ for (p = 0; p < ctx->nb_planes; p++) {
+ if (p == 0 || (desc->flags & AV_PIX_FMT_FLAG_RGB)) {
+ diam_x = ctx->luma_size_x;
+ diam_y = ctx->luma_size_y;
+ amount = ctx->luma_amount;
+ } else {
+ diam_x = ctx->chroma_size_x;
+ diam_y = ctx->chroma_size_y;
+ amount = ctx->chroma_amount;
+ }
+ size_x = (int)ceil(diam_x) | 1;
+ size_y = (int)ceil(diam_y) | 1;
+ matrix_bytes = size_x * size_y * sizeof(float);
+
+ matrix = av_malloc(matrix_bytes);
+ if (!matrix) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ sum = 0.0;
+ for (x = 0; x < size_x; x++) {
+ double dx = (double)(x - size_x / 2) / diam_x;
+ sum += ctx->plane[p].blur_x[x] = exp(-16.0 * (dx * dx));
+ }
+ for (x = 0; x < size_x; x++)
+ ctx->plane[p].blur_x[x] /= sum;
+
+ sum = 0.0;
+ for (y = 0; y < size_y; y++) {
+ double dy = (double)(y - size_y / 2) / diam_y;
+ sum += ctx->plane[p].blur_y[y] = exp(-16.0 * (dy * dy));
+ }
+ for (y = 0; y < size_y; y++)
+ ctx->plane[p].blur_y[y] /= sum;
+
+ for (y = 0; y < size_y; y++) {
+ for (x = 0; x < size_x; x++) {
+ val = ctx->plane[p].blur_x[x] * ctx->plane[p].blur_y[y];
+ matrix[y * size_x + x] = val;
+ }
+ }
+
+ if (ctx->global) {
+ buffer = clCreateBuffer(ctx->ocf.hwctx->context,
+ CL_MEM_READ_ONLY |
+ CL_MEM_COPY_HOST_PTR |
+ CL_MEM_HOST_NO_ACCESS,
+ matrix_bytes, matrix, &cle);
+ if (!buffer) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to create matrix buffer: "
+ "%d.\n", cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+ ctx->plane[p].matrix = buffer;
+ } else {
+ buffer = clCreateBuffer(ctx->ocf.hwctx->context,
+ CL_MEM_READ_ONLY |
+ CL_MEM_COPY_HOST_PTR |
+ CL_MEM_HOST_NO_ACCESS,
+ sizeof(ctx->plane[p].blur_x),
+ ctx->plane[p].blur_x, &cle);
+ if (!buffer) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to create x-coef buffer: "
+ "%d.\n", cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+ ctx->plane[p].coef_x = buffer;
+
+ buffer = clCreateBuffer(ctx->ocf.hwctx->context,
+ CL_MEM_READ_ONLY |
+ CL_MEM_COPY_HOST_PTR |
+ CL_MEM_HOST_NO_ACCESS,
+ sizeof(ctx->plane[p].blur_y),
+ ctx->plane[p].blur_y, &cle);
+ if (!buffer) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to create y-coef buffer: "
+ "%d.\n", cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+ ctx->plane[p].coef_y = buffer;
+ }
+
+ av_freep(&matrix);
+
+ ctx->plane[p].size_x = size_x;
+ ctx->plane[p].size_y = size_y;
+ ctx->plane[p].amount = amount;
+ }
+
+ err = 0;
+fail:
+ av_freep(&matrix);
+ return err;
+}
+
+static int unsharp_opencl_filter_frame(AVFilterLink *inlink, AVFrame *input)
+{
+ AVFilterContext *avctx = inlink->dst;
+ AVFilterLink *outlink = avctx->outputs[0];
+ UnsharpOpenCLContext *ctx = avctx->priv;
+ AVFrame *output = NULL;
+ cl_int cle;
+ size_t global_work[2];
+ size_t local_work[2];
+ cl_mem src, dst;
+ int err, p;
+
+ av_log(ctx, AV_LOG_DEBUG, "Filter input: %s, %ux%u (%"PRId64").\n",
+ av_get_pix_fmt_name(input->format),
+ input->width, input->height, input->pts);
+
+ if (!input->hw_frames_ctx)
+ return AVERROR(EINVAL);
+
+ if (!ctx->initialised) {
+ err = unsharp_opencl_init(avctx);
+ if (err < 0)
+ goto fail;
+
+ err = unsharp_opencl_make_filter_params(avctx);
+ if (err < 0)
+ goto fail;
+ }
+
+ output = ff_get_video_buffer(outlink, outlink->w, outlink->h);
+ if (!output) {
+ err = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ for (p = 0; p < FF_ARRAY_ELEMS(output->data); p++) {
+ src = (cl_mem) input->data[p];
+ dst = (cl_mem)output->data[p];
+
+ if (!dst)
+ break;
+
+ cle = clSetKernelArg(ctx->kernel, 0, sizeof(cl_mem), &dst);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "destination image argument: %d.\n", cle);
+ goto fail;
+ }
+ cle = clSetKernelArg(ctx->kernel, 1, sizeof(cl_mem), &src);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "source image argument: %d.\n", cle);
+ goto fail;
+ }
+ cle = clSetKernelArg(ctx->kernel, 2, sizeof(cl_int), &ctx->plane[p].size_x);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "matrix size argument: %d.\n", cle);
+ goto fail;
+ }
+ cle = clSetKernelArg(ctx->kernel, 3, sizeof(cl_int), &ctx->plane[p].size_y);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "matrix size argument: %d.\n", cle);
+ goto fail;
+ }
+ cle = clSetKernelArg(ctx->kernel, 4, sizeof(cl_float), &ctx->plane[p].amount);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "amount argument: %d.\n", cle);
+ goto fail;
+ }
+ if (ctx->global) {
+ cle = clSetKernelArg(ctx->kernel, 5, sizeof(cl_mem), &ctx->plane[p].matrix);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "matrix argument: %d.\n", cle);
+ goto fail;
+ }
+ } else {
+ cle = clSetKernelArg(ctx->kernel, 5, sizeof(cl_mem), &ctx->plane[p].coef_x);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "x-coef argument: %d.\n", cle);
+ goto fail;
+ }
+ cle = clSetKernelArg(ctx->kernel, 6, sizeof(cl_mem), &ctx->plane[p].coef_y);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to set kernel "
+ "y-coef argument: %d.\n", cle);
+ goto fail;
+ }
+ }
+
+ if (ctx->global) {
+ global_work[0] = output->width;
+ global_work[1] = output->height;
+ } else {
+ global_work[0] = FFALIGN(output->width, 16);
+ global_work[1] = FFALIGN(output->height, 16);
+ local_work[0] = 16;
+ local_work[1] = 16;
+ }
+
+ av_log(avctx, AV_LOG_DEBUG, "Run kernel on plane %d "
+ "(%zux%zu).\n", p, global_work[0], global_work[1]);
+
+ cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->kernel, 2, NULL,
+ global_work, ctx->global ? NULL : local_work,
+ 0, NULL, NULL);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to enqueue kernel: %d.\n",
+ cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+ }
+
+ cle = clFinish(ctx->command_queue);
+ if (cle != CL_SUCCESS) {
+ av_log(avctx, AV_LOG_ERROR, "Failed to finish command queue: %d.\n",
+ cle);
+ err = AVERROR(EIO);
+ goto fail;
+ }
+
+ err = av_frame_copy_props(output, input);
+ if (err < 0)
+ goto fail;
+
+ av_frame_free(&input);
+
+ av_log(ctx, AV_LOG_DEBUG, "Filter output: %s, %ux%u (%"PRId64").\n",
+ av_get_pix_fmt_name(output->format),
+ output->width, output->height, output->pts);
+
+ return ff_filter_frame(outlink, output);
+
+fail:
+ clFinish(ctx->command_queue);
+ av_frame_free(&input);
+ av_frame_free(&output);
+ return err;
+}
+
+static av_cold void unsharp_opencl_uninit(AVFilterContext *avctx)
+{
+ UnsharpOpenCLContext *ctx = avctx->priv;
+ cl_int cle;
+ int i;
+
+ for (i = 0; i < ctx->nb_planes; i++) {
+ if (ctx->plane[i].matrix)
+ clReleaseMemObject(ctx->plane[i].matrix);
+ if (ctx->plane[i].coef_x)
+ clReleaseMemObject(ctx->plane[i].coef_x);
+ if (ctx->plane[i].coef_y)
+ clReleaseMemObject(ctx->plane[i].coef_y);
+ }
+
+ if (ctx->kernel) {
+ cle = clReleaseKernel(ctx->kernel);
+ if (cle != CL_SUCCESS)
+ av_log(avctx, AV_LOG_ERROR, "Failed to release "
+ "kernel: %d.\n", cle);
+ }
+
+ if (ctx->command_queue) {
+ cle = clReleaseCommandQueue(ctx->command_queue);
+ if (cle != CL_SUCCESS)
+ av_log(avctx, AV_LOG_ERROR, "Failed to release "
+ "command queue: %d.\n", cle);
+ }
+
+ ff_opencl_filter_uninit(avctx);
+}
+
+#define OFFSET(x) offsetof(UnsharpOpenCLContext, x)
+#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
+static const AVOption unsharp_opencl_options[] = {
+ { "luma_msize_x", "Set luma mask horizontal diameter (pixels)",
+ OFFSET(luma_size_x), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "lx", "Set luma mask horizontal diameter (pixels)",
+ OFFSET(luma_size_x), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "luma_msize_y", "Set luma mask vertical diameter (pixels)",
+ OFFSET(luma_size_y), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "ly", "Set luma mask vertical diameter (pixels)",
+ OFFSET(luma_size_y), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "luma_amount", "Set luma amount (multiplier)",
+ OFFSET(luma_amount), AV_OPT_TYPE_FLOAT,
+ { .dbl = 1.0 }, -10, 10, FLAGS },
+ { "la", "Set luma amount (multiplier)",
+ OFFSET(luma_amount), AV_OPT_TYPE_FLOAT,
+ { .dbl = 1.0 }, -10, 10, FLAGS },
+
+ { "chroma_msize_x", "Set chroma mask horizontal diameter (pixels after subsampling)",
+ OFFSET(chroma_size_x), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "cx", "Set chroma mask horizontal diameter (pixels after subsampling)",
+ OFFSET(chroma_size_x), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "chroma_msize_y", "Set chroma mask vertical diameter (pixels after subsampling)",
+ OFFSET(chroma_size_y), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "cy", "Set chroma mask vertical diameter (pixels after subsampling)",
+ OFFSET(chroma_size_y), AV_OPT_TYPE_FLOAT,
+ { .dbl = 5.0 }, 1, MAX_DIAMETER, FLAGS },
+ { "chroma_amount", "Set chroma amount (multiplier)",
+ OFFSET(chroma_amount), AV_OPT_TYPE_FLOAT,
+ { .dbl = 0.0 }, -10, 10, FLAGS },
+ { "ca", "Set chroma amount (multiplier)",
+ OFFSET(chroma_amount), AV_OPT_TYPE_FLOAT,
+ { .dbl = 0.0 }, -10, 10, FLAGS },
+
+ { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(unsharp_opencl);
+
+static const AVFilterPad unsharp_opencl_inputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .filter_frame = &unsharp_opencl_filter_frame,
+ .config_props = &ff_opencl_filter_config_input,
+ },
+ { NULL }
+};
+
+static const AVFilterPad unsharp_opencl_outputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .config_props = &ff_opencl_filter_config_output,
+ },
+ { NULL }
+};
+
+AVFilter ff_vf_unsharp_opencl = {
+ .name = "unsharp_opencl",
+ .description = NULL_IF_CONFIG_SMALL("Apply unsharp mask to input video"),
+ .priv_size = sizeof(UnsharpOpenCLContext),
+ .priv_class = &unsharp_opencl_class,
+ .init = &ff_opencl_filter_init,
+ .uninit = &unsharp_opencl_uninit,
+ .query_formats = &ff_opencl_filter_query_formats,
+ .inputs = unsharp_opencl_inputs,
+ .outputs = unsharp_opencl_outputs,
+ .flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
+};