summaryrefslogtreecommitdiff
path: root/libavfilter/af_firequalizer.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavfilter/af_firequalizer.c')
-rw-r--r--libavfilter/af_firequalizer.c838
1 files changed, 838 insertions, 0 deletions
diff --git a/libavfilter/af_firequalizer.c b/libavfilter/af_firequalizer.c
new file mode 100644
index 0000000000..4243d66bd6
--- /dev/null
+++ b/libavfilter/af_firequalizer.c
@@ -0,0 +1,838 @@
+/*
+ * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/opt.h"
+#include "libavutil/eval.h"
+#include "libavutil/avassert.h"
+#include "libavcodec/avfft.h"
+#include "avfilter.h"
+#include "internal.h"
+#include "audio.h"
+
+#define RDFT_BITS_MIN 4
+#define RDFT_BITS_MAX 16
+
+enum WindowFunc {
+ WFUNC_RECTANGULAR,
+ WFUNC_HANN,
+ WFUNC_HAMMING,
+ WFUNC_BLACKMAN,
+ WFUNC_NUTTALL3,
+ WFUNC_MNUTTALL3,
+ WFUNC_NUTTALL,
+ WFUNC_BNUTTALL,
+ WFUNC_BHARRIS,
+ WFUNC_TUKEY,
+ NB_WFUNC
+};
+
+enum Scale {
+ SCALE_LINLIN,
+ SCALE_LINLOG,
+ SCALE_LOGLIN,
+ SCALE_LOGLOG,
+ NB_SCALE
+};
+
+#define NB_GAIN_ENTRY_MAX 4096
+typedef struct {
+ double freq;
+ double gain;
+} GainEntry;
+
+typedef struct {
+ int buf_idx;
+ int overlap_idx;
+} OverlapIndex;
+
+typedef struct {
+ const AVClass *class;
+
+ RDFTContext *analysis_rdft;
+ RDFTContext *analysis_irdft;
+ RDFTContext *rdft;
+ RDFTContext *irdft;
+ FFTContext *fft_ctx;
+ int analysis_rdft_len;
+ int rdft_len;
+
+ float *analysis_buf;
+ float *dump_buf;
+ float *kernel_tmp_buf;
+ float *kernel_buf;
+ float *conv_buf;
+ OverlapIndex *conv_idx;
+ int fir_len;
+ int nsamples_max;
+ int64_t next_pts;
+ int frame_nsamples_max;
+ int remaining;
+
+ char *gain_cmd;
+ char *gain_entry_cmd;
+ const char *gain;
+ const char *gain_entry;
+ double delay;
+ double accuracy;
+ int wfunc;
+ int fixed;
+ int multi;
+ int zero_phase;
+ int scale;
+ char *dumpfile;
+ int dumpscale;
+ int fft2;
+
+ int nb_gain_entry;
+ int gain_entry_err;
+ GainEntry gain_entry_tbl[NB_GAIN_ENTRY_MAX];
+} FIREqualizerContext;
+
+#define OFFSET(x) offsetof(FIREqualizerContext, x)
+#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
+
+static const AVOption firequalizer_options[] = {
+ { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, FLAGS },
+ { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
+ { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS },
+ { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS },
+ { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" },
+ { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" },
+ { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" },
+ { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" },
+ { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, "wfunc" },
+ { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, "wfunc" },
+ { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, "wfunc" },
+ { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" },
+ { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" },
+ { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" },
+ { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" },
+ { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
+ { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
+ { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
+ { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
+ { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" },
+ { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" },
+ { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" },
+ { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" },
+ { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
+ { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
+ { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
+ { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(firequalizer);
+
+static void common_uninit(FIREqualizerContext *s)
+{
+ av_rdft_end(s->analysis_rdft);
+ av_rdft_end(s->analysis_irdft);
+ av_rdft_end(s->rdft);
+ av_rdft_end(s->irdft);
+ av_fft_end(s->fft_ctx);
+ s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
+ s->fft_ctx = NULL;
+
+ av_freep(&s->analysis_buf);
+ av_freep(&s->dump_buf);
+ av_freep(&s->kernel_tmp_buf);
+ av_freep(&s->kernel_buf);
+ av_freep(&s->conv_buf);
+ av_freep(&s->conv_idx);
+}
+
+static av_cold void uninit(AVFilterContext *ctx)
+{
+ FIREqualizerContext *s = ctx->priv;
+
+ common_uninit(s);
+ av_freep(&s->gain_cmd);
+ av_freep(&s->gain_entry_cmd);
+}
+
+static int query_formats(AVFilterContext *ctx)
+{
+ AVFilterChannelLayouts *layouts;
+ AVFilterFormats *formats;
+ static const enum AVSampleFormat sample_fmts[] = {
+ AV_SAMPLE_FMT_FLTP,
+ AV_SAMPLE_FMT_NONE
+ };
+ int ret;
+
+ layouts = ff_all_channel_counts();
+ if (!layouts)
+ return AVERROR(ENOMEM);
+ ret = ff_set_common_channel_layouts(ctx, layouts);
+ if (ret < 0)
+ return ret;
+
+ formats = ff_make_format_list(sample_fmts);
+ if (!formats)
+ return AVERROR(ENOMEM);
+ ret = ff_set_common_formats(ctx, formats);
+ if (ret < 0)
+ return ret;
+
+ formats = ff_all_samplerates();
+ if (!formats)
+ return AVERROR(ENOMEM);
+ return ff_set_common_samplerates(ctx, formats);
+}
+
+static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf,
+ OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
+{
+ if (nsamples <= s->nsamples_max) {
+ float *buf = conv_buf + idx->buf_idx * s->rdft_len;
+ float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
+ int center = s->fir_len/2;
+ int k;
+
+ memset(buf, 0, center * sizeof(*data));
+ memcpy(buf + center, data, nsamples * sizeof(*data));
+ memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
+ av_rdft_calc(s->rdft, buf);
+
+ buf[0] *= kernel_buf[0];
+ buf[1] *= kernel_buf[s->rdft_len/2];
+ for (k = 1; k < s->rdft_len/2; k++) {
+ buf[2*k] *= kernel_buf[k];
+ buf[2*k+1] *= kernel_buf[k];
+ }
+
+ av_rdft_calc(s->irdft, buf);
+ for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
+ buf[k] += obuf[k];
+ memcpy(data, buf, nsamples * sizeof(*data));
+ idx->buf_idx = !idx->buf_idx;
+ idx->overlap_idx = nsamples;
+ } else {
+ while (nsamples > s->nsamples_max * 2) {
+ fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
+ data += s->nsamples_max;
+ nsamples -= s->nsamples_max;
+ }
+ fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2);
+ fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
+ }
+}
+
+static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf,
+ OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
+{
+ if (nsamples <= s->nsamples_max) {
+ FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len;
+ FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
+ int center = s->fir_len/2;
+ int k;
+ float tmp;
+
+ memset(buf, 0, center * sizeof(*buf));
+ for (k = 0; k < nsamples; k++) {
+ buf[center+k].re = data0[k];
+ buf[center+k].im = data1[k];
+ }
+ memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
+ av_fft_permute(s->fft_ctx, buf);
+ av_fft_calc(s->fft_ctx, buf);
+
+ /* swap re <-> im, do backward fft using forward fft_ctx */
+ /* normalize with 0.5f */
+ tmp = buf[0].re;
+ buf[0].re = 0.5f * kernel_buf[0] * buf[0].im;
+ buf[0].im = 0.5f * kernel_buf[0] * tmp;
+ for (k = 1; k < s->rdft_len/2; k++) {
+ int m = s->rdft_len - k;
+ tmp = buf[k].re;
+ buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
+ buf[k].im = 0.5f * kernel_buf[k] * tmp;
+ tmp = buf[m].re;
+ buf[m].re = 0.5f * kernel_buf[k] * buf[m].im;
+ buf[m].im = 0.5f * kernel_buf[k] * tmp;
+ }
+ tmp = buf[k].re;
+ buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
+ buf[k].im = 0.5f * kernel_buf[k] * tmp;
+
+ av_fft_permute(s->fft_ctx, buf);
+ av_fft_calc(s->fft_ctx, buf);
+
+ for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
+ buf[k].re += obuf[k].re;
+ buf[k].im += obuf[k].im;
+ }
+
+ /* swapped re <-> im */
+ for (k = 0; k < nsamples; k++) {
+ data0[k] = buf[k].im;
+ data1[k] = buf[k].re;
+ }
+ idx->buf_idx = !idx->buf_idx;
+ idx->overlap_idx = nsamples;
+ } else {
+ while (nsamples > s->nsamples_max * 2) {
+ fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max);
+ data0 += s->nsamples_max;
+ data1 += s->nsamples_max;
+ nsamples -= s->nsamples_max;
+ }
+ fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2);
+ fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2);
+ }
+}
+
+static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
+{
+ FIREqualizerContext *s = ctx->priv;
+ int rate = ctx->inputs[0]->sample_rate;
+ int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG;
+ int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG;
+ int x;
+ int center = s->fir_len / 2;
+ double delay = s->zero_phase ? 0.0 : (double) center / rate;
+ double vx, ya, yb;
+
+ s->analysis_buf[0] *= s->rdft_len/2;
+ for (x = 1; x <= center; x++) {
+ s->analysis_buf[x] *= s->rdft_len/2;
+ s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2;
+ }
+
+ if (ch)
+ fprintf(fp, "\n\n");
+
+ fprintf(fp, "# time[%d] (time amplitude)\n", ch);
+
+ for (x = center; x > 0; x--)
+ fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]);
+
+ for (x = 0; x <= center; x++)
+ fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]);
+
+ av_rdft_calc(s->analysis_rdft, s->analysis_buf);
+
+ fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
+
+ for (x = 0; x <= s->analysis_rdft_len/2; x++) {
+ int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x;
+ vx = (double)x * rate / s->analysis_rdft_len;
+ if (xlog)
+ vx = log2(0.05*vx);
+ ya = s->dump_buf[i];
+ yb = s->analysis_buf[i];
+ if (ylog) {
+ ya = 20.0 * log10(fabs(ya));
+ yb = 20.0 * log10(fabs(yb));
+ }
+ fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb);
+ }
+}
+
+static double entry_func(void *p, double freq, double gain)
+{
+ AVFilterContext *ctx = p;
+ FIREqualizerContext *s = ctx->priv;
+
+ if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) {
+ av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n");
+ s->gain_entry_err = AVERROR(EINVAL);
+ return 0;
+ }
+
+ if (isnan(freq)) {
+ av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain);
+ s->gain_entry_err = AVERROR(EINVAL);
+ return 0;
+ }
+
+ if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) {
+ av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain);
+ s->gain_entry_err = AVERROR(EINVAL);
+ return 0;
+ }
+
+ s->gain_entry_tbl[s->nb_gain_entry].freq = freq;
+ s->gain_entry_tbl[s->nb_gain_entry].gain = gain;
+ s->nb_gain_entry++;
+ return 0;
+}
+
+static int gain_entry_compare(const void *key, const void *memb)
+{
+ const double *freq = key;
+ const GainEntry *entry = memb;
+
+ if (*freq < entry[0].freq)
+ return -1;
+ if (*freq > entry[1].freq)
+ return 1;
+ return 0;
+}
+
+static double gain_interpolate_func(void *p, double freq)
+{
+ AVFilterContext *ctx = p;
+ FIREqualizerContext *s = ctx->priv;
+ GainEntry *res;
+ double d0, d1, d;
+
+ if (isnan(freq))
+ return freq;
+
+ if (!s->nb_gain_entry)
+ return 0;
+
+ if (freq <= s->gain_entry_tbl[0].freq)
+ return s->gain_entry_tbl[0].gain;
+
+ if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
+ return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
+
+ res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
+ av_assert0(res);
+
+ d = res[1].freq - res[0].freq;
+ d0 = freq - res[0].freq;
+ d1 = res[1].freq - freq;
+
+ if (d0 && d1)
+ return (d0 * res[1].gain + d1 * res[0].gain) / d;
+
+ if (d0)
+ return res[1].gain;
+
+ return res[0].gain;
+}
+
+static double cubic_interpolate_func(void *p, double freq)
+{
+ AVFilterContext *ctx = p;
+ FIREqualizerContext *s = ctx->priv;
+ GainEntry *res;
+ double x, x2, x3;
+ double a, b, c, d;
+ double m0, m1, m2, msum, unit;
+
+ if (!s->nb_gain_entry)
+ return 0;
+
+ if (freq <= s->gain_entry_tbl[0].freq)
+ return s->gain_entry_tbl[0].gain;
+
+ if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
+ return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
+
+ res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
+ av_assert0(res);
+
+ unit = res[1].freq - res[0].freq;
+ m0 = res != s->gain_entry_tbl ?
+ unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0;
+ m1 = res[1].gain - res[0].gain;
+ m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ?
+ unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0;
+
+ msum = fabs(m0) + fabs(m1);
+ m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0;
+ msum = fabs(m1) + fabs(m2);
+ m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0;
+
+ d = res[0].gain;
+ c = m0;
+ b = 3 * res[1].gain - m1 - 2 * c - 3 * d;
+ a = res[1].gain - b - c - d;
+
+ x = (freq - res[0].freq) / unit;
+ x2 = x * x;
+ x3 = x2 * x;
+
+ return a * x3 + b * x2 + c * x + d;
+}
+
+static const char *const var_names[] = {
+ "f",
+ "sr",
+ "ch",
+ "chid",
+ "chs",
+ "chlayout",
+ NULL
+};
+
+enum VarOffset {
+ VAR_F,
+ VAR_SR,
+ VAR_CH,
+ VAR_CHID,
+ VAR_CHS,
+ VAR_CHLAYOUT,
+ VAR_NB
+};
+
+static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
+{
+ FIREqualizerContext *s = ctx->priv;
+ AVFilterLink *inlink = ctx->inputs[0];
+ const char *gain_entry_func_names[] = { "entry", NULL };
+ const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL };
+ double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL };
+ double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL };
+ double vars[VAR_NB];
+ AVExpr *gain_expr;
+ int ret, k, center, ch;
+ int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG;
+ int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG;
+ FILE *dump_fp = NULL;
+
+ s->nb_gain_entry = 0;
+ s->gain_entry_err = 0;
+ if (gain_entry) {
+ double result = 0.0;
+ ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL,
+ gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx);
+ if (ret < 0)
+ return ret;
+ if (s->gain_entry_err < 0)
+ return s->gain_entry_err;
+ }
+
+ av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry);
+
+ ret = av_expr_parse(&gain_expr, gain, var_names,
+ gain_func_names, gain_funcs, NULL, NULL, 0, ctx);
+ if (ret < 0)
+ return ret;
+
+ if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w"))))
+ av_log(ctx, AV_LOG_WARNING, "dumping failed.\n");
+
+ vars[VAR_CHS] = inlink->channels;
+ vars[VAR_CHLAYOUT] = inlink->channel_layout;
+ vars[VAR_SR] = inlink->sample_rate;
+ for (ch = 0; ch < inlink->channels; ch++) {
+ float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len;
+ double result;
+ vars[VAR_CH] = ch;
+ vars[VAR_CHID] = av_channel_layout_extract_channel(inlink->channel_layout, ch);
+ vars[VAR_F] = 0.0;
+ if (xlog)
+ vars[VAR_F] = log2(0.05 * vars[VAR_F]);
+ result = av_expr_eval(gain_expr, vars, ctx);
+ s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
+
+ vars[VAR_F] = 0.5 * inlink->sample_rate;
+ if (xlog)
+ vars[VAR_F] = log2(0.05 * vars[VAR_F]);
+ result = av_expr_eval(gain_expr, vars, ctx);
+ s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
+
+ for (k = 1; k < s->analysis_rdft_len/2; k++) {
+ vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
+ if (xlog)
+ vars[VAR_F] = log2(0.05 * vars[VAR_F]);
+ result = av_expr_eval(gain_expr, vars, ctx);
+ s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : result;
+ s->analysis_buf[2*k+1] = 0.0;
+ }
+
+ if (s->dump_buf)
+ memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf));
+
+ av_rdft_calc(s->analysis_irdft, s->analysis_buf);
+ center = s->fir_len / 2;
+
+ for (k = 0; k <= center; k++) {
+ double u = k * (M_PI/center);
+ double win;
+ switch (s->wfunc) {
+ case WFUNC_RECTANGULAR:
+ win = 1.0;
+ break;
+ case WFUNC_HANN:
+ win = 0.5 + 0.5 * cos(u);
+ break;
+ case WFUNC_HAMMING:
+ win = 0.53836 + 0.46164 * cos(u);
+ break;
+ case WFUNC_BLACKMAN:
+ win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u);
+ break;
+ case WFUNC_NUTTALL3:
+ win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u);
+ break;
+ case WFUNC_MNUTTALL3:
+ win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u);
+ break;
+ case WFUNC_NUTTALL:
+ win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u);
+ break;
+ case WFUNC_BNUTTALL:
+ win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u);
+ break;
+ case WFUNC_BHARRIS:
+ win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u);
+ break;
+ case WFUNC_TUKEY:
+ win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI));
+ break;
+ default:
+ av_assert0(0);
+ }
+ s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win;
+ if (k)
+ s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k];
+ }
+
+ memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
+ memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
+ memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
+ av_rdft_calc(s->rdft, rdft_buf);
+
+ for (k = 0; k < s->rdft_len; k++) {
+ if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
+ av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
+ av_expr_free(gain_expr);
+ if (dump_fp)
+ fclose(dump_fp);
+ return AVERROR(EINVAL);
+ }
+ }
+
+ rdft_buf[s->rdft_len-1] = rdft_buf[1];
+ for (k = 0; k < s->rdft_len/2; k++)
+ rdft_buf[k] = rdft_buf[2*k];
+ rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
+
+ if (dump_fp)
+ dump_fir(ctx, dump_fp, ch);
+
+ if (!s->multi)
+ break;
+ }
+
+ memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf));
+ av_expr_free(gain_expr);
+ if (dump_fp)
+ fclose(dump_fp);
+ return 0;
+}
+
+#define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain)
+#define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry)
+
+static int config_input(AVFilterLink *inlink)
+{
+ AVFilterContext *ctx = inlink->dst;
+ FIREqualizerContext *s = ctx->priv;
+ int rdft_bits;
+
+ common_uninit(s);
+
+ s->next_pts = 0;
+ s->frame_nsamples_max = 0;
+
+ s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3);
+ s->remaining = s->fir_len - 1;
+
+ for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
+ s->rdft_len = 1 << rdft_bits;
+ s->nsamples_max = s->rdft_len - s->fir_len + 1;
+ if (s->nsamples_max * 2 >= s->fir_len)
+ break;
+ }
+
+ if (rdft_bits > RDFT_BITS_MAX) {
+ av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
+ return AVERROR(EINVAL);
+ }
+
+ if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
+ return AVERROR(ENOMEM);
+
+ if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0)))
+ return AVERROR(ENOMEM);
+
+ for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
+ s->analysis_rdft_len = 1 << rdft_bits;
+ if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len)
+ break;
+ }
+
+ if (rdft_bits > RDFT_BITS_MAX) {
+ av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n");
+ return AVERROR(EINVAL);
+ }
+
+ if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
+ return AVERROR(ENOMEM);
+
+ if (s->dumpfile) {
+ s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C);
+ s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf));
+ }
+
+ s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf));
+ s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf));
+ s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf));
+ s->conv_buf = av_calloc(2 * s->rdft_len * inlink->channels, sizeof(*s->conv_buf));
+ s->conv_idx = av_calloc(inlink->channels, sizeof(*s->conv_idx));
+ if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx)
+ return AVERROR(ENOMEM);
+
+ av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
+ inlink->sample_rate, inlink->channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max);
+
+ if (s->fixed)
+ inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = s->nsamples_max;
+
+ return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s));
+}
+
+static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
+{
+ AVFilterContext *ctx = inlink->dst;
+ FIREqualizerContext *s = ctx->priv;
+ int ch;
+
+ for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) {
+ fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len),
+ s->conv_idx + ch, (float *) frame->extended_data[ch],
+ (float *) frame->extended_data[ch+1], frame->nb_samples);
+ }
+
+ for ( ; ch < inlink->channels; ch++) {
+ fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
+ s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
+ (float *) frame->extended_data[ch], frame->nb_samples);
+ }
+
+ s->next_pts = AV_NOPTS_VALUE;
+ if (frame->pts != AV_NOPTS_VALUE) {
+ s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base);
+ if (s->zero_phase)
+ frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base);
+ }
+ s->frame_nsamples_max = FFMAX(s->frame_nsamples_max, frame->nb_samples);
+ return ff_filter_frame(ctx->outputs[0], frame);
+}
+
+static int request_frame(AVFilterLink *outlink)
+{
+ AVFilterContext *ctx = outlink->src;
+ FIREqualizerContext *s= ctx->priv;
+ int ret;
+
+ ret = ff_request_frame(ctx->inputs[0]);
+ if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) {
+ AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(s->remaining, s->frame_nsamples_max));
+
+ if (!frame)
+ return AVERROR(ENOMEM);
+
+ av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->channels, frame->format);
+ frame->pts = s->next_pts;
+ s->remaining -= frame->nb_samples;
+ ret = filter_frame(ctx->inputs[0], frame);
+ }
+
+ return ret;
+}
+
+static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
+ char *res, int res_len, int flags)
+{
+ FIREqualizerContext *s = ctx->priv;
+ int ret = AVERROR(ENOSYS);
+
+ if (!strcmp(cmd, "gain")) {
+ char *gain_cmd;
+
+ if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) {
+ av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n");
+ return 0;
+ }
+
+ gain_cmd = av_strdup(args);
+ if (!gain_cmd)
+ return AVERROR(ENOMEM);
+
+ ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s));
+ if (ret >= 0) {
+ av_freep(&s->gain_cmd);
+ s->gain_cmd = gain_cmd;
+ } else {
+ av_freep(&gain_cmd);
+ }
+ } else if (!strcmp(cmd, "gain_entry")) {
+ char *gain_entry_cmd;
+
+ if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) {
+ av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n");
+ return 0;
+ }
+
+ gain_entry_cmd = av_strdup(args);
+ if (!gain_entry_cmd)
+ return AVERROR(ENOMEM);
+
+ ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd);
+ if (ret >= 0) {
+ av_freep(&s->gain_entry_cmd);
+ s->gain_entry_cmd = gain_entry_cmd;
+ } else {
+ av_freep(&gain_entry_cmd);
+ }
+ }
+
+ return ret;
+}
+
+static const AVFilterPad firequalizer_inputs[] = {
+ {
+ .name = "default",
+ .config_props = config_input,
+ .filter_frame = filter_frame,
+ .type = AVMEDIA_TYPE_AUDIO,
+ .needs_writable = 1,
+ },
+ { NULL }
+};
+
+static const AVFilterPad firequalizer_outputs[] = {
+ {
+ .name = "default",
+ .request_frame = request_frame,
+ .type = AVMEDIA_TYPE_AUDIO,
+ },
+ { NULL }
+};
+
+AVFilter ff_af_firequalizer = {
+ .name = "firequalizer",
+ .description = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."),
+ .uninit = uninit,
+ .query_formats = query_formats,
+ .process_command = process_command,
+ .priv_size = sizeof(FIREqualizerContext),
+ .inputs = firequalizer_inputs,
+ .outputs = firequalizer_outputs,
+ .priv_class = &firequalizer_class,
+};