summaryrefslogtreecommitdiff
path: root/libavcodec/opus_pvq.c
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/opus_pvq.c')
-rw-r--r--libavcodec/opus_pvq.c444
1 files changed, 436 insertions, 8 deletions
diff --git a/libavcodec/opus_pvq.c b/libavcodec/opus_pvq.c
index ddc5fc2895..a2f5088aa9 100644
--- a/libavcodec/opus_pvq.c
+++ b/libavcodec/opus_pvq.c
@@ -1,7 +1,7 @@
/*
* Copyright (c) 2012 Andrew D'Addesio
* Copyright (c) 2013-2014 Mozilla Corporation
- * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
+ * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
*
* This file is part of FFmpeg.
*
@@ -78,8 +78,8 @@ static inline void celt_normalize_residual(const int * av_restrict iy, float * a
X[i] = g * iy[i];
}
-static void celt_exp_rotation1(float *X, uint32_t len, uint32_t stride,
- float c, float s)
+static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
+ float c, float s)
{
float *Xptr;
int i;
@@ -105,7 +105,7 @@ static void celt_exp_rotation1(float *X, uint32_t len, uint32_t stride,
static inline void celt_exp_rotation(float *X, uint32_t len,
uint32_t stride, uint32_t K,
- enum CeltSpread spread)
+ enum CeltSpread spread, const int encode)
{
uint32_t stride2 = 0;
float c, s;
@@ -133,9 +133,15 @@ static inline void celt_exp_rotation(float *X, uint32_t len,
extract_collapse_mask().*/
len /= stride;
for (i = 0; i < stride; i++) {
- if (stride2)
- celt_exp_rotation1(X + i * len, len, stride2, s, c);
- celt_exp_rotation1(X + i * len, len, 1, c, s);
+ if (encode) {
+ celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
+ if (stride2)
+ celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
+ } else {
+ if (stride2)
+ celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
+ celt_exp_rotation_impl(X + i * len, len, 1, c, s);
+ }
}
}
@@ -270,6 +276,18 @@ static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
return qn;
}
+/* Convert the quantized vector to an index */
+static inline uint32_t celt_icwrsi(uint32_t N, const int *y)
+{
+ int i, idx = 0, sum = 0;
+ for (i = N - 1; i >= 0; i--) {
+ const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
+ idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
+ sum += FFABS(y[i]);
+ }
+ return idx;
+}
+
// this code was adapted from libopus
static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
{
@@ -356,12 +374,74 @@ static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
return norm;
}
+static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
+{
+ ff_opus_rc_enc_uint(rc, celt_icwrsi(N, y), CELT_PVQ_V(N, K));
+}
+
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
{
const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
return celt_cwrsi(N, K, idx, y);
}
+/*
+ * Faster than libopus's search, operates entirely in the signed domain.
+ * Slightly worse/better depending on N, K and the input vector.
+ */
+static void celt_pvq_search(float *X, int *y, int K, int N)
+{
+ int i;
+ float res = 0.0f, y_norm = 0.0f, xy_norm = 0.0f;
+
+ for (i = 0; i < N; i++)
+ res += FFABS(X[i]);
+
+ res = K/res;
+
+ for (i = 0; i < N; i++) {
+ y[i] = lrintf(res*X[i]);
+ y_norm += y[i]*y[i];
+ xy_norm += y[i]*X[i];
+ K -= FFABS(y[i]);
+ }
+
+ while (K) {
+ int max_idx = 0, phase = FFSIGN(K);
+ float max_den = 1.0f, max_num = 0.0f;
+ y_norm += 1.0f;
+
+ for (i = 0; i < N; i++) {
+ float xy_new = xy_norm + 1*phase*FFABS(X[i]);
+ float y_new = y_norm + 2*phase*FFABS(y[i]);
+ xy_new = xy_new * xy_new;
+ if ((max_den*xy_new) > (y_new*max_num)) {
+ max_den = y_new;
+ max_num = xy_new;
+ max_idx = i;
+ }
+ }
+
+ K -= phase;
+
+ phase *= FFSIGN(X[max_idx]);
+ xy_norm += 1*phase*X[max_idx];
+ y_norm += 2*phase*y[max_idx];
+ y[max_idx] += phase;
+ }
+}
+
+static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
+ enum CeltSpread spread, uint32_t blocks, float gain)
+{
+ int y[176];
+
+ celt_exp_rotation(X, N, blocks, K, spread, 1);
+ celt_pvq_search(X, y, K, N);
+ celt_encode_pulses(rc, y, N, K);
+ return celt_extract_collapse_mask(y, N, blocks);
+}
+
/** Decode pulse vector and combine the result with the pitch vector to produce
the final normalised signal in the current band. */
static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
@@ -371,7 +451,7 @@ static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint3
gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
celt_normalize_residual(y, X, N, gain);
- celt_exp_rotation(X, N, blocks, K, spread);
+ celt_exp_rotation(X, N, blocks, K, spread, 0);
return celt_extract_collapse_mask(y, N, blocks);
}
@@ -725,5 +805,353 @@ uint32_t ff_celt_decode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
}
cm = av_mod_uintp2(cm, blocks);
}
+
+ return cm;
+}
+
+/* This has to be, AND MUST BE done by the psychoacoustic system, this has a very
+ * big impact on the entire quantization and especially huge on transients */
+static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
+{
+ int j;
+ float e[2] = { 0.0f, 0.0f };
+ for (j = 0; j < N; j++) {
+ if (coupling) { /* Coupling case */
+ e[0] += (X[j] + Y[j])*(X[j] + Y[j]);
+ e[1] += (X[j] - Y[j])*(X[j] - Y[j]);
+ } else {
+ e[0] += X[j]*X[j];
+ e[1] += Y[j]*Y[j];
+ }
+ }
+ return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
+}
+
+static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
+{
+ int i;
+ const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
+ e_l *= energy_n;
+ e_r *= energy_n;
+ for (i = 0; i < N; i++)
+ X[i] = e_l*X[i] + e_r*Y[i];
+}
+
+static void celt_stereo_ms_decouple(float *X, float *Y, int N)
+{
+ int i;
+ const float decouple_norm = 1.0f/sqrtf(2.0f);
+ for (i = 0; i < N; i++) {
+ const float Xret = X[i];
+ X[i] = (X[i] + Y[i])*decouple_norm;
+ Y[i] = (Y[i] - Xret)*decouple_norm;
+ }
+}
+
+uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
+ float *X, float *Y, int N, int b, uint32_t blocks,
+ float *lowband, int duration, float *lowband_out, int level,
+ float gain, float *lowband_scratch, int fill)
+{
+ const uint8_t *cache;
+ int dualstereo, split;
+ int imid = 0, iside = 0;
+ //uint32_t N0 = N;
+ int N_B;
+ //int N_B0;
+ int B0 = blocks;
+ int time_divide = 0;
+ int recombine = 0;
+ int inv = 0;
+ float mid = 0, side = 0;
+ int longblocks = (B0 == 1);
+ uint32_t cm = 0;
+
+ //N_B0 = N_B = N / blocks;
+ split = dualstereo = (Y != NULL);
+
+ if (N == 1) {
+ /* special case for one sample - the decoder's output will be +- 1.0f!!! */
+ int i;
+ float *x = X;
+ for (i = 0; i <= dualstereo; i++) {
+ if (f->remaining2 >= 1<<3) {
+ ff_opus_rc_put_raw(rc, x[0] < 0, 1);
+ f->remaining2 -= 1 << 3;
+ b -= 1 << 3;
+ }
+ x = Y;
+ }
+ if (lowband_out)
+ lowband_out[0] = X[0];
+ return 1;
+ }
+
+ if (!dualstereo && level == 0) {
+ int tf_change = f->tf_change[band];
+ int k;
+ if (tf_change > 0)
+ recombine = tf_change;
+ /* Band recombining to increase frequency resolution */
+
+ if (lowband &&
+ (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
+ int j;
+ for (j = 0; j < N; j++)
+ lowband_scratch[j] = lowband[j];
+ lowband = lowband_scratch;
+ }
+
+ for (k = 0; k < recombine; k++) {
+ celt_haar1(X, N >> k, 1 << k);
+ fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
+ }
+ blocks >>= recombine;
+ N_B <<= recombine;
+
+ /* Increasing the time resolution */
+ while ((N_B & 1) == 0 && tf_change < 0) {
+ celt_haar1(X, N_B, blocks);
+ fill |= fill << blocks;
+ blocks <<= 1;
+ N_B >>= 1;
+ time_divide++;
+ tf_change++;
+ }
+ B0 = blocks;
+ //N_B0 = N_B;
+
+ /* Reorganize the samples in time order instead of frequency order */
+ if (B0 > 1)
+ celt_deinterleave_hadamard(f->scratch, X, N_B >> recombine,
+ B0 << recombine, longblocks);
+ }
+
+ /* If we need 1.5 more bit than we can produce, split the band in two. */
+ cache = ff_celt_cache_bits +
+ ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
+ if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
+ N >>= 1;
+ Y = X + N;
+ split = 1;
+ duration -= 1;
+ if (blocks == 1)
+ fill = (fill & 1) | (fill << 1);
+ blocks = (blocks + 1) >> 1;
+ }
+
+ if (split) {
+ int qn;
+ int itheta = celt_calc_theta(X, Y, dualstereo, N);
+ int mbits, sbits, delta;
+ int qalloc;
+ int pulse_cap;
+ int offset;
+ int orig_fill;
+ int tell;
+
+ /* Decide on the resolution to give to the split parameter theta */
+ pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
+ offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
+ CELT_QTHETA_OFFSET);
+ qn = (dualstereo && band >= f->intensity_stereo) ? 1 :
+ celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
+ tell = opus_rc_tell_frac(rc);
+
+ if (qn != 1) {
+
+ itheta = (itheta*qn + 8192) >> 14;
+
+ /* Entropy coding of the angle. We use a uniform pdf for the
+ * time split, a step for stereo, and a triangular one for the rest. */
+ if (dualstereo && N > 2)
+ ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
+ else if (dualstereo || B0 > 1)
+ ff_opus_rc_enc_uint(rc, itheta, qn + 1);
+ else
+ ff_opus_rc_enc_uint_tri(rc, itheta, qn);
+ itheta = itheta * 16384 / qn;
+
+ if (dualstereo) {
+ if (itheta == 0)
+ celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
+ else
+ celt_stereo_ms_decouple(X, Y, N);
+ }
+ } else if (dualstereo) {
+ inv = itheta > 8192;
+ if (inv)
+ {
+ int j;
+ for (j=0;j<N;j++)
+ Y[j] = -Y[j];
+ }
+ celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
+
+ if (b > 2 << 3 && f->remaining2 > 2 << 3) {
+ ff_opus_rc_enc_log(rc, inv, 2);
+ } else {
+ inv = 0;
+ }
+
+ itheta = 0;
+ }
+ qalloc = opus_rc_tell_frac(rc) - tell;
+ b -= qalloc;
+
+ orig_fill = fill;
+ if (itheta == 0) {
+ imid = 32767;
+ iside = 0;
+ fill = av_mod_uintp2(fill, blocks);
+ delta = -16384;
+ } else if (itheta == 16384) {
+ imid = 0;
+ iside = 32767;
+ fill &= ((1 << blocks) - 1) << blocks;
+ delta = 16384;
+ } else {
+ imid = celt_cos(itheta);
+ iside = celt_cos(16384-itheta);
+ /* This is the mid vs side allocation that minimizes squared error
+ in that band. */
+ delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
+ }
+
+ mid = imid / 32768.0f;
+ side = iside / 32768.0f;
+
+ /* This is a special case for N=2 that only works for stereo and takes
+ advantage of the fact that mid and side are orthogonal to encode
+ the side with just one bit. */
+ if (N == 2 && dualstereo) {
+ int c;
+ int sign = 0;
+ float tmp;
+ float *x2, *y2;
+ mbits = b;
+ /* Only need one bit for the side */
+ sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
+ mbits -= sbits;
+ c = (itheta > 8192);
+ f->remaining2 -= qalloc+sbits;
+
+ x2 = c ? Y : X;
+ y2 = c ? X : Y;
+ if (sbits) {
+ sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
+ ff_opus_rc_put_raw(rc, sign, 1);
+ }
+ sign = 1 - 2 * sign;
+ /* We use orig_fill here because we want to fold the side, but if
+ itheta==16384, we'll have cleared the low bits of fill. */
+ cm = ff_celt_encode_band(f, rc, band, x2, NULL, N, mbits, blocks,
+ lowband, duration, lowband_out, level, gain,
+ lowband_scratch, orig_fill);
+ /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
+ and there's no need to worry about mixing with the other channel. */
+ y2[0] = -sign * x2[1];
+ y2[1] = sign * x2[0];
+ X[0] *= mid;
+ X[1] *= mid;
+ Y[0] *= side;
+ Y[1] *= side;
+ tmp = X[0];
+ X[0] = tmp - Y[0];
+ Y[0] = tmp + Y[0];
+ tmp = X[1];
+ X[1] = tmp - Y[1];
+ Y[1] = tmp + Y[1];
+ } else {
+ /* "Normal" split code */
+ float *next_lowband2 = NULL;
+ float *next_lowband_out1 = NULL;
+ int next_level = 0;
+ int rebalance;
+
+ /* Give more bits to low-energy MDCTs than they would
+ * otherwise deserve */
+ if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
+ if (itheta > 8192)
+ /* Rough approximation for pre-echo masking */
+ delta -= delta >> (4 - duration);
+ else
+ /* Corresponds to a forward-masking slope of
+ * 1.5 dB per 10 ms */
+ delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
+ }
+ mbits = av_clip((b - delta) / 2, 0, b);
+ sbits = b - mbits;
+ f->remaining2 -= qalloc;
+
+ if (lowband && !dualstereo)
+ next_lowband2 = lowband + N; /* >32-bit split case */
+
+ /* Only stereo needs to pass on lowband_out.
+ * Otherwise, it's handled at the end */
+ if (dualstereo)
+ next_lowband_out1 = lowband_out;
+ else
+ next_level = level + 1;
+
+ rebalance = f->remaining2;
+ if (mbits >= sbits) {
+ /* In stereo mode, we do not apply a scaling to the mid
+ * because we need the normalized mid for folding later */
+ cm = ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+
+ rebalance = mbits - (rebalance - f->remaining2);
+ if (rebalance > 3 << 3 && itheta != 0)
+ sbits += rebalance - (3 << 3);
+
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm |= ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+ } else {
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm = ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+
+ rebalance = sbits - (rebalance - f->remaining2);
+ if (rebalance > 3 << 3 && itheta != 16384)
+ mbits += rebalance - (3 << 3);
+
+ /* In stereo mode, we do not apply a scaling to the mid because
+ * we need the normalized mid for folding later */
+ cm |= ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+ }
+ }
+ } else {
+ /* This is the basic no-split case */
+ uint32_t q = celt_bits2pulses(cache, b);
+ uint32_t curr_bits = celt_pulses2bits(cache, q);
+ f->remaining2 -= curr_bits;
+
+ /* Ensures we can never bust the budget */
+ while (f->remaining2 < 0 && q > 0) {
+ f->remaining2 += curr_bits;
+ curr_bits = celt_pulses2bits(cache, --q);
+ f->remaining2 -= curr_bits;
+ }
+
+ if (q != 0) {
+ /* Finally do the actual quantization */
+ cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
+ f->spread, blocks, gain);
+ }
+ }
+
return cm;
}